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A CLASSIFICATION CRITERION FOR DEFINITIVE

SCREENING DESIGNS

By Eric D. Schoen∗,†,§, Pieter T. Eendebak‡ and Peter Goos†,‡

KU Leuven†, University of Antwerp‡ and TNO§

A conference design is a rectangular matrix with orthogonal columns,
one zero in each column, at most one zero in each row, and −1s and
+1s elsewhere. A definitive screening design can be constructed by
folding over a conference design and adding a row vector of zeroes.
We prove that, for a given even number of rows, there is just one
isomorphism class for conference designs with two or three columns.
Next, we derive all isomorphism classes for conference designs with
four columns. Based on our results, we propose a classification cri-
terion for definitive screening designs based on projections into four
factors and illustrate its potential by studying designs with 24 factors.

1. Introduction. Screening designs are helpful to study many control-
lable factors using a small number of experimental runs. The major part
of the literature on screening designs focuses on two-level experiments; see
Mee, Schoen and Edwards (2017) and Schoen, Vo-Thanh and Goos (2017)
for recent reviews. The experimental results from a two-level screening de-
sign usually permit identification of substantial linear effects and, depending
on the design, a few two-factor interactions. However, when all the factors
are quantitative, it is of practical interest to investigate the presence of
quadratic effects as well. For this purpose, Jones and Nachtsheim (2011)
developed three-level designs using a number of runs that is one more than
twice the number of factors studied. The designs are called definitive screen-
ing designs. Since their conception, a considerable effort has been invested
into the further development of the definitive screening designs; references
include Jones and Nachtsheim (2013), Georgiou, Stylianou and Aggarwal
(2014), Nguyen and Pham (2016), Jones and Nachtsheim (2017) and Nacht-
sheim, Shen and Lin (2017). Recent applications have been described by
Dougherty et al. (2015), Fidaleo et al. (2016) and Patil (2017).

The original definitive screening designs presented by Jones and Nacht-
sheim (2011) were based on a heuristic optimal design algorithm. For an odd
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2 ERIC SCHOEN, PIETER EENDEBAK AND PETER GOOS

number of factors and also for some even numbers of factors, these designs
were not orthogonal for the linear effects. Xiao, Lin and Bai (2012) proposed
constructing definitive screening designs that are orthogonal for the linear
main effects using conference matrices. A conference matrix C of order N is
an N×N matrix with elements cij ∈ {−1, 0, 1} such that CTC = (N−1)IN ,
where IN is an N ×N identity matrix. The definition implies that there is
one zero entry in every row and column of a conference matrix. A definitive
screening design is constructed by folding over a conference matrix C and
adding a row vector of zeroes. So, the structure of a definitive screening
design is given by [CT ,−CT ,0N ]T , where 0N is an N -dimensional column
vector of zeroes. The orthogonality of a definitive screening design for the
linear effects follows directly from the properties of a conference matrix.

Following Xiao, Lin and Bai (2012), the definitive screening designs stud-
ied in the current literature are all based on conference matrices. In this
article, we adopt a more general approach, which is based on the notion of
conference designs. A conference design X is an N×k matrix, with elements
xij ∈ {−1, 0, 1}, columns x1, . . . , xk, k ≤ N and at most one 0 in each row,
such that XTX = (N − 1)Ik. We refer to N as the row size of the confer-
ence design. Clearly, a conference matrix is a special case of a conference
design. In this paper, we use the name definitive screening design for any
design constructed from an N × k conference design X by folding it over
and adding a zero row. So the definitive screening designs we discuss have
the form [XT ,−XT ,0k]

T .
A justification of using small screening designs with many factors is the

factor sparsity principle, which states that, generally, only a few factors are
active. The end product of the data analysis then is a statistical model
involving just a few linear effects, as well as some quadratic effects or two-
factor interactions involving the active factors. It is therefore important to
investigate the potential of screening designs for fitting models involving
just a few factors. This can be done by studying projections of the screening
designs onto smaller numbers of factors. Accordingly, projection properties
form the basis of the generalized aberration criterion for classifying orthogo-
nal arrays (Deng and Tang, 1999). The purpose of this paper is to develop a
similar criterion for classifying definitive screening designs based on a study
of their projections onto two, three and four factors. Since definitive screen-
ing designs are constructed by folding over conference designs, enumerating
all their projections onto two, three and four factors is equivalent to enu-
merating all possible projections of conference designs onto two, three and
four columns. Since enumerating conference designs is simpler, this is the
route we take.
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A CRITERION FOR DEFINITIVE SCREENING DESIGNS 3

For a given row size N and number of columns k, there can be many differ-
ent conference designs. These can be grouped into isomorphism classes. The
designs in one isomorphism class can be obtained from each other by a se-
quence of row permutations, column permutations, sign switches in columns
or sign switches in rows. Unlike in orthogonal arrays, sign switches of rows
in conference designs do result in isomorphic definitive screening designs,
due to the fact that any such sign switch in the original conference design X

causes an opposite sign switch in the folded-over conference design −X. As
a result, the definitive screening design is not affected by switching the signs
in one or more rows of the original conference design. We therefore consider
two conference designs that can be obtained from each other by switching
the signs in entire rows as isomorphic.

Isomorphic designs have identical statistical properties, so that it suffices
to study only one instance of each isomorphism class. We denote the set of
isomorphism classes of conference designs with N rows and k columns by
C(N, k). To develop our classification criterion, the sets C(N, k) for which
k equals 2, 3, or 4 are the most important. We focus on even values of N ,
because this is a necessary condition for conference designs to exist.

The rest of this paper is organized as follows. In Section 2, we show that
all two-factor conference designs of a given row size N are isomorphic. In
Section 3, we derive a similar result for all three-factor conference designs
of a given row size N . In Section 4, we derive all isomorphism classes of
four-factor conference designs. Finally, based on the findings of the four-
factor conference designs, we propose a classification criterion for definitive
screening designs in Section 5 and we illustrate its potential by studying all
conference designs in C(24, 24).

2. Conference designs with two columns. For every even value of
N , C(N, 2) includes a single isomorphism class. To see this, consider any N×
2 conference design. By applying sign switches to the rows of the design and
permuting the resulting rows, we can ensure that the first column, x1, of the
design equals [0,1TN−1]

T , where 1z denotes a z-dimensional column vector of
ones, and that the second column, x2, equals [1, 0,1

T
q ,−1Tq ]

T , with q = N/2−
1. Because C(N, 2) includes a single isomorphism class, projections onto
two columns are not useful for classifying conference designs and definitive
screening designs with more than two columns and a given value for N .

3. Conference designs with three columns.

3.1. Four design classes. At first sight, there are four possible ways to
extend the two-column conference design with x1 = [0,1TN−1]

T and x2 =
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4 ERIC SCHOEN, PIETER EENDEBAK AND PETER GOOS

[1, 0,1Tq ,−1Tq ]
T from Section 2 by a third column, x3. These extensions, la-

beled I–IV in Table 1, define four possible classes of three-column conference
designs. For each of the classes, we set x13 = 1. This can be done without loss
of generality because, in the event x13 would be −1, we can always switch
the signs of the elements in column x3 and obtain a conference design that
is isomorphic to the original one.

The N rows of the four design classes in Table 1 are divided into three
parts. The first part includes the row in which x1 = 0 and x2 = 1, and the
row in which x1 = 1 and x2 = 0. The second part includes the q = N/2− 1
rows in with x2 takes the value 1, and the third part includes the q = N/2−1
rows in with x2 takes the value −1.

The four classes in the table differ according to the value taken by x3 at
the second row (either 1 or −1) or according to the design part in which x3
takes the value 0 (either part 2 or part 3). The number of times x3 takes the
value 1 in part 2 of the design is denoted by q2, while the number of times
it takes the value 1 in part 3 of the design is denoted by q3.

3.2. Possible row sizes in the four classes. Since conference designs are
orthogonal, the column x3 has to be orthogonal to both the columns x1 and
x2. This restricts the values of N for which conference designs of the classes
I, II, III and IV exist. For example, for class I, the columns x1 and x3 can
only be orthogonal when

1 + q2 + q3 = q,

while the columns x2 and x3 can only be orthogonal when

q3 = q2 + 1.

Table 1

Four classes of three-column conference designs

Part x1 x2 x3 (I) x3 (II) x3 (III) x3 (IV)

1 0 1 1 1 1 1
1 0 1 −1 1 −1

2 1q 1q 0 0 1q2 1q2

1q2 1q2 −1q−q2 −1q−q2

−1q−1−q2 −1q−1−q2

3 1q −1q 1q3 1q3 0 0
−1q−q3 −1q−q3 1q3 1q3

−1q−1−q3 −1q−1−q3
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Table 2

Two possible conference designs with 8 rows and 3 columns

Part Class II Class III

1 0 1 1 0 1 1
1 0 −1 1 0 1

2 1 1 0 1 1 1
1 1 1 1 1 −1
1 1 −1 1 1 −1

3 1 −1 1 1 −1 0
1 −1 1 1 −1 1
1 −1 −1 1 −1 −1

Consequently, q2 = q/2 − 1 and q3 = q/2. As q2 and q3 have to be whole
numbers, q must be even. Since N = 2+2q, three-column conference designs
of class I exist only when N ≡ 2 (mod 4).

Using a similar reasoning, we can show that conference designs of the
classes II and III only exist when N ≡ 0 (mod 4), and that designs of the
class IV only exist when N ≡ 2 (mod 4).

3.3. Isomorphism classes. When N is a multiple of four, a three-column
conference design can either belong to class II or to class III. Table 2 shows
the designs from these two classes when N = 8. The design of class III can
be converted into the design of class II by swapping the second and third
columns, sorting the rows so that the zeros are on the main diagonal, and
sorting the remaining rows that do not contain zeros. Therefore, the designs
of classes II and III are isomorphic for N = 8. It is straightforward to show
that this holds for all values of N that are multiples of 4. Thus, we have
established the following result:

Lemma 1. When N ≡ 0 (mod 4), C(N, 3) includes a single isomor-

phism class.

When N is an odd multiple of two, a three-column conference design can
either belong to class I, or to class IV. Table 3 shows the designs for the
two classes when N = 10. The design of class IV can be converted into the
design of class I in four steps. First, switch the signs in the second and third
columns. Second, sort the rows so that the zero in the third column appears
in the third row, while keeping the first two rows unchanged. Third, sort the
remaining rows that do not contain zeros. Finally, switch the signs in the
first row.
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Table 3

Two possible conference designs with 10 rows and 3 columns

Part Class I Class IV

1 0 1 1 0 1 1
1 0 1 1 0 −1

2 1 1 0 1 1 1
1 1 1 1 1 1
1 1 −1 1 1 −1
1 1 −1 1 1 −1

3 1 −1 1 1 −1 0
1 −1 1 1 −1 1
1 −1 −1 1 −1 1
1 −1 −1 1 −1 −1

Because we can convert the design of class IV into the design of class I
using operations that preserve isomorphism, the designs of classes I and IV
are isomorphic for N = 10. It is straightforward to show that this holds for
all even values of N that are not multiples of 4. Thus, we have established
the following result:

Lemma 2. When N ≡ 2 (mod 4), C(N, 3) includes a single isomor-

phism class.

Combining both lemmas, we state our main result for the number of
isomorphism classes in C(N, 3) as follows:

Theorem 1. For any N ≡ 0 (mod 2), C(N, 3) includes a single iso-

morphism class.

Because C(N, 3) includes a single isomorphism class for any given value
of N , projections onto three columns are not useful for classifying conference
designs and definitive screening designs with more than three columns.

4. Conference designs with four columns.

4.1. J4-characteristics. The J4-characteristic of a design in C(N, 4) can
be calculated in three steps. First, determine the elementwise products of
the four columns. Second, sum these products. The resulting sum is the
j4-characteristic. Finally, the absolute value of the j4-characteristic is the
J4-characteristic.
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A CRITERION FOR DEFINITIVE SCREENING DESIGNS 7

The correlation between two two-factor interaction contrast vectors in-
volving all columns of a four-column conference design equals j4/(N − 2).
The sign of the j4-characteristic changes if the signs of the elements in one
or three of the four columns involved in its calculation are switched. The
j4-characteristic is not affected by any other operation that preserves iso-
morphism. So, its absolute value, the J4-characteristic, is invariant to all
operations that preserve isomorphism. For this reason, the J4-characteristic
is a key feature of a conference design with four columns.

Since a four-factor definitive screening design is constructed by folding
over a four-column conference design, its J4-characteristic is twice the J4-
characteristic of the conference design. The correlation between any two
two-factor interaction contrast vectors involving all four factors is the same
for the definitive screening design and for the original conference design.

4.2. Kernels of four-column conference designs. To enumerate non-isomorphic
four-column conference designs, it is convenient to assume that both the
first column and the first row start with a 0 and have 1s elsewhere, and that
x22 = x33 = x44 = 0. Define the kernel K of the conference design as

K =







x22 x23 x24
x32 x33 x34
x42 x43 x44






=







0 x23 x24
x32 0 x34
x42 x43 0






.

The kernel thus corresponds to the second, third and fourth column of rows
2, 3 and 4 of the conference design. The off-diagonal elements of K are either
1 or −1. Delsarte, Goethals and Seidel (1971) studied the kernels of N ×N
conference matrices and found that they were symmetric or not depending
on N . Here, we establish a similar result for kernels of N × 4 conference
designs.

Theorem 2. N ≡ 2 (mod 4) if and only if K is symmetric. N ≡ 0
(mod 4) if and only if K = −KT .

Proof. To prove the sufficient part of Theorem 2, suppose first that K
is symmetric. If x32 = x23 = 1, the first three columns of any resulting
four-column conference design form a three-column conference design that
belongs to class I (see Table 3). If x32 = x23 = −1, the first three columns of
any resulting four-column conference design form a three-column conference
design that belongs to class IV (see again Table 3). Since class-I and class-
IV conference designs exist only when N ≡ 2 (mod 4), the row size N of
conference designs with symmetric kernels K must be such that N ≡ 2
(mod 4).
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8 ERIC SCHOEN, PIETER EENDEBAK AND PETER GOOS

Suppose further that K = −KT or antisymmetric. If x32 = 1 and x23 =
−1, the first three columns of any resulting four-column conference design
form a three-column conference design that belongs to class II (see Table 2).
If x32 = −1 and x23 = 1, the first three columns of any resulting four-column
conference design form a three-column conference design that belongs to
class III (see again Table 2). Since the designs in classes II and III exist only
when N ≡ 0 (mod 4), the row size N of conference designs with opposite
values for x32 and x23 must be a multiple of four.

To prove the necessary part of the theorem, we need to show that, when,
N ≡ 0 (mod 4), the kernel must be antisymmetric, and that, when N ≡ 2
(mod 4), the kernel must be symmetric. To this end, we use a proof by
contradiction. First, suppose that N ≡ 0 (mod 4) and that K is not anti-
symmetric. In other words, suppose that x32 = x23 or x42 = x24 or x43 = x34.
By applying row and column permutations in the kernel, we can then al-
ways obtain a new kernel for which x32 = x23 = 1 or x32 = x23 = −1 . This
produces a contradiction, because the first three columns of the resulting
conference design would then possess the same structure as the designs in
classes I or IV (see Table 3). However, designs in these classes exist only when
N ≡ 2 (mod 4). So, if N ≡ 0 (mod 4), the elements of the pairs (x32, x23),
(x42, x24) or (x43, x34) must have opposite signs, in which case K = −KT .
Using the same kind of reasoning, we can show that, when N ≡ 2 (mod 4),
the elements of the pairs (x32, x23), (x42, x24) or (x43, x34) must be equal, in
which case K = KT .

4.3. Four-column conference designs when the row size N is a multiple of

four. The rows of conference designs with N ≡ 0 (mod 4) can be arranged
such that the first four rows contain the zeroes on the diagonal and have the
structure shown in Table 4, where p and q are either 1 or −1. We call this
set of four rows the zero part of the design, and we call the remaining rows
the nonzero part.

Table 4

The four rows containing zeroes in four-column conference designs whose row size is a
multiple of 4

x1 x2 x3 x4

0 1 1 1
1 0 −1 −p
1 1 0 −q
1 p q 0
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A CRITERION FOR DEFINITIVE SCREENING DESIGNS 9

The zero part can include one of four different pairs (p, q). Three of these
pairs, (1, 1), (1,−1) and (−1,−1), give rise to isomorphic conference designs.
This can be verified by permuting the rows and columns of the resulting
conference designs. For each of these cases, four of the six pairs of columns
in the zero part in Table 4 have inner products of ±2, and the remaining
two pairs have inner products of 0. Conference designs constructed using the
fourth pair, (−1, 1), are not isomorphic to those constructed with one of the
other three pairs, because all pairs of columns in the zero part in Table 4
have inner products of 0 when using that fourth pair. We call the series
of conference designs constructed using one of the pairs (1, 1), (1,−1) and
(−1,−1) series A, and the series of conference designs constructed using the
pair (−1, 1) series B. In the remainder of this section, we assume, without
loss of generality, that the pair (1, 1) is chosen to construct the conference
designs in series A.

In the event (p, q) = (1, 1), the zero part of the conference design is given
by the first four rows in the left panel of Table 5. The six inner products
of all pairs of columns in that design part equal 2 (columns x1 and x2), 0
(columns x1 and x3), −2 (columns x1 and x4), 2 (columns x2 and x3), 0
(columns x2 and x4) and 2 (columns x3 and x4). This implies that the 4× 4
matrix in Table 4 is not orthogonal when (p, q) = (1, 1), and that it is not a
conference design. However, it can be used to build a conference design with
N = 4(g + 1) rows by adding 4g rows of +1s and −1s for which the inner
products of the column pairs equal −2, 0, 2, −2, 0 and −2, respectively.
These 4g added rows form the nonzero part of the conference design, and
they ensure that the inner products of all pairs of columns, calculated across
the entire design, equal zero, so that all columns are orthogonal. In the
Appendix, we prove that any conference design in series A must contain the
set of four rows from the nonzero part of the design in the left panel of Table 5
if the zero part is identical to that in the top left part of Table 5. The design
shown in Table 5 therefore represents the smallest possible conference design
in series A, and any larger four-column conference design is an extension of
it involving additional rows, or is isomorphic to such an extension. The J4-
characteristic of the smallest series-A conference design in the left panel of
Table 5, involving eight rows, equals 0.

After identifying the smallest conference design in series A, the next chal-
lenge is to study the designs with larger row sizes N . To derive all isomor-
phism classes in series A for a given row size N , we assume, without loss of
generality, that the first eight rows are those shown in Table 5’s left panel.
Conference designs of series A with N ≥ 12 can thus be constructed by
adding a set of z = 4(g − 1) extra rows to the initial eight. Without loss
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10 ERIC SCHOEN, PIETER EENDEBAK AND PETER GOOS

Table 5

Smallest four-column conference designs in series A and series B

Series A Series B

x1 x2 x3 x4 x1 x2 x3 x4

0 1 1 1 0 1 1 1
1 0 −1 −1 1 0 −1 1
1 1 0 −1 1 1 0 −1
1 1 1 0 1 −1 1 0

1 1 −1 1
1 −1 1 1
1 −1 1 −1
1 −1 −1 1

of generality, the first column in the extra set can be taken to be 1z. To
preserve the orthogonality of the columns in the complete N -row conference
design, the columns 2, 3 and 4 of the z additional rows must then form a
two-level orthogonal array with z rows, three columns and levels −1 and +1.

Because the design in Table 5 has a J4-characteristic of 0 and the z entries
of the first column of the extra rows are all 1, the J4-characteristic of the
complete design is determined entirely by the aliasing structure of the or-
thogonal array used. More specifically, the J4-characteristic of the complete
design is equal to the J3-characteristic of the orthogonal array, which is cal-
culated by taking the elementwise products of its columns, summing these
products to obtain the j3-characteristic, and taking the absolute value of
that j3-characteristic. Deng and Tang (1999, proposition 2ii) show that any
z-row orthogonal array with three columns and a certain J3-characteristic
can be constructed by concatenating [z−J3]/8 copies of a full factorial 23 de-
sign and J3/4 copies of one of its half fractions. Denoting the three columns
by X2, X3 and X4, each of the two possible half fractions includes all four
combinations of the ±1 entries for X2 and X3. For one of the fractions, the
entries for X4 are calculated as X4 = X2X3, while, for the other fraction, the
entries for X4 are calculated as X4 = −X2X3. However, if the latter option
is chosen, applying sign switches to the columns 2–4, applying a sign switch
to the first row, and permuting columns and rows, the corresponding confer-
ence design can be converted into the conference design based on the former
option. Therefore, the two ways of defining the half fraction lead to isomor-
phic conference designs, so that, without loss of generality, we consider only
the half fraction for which X4 = X2X3.

Deng and Tang (1999) also point out that the J3-characteristic of any
z-row orthogonal array involving three two-level factors is a multiple of 4,
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A CRITERION FOR DEFINITIVE SCREENING DESIGNS 11

Table 6

Possible J4-characteristics and isomorphism classes for conference designs whose row
size N is a multiple of 4

Row Size Series A Series B

4 - 0
8 0 4

12 4 8 0
16 8 0 12 4
20 12 4 16 8 0
24 16 8 0 20 12 4

N N − 8λ (N − 4)− 8λ
λ = 1, . . . , ⌊N/8⌋ λ = 0, . . . , ⌊(N − 4)/8⌋

of the form z − 8h, where h ≤ z/8 is a nonnegative integer. Therefore, the
J3-characteristic is a multiple of 8 if z ≡ 0 (mod 8) and an odd multiple
of 4 if z ≡ 4 (mod 8). Because the J4-characteristic of any entire four-
column conference design in series A is given by the J3-characteristic of the
orthogonal array used in the z extra rows, any conference design in series A
will have a J4-characteristic of the form z−8h, where z = N−8. Equivalently,
J4 = N − 8λ, where λ ≤ N/8 is a strictly positive integer.

In the event (p, q) = (−1, 1), the 4 × 4 matrix in Table 4 is a conference
design with a J4-characteristic of 0. So, the smallest conference design in
series B has N = 4. That design is shown in the right panel of Table 5. The
enumeration of all isomorphism classes of series B is otherwise similar to
that for series A. Adding z = N − 4 rows to the smallest conference design
of this series results in J4-characteristics of z − 8h = N − 4 − 8λ, where
λ ≤ (N − 4)/8 is a nonnegative integer.

Table 6 shows the possible values of the J4-characteristics of the confer-
ence designs in series A and series B for 4, 8, . . . , 24 rows and for a general
N value that is a multiple of four. Each isomorphism class is uniquely de-
termined by its J4-characteristic. The numbers of isomorphism classes in
series A and series B equal ⌊N/8⌋ and ⌈N/8⌉, respectively. So, the total
number of isomorphism classes for a given value of N is N/4. We summarize
the results obtained in this section by the following theorem:

Theorem 3. For row sizes N ≡ 0 (mod 4), the following properties

hold for the designs in C(N, 4):

1. The number of isomorphism classes equals N/4.
2. Each isomorphism class is uniquely determined by the value of its J4-

characteristic.
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12 ERIC SCHOEN, PIETER EENDEBAK AND PETER GOOS

3. The possible values of the J4-characteristic are N−4λ, for λ = 1, . . . , N/4.

4.4. Four-column conference designs when the row size N is an odd mul-

tiple of two. Without loss of generality, we assume that the first four rows
of conference designs with N ≡ 2 (mod 4) correspond to those in Table 7,
where p and q are either 1 or −1. As before, we refer to these four rows as
the zero part of the conference designs, and to the rows of ±1s we add as the
nonzero part. There are four possible pairs (p, q). However, by permuting
rows and columns, it can be shown that the designs for (p, q) = (1,−1) and
(p, q) = (−1, 1) are isomorphic. In addition, by applying sign switches in the
last three columns and permuting the resulting rows and columns, it can
be shown that the design for (p, q) = (−1,−1) is isomorphic to those for
(p, q) = (1,−1) and (p, q) = (−1, 1). For these three cases, the inner prod-
ucts of the columns equal 0 for four of the column pairs and ±2 for two of
the pairs. The design for (p, q) = (1, 1) is not isomorphic to the other three
designs, because all inner products equal 2. We call the conference design se-
ries for which (p, q) is (1, 1) series C, and the series for which (p, q) is (1,−1),
(−1, 1) or (−1,−1) series D. To construct designs that are representatives
for the isomorphism classes in series D, we use the pair (p, q) = (1,−1) in
the remainder of this section. The first four rows in the left and right panels
of Table 8 show the zero parts for the representatives in series C and D.

We start by studying the isomorphism classes in series C. As the inner
product of any pair of columns in Table 7 equals 2 when (p, q) = (1, 1),
conference designs in this series require 4g + 2 additional rows of 1s and
−1s, for which the inner product of any pair of columns is −2. In the online
Appendix, we prove that any conference design of series C must contain
the six rows of the nonzero part of the design in the left panel of Table 8.
Therefore, g should be a strictly positive integer for series C, and the 10-
row design shown in the table is the smallest possible conference design in
series C. Its j4-characteristic equals 6.

To construct conference designs from series D starting from Table 7, we

Table 7

The four rows containing zeroes in four-column conference designs whose row size is an
odd multiple of two

x1 x2 x3 x4

0 1 1 1
1 0 1 p
1 1 0 q
1 p q 0
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Table 8

Smallest four-column conference designs within series C and series D

Series C Series D
x1 x2 x3 x4 x1 x2 x3 x4

0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 −1
1 1 1 0 1 1 −1 0

1 1 −1 −1 1 −1 1 −1
1 1 −1 −1 1 −1 −1 1
1 −1 1 −1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 1

need to add a matrix involving 4g + 2 rows of 1s and −1s for which the
inner product of the columns x1 and x2 is 2, that of the columns x3 and
x4 is 2 as well, and the inner products of the other column pairs are 0. In
the Appendix, we prove that any conference design of series D must contain
the two rows of the nonzero part of the design in the right panel of Table 8
if the zero part is identical to that in the table’s right panel. Therefore, g
can be any nonnegative integer for series D, and the 6-row design shown
in the table is the smallest possible conference design in series D. Its j4-
characteristic equals 2.

After identifying the smallest conference designs in series C and D, the
next challenge is to study the designs with larger row sizes N , where N
is an odd multiple of two. We assume, without loss of generality, that the
first ten rows of any N × 4 conference design of series C and the first six
rows of any N × 4 conference design of series D are those shown in Table 8.
To obtain conference designs with larger row sizes, we have to add sets of
z rows of 1s and −1s to these two designs. Without loss of generality, the
first column in the extra sets can again be taken to be 1z. To preserve the
orthogonality of all columns in the complete conference design, the columns
2, 3 and 4 of the z extra rows must then form a two-level orthogonal array
with z rows. As all entries of column 1 equal 1, the j4-characteristic of the
z added rows, which form the nonzero part of the design, is equal to the
j3-characteristic of the orthogonal array with z rows used for columns 2, 3,
and 4. The j4-characteristic of the complete conference design now is the
sum of the j4-characteristic of the zero part of the design and that of the
nonzero part, while the J4-characteristic is its absolute value.
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Table 9

Possible J4-characteristics and isomorphism classes for conference designs whose row
size N is an odd multiple of 2

Row Size Series C Series D

6 - 2
10 6 6 2
14 10 2 10 2 6
18 14 6 2 14 6 2 10
22 18 10 2 6 18 10 2 6 14

N |N − 4(2λ+ 1)| |N − 4(2λ+ 1)|
λ = 0, . . . , (N − 10)/4 λ = 0, . . . , (N − 6)/4

Unlike the smallest conference designs in series A or series B for rows
sizes N that are multiples of four, those in series C or series D have nonzero
j4-characteristics. More specifically, their j4-characteristics equal 6 and 2, re-
spectively. Therefore, utilizing a z-row orthogonal array with a j3-characteristic
of z− 8h for the columns 2–4 when adding z rows to the smallest designs in
series C and series D results in a j4-characteristic 6+z−8h or 2+z−8h, re-
spectively, for the entire design. Using the mirror image of the orthogonal ar-
ray, which has a j3-characteristic of 8h−z, would result in j4-characteristics
of 6−z+8h and 2−z+8h, respectively. Therefore, unlike for the conference
designs in series A and series B, using the original orthogonal array or its
mirror image results in different J4-characteristics, unless the z-row orthog-
onal array used has a J3-characteristic of zero. Any z-row orthogonal array
with a nonzero J3-characteristic therefore gives rise to two non-isomorphic
conference designs in series C and in series D.

For an N -row conference design in series C, z = N − 10. Therefore, its
j4-characteristic equals N − 4− 8h or −N +16+8h, where h ≤ (N − 10)/8.
Equivalently, it is of the form N − 4(2λ + 1), where λ ≤ (N − 10)/4 is a
nonnegative integer. For an N -row conference design in series D, z = N −6.
Therefore, its j4-characteristic equals N − 4 − 8h or −N + 8 + 8h, where
h ≤ (N − 6)/8. So, it is also of the form N − 4(2λ+ 1), but, for series D, λ
is a nonnegative integer of at most (N − 6)/4.

Table 9 shows the possible J4-characteristics of the conference designs in
series C and series D for 6, 10, . . . , 22 rows and for a general N value that is
an odd multiple of two. The numbers of isomorphism classes in series C and
series D equal ⌊(N−4)/4⌋ and ⌈(N−4)/4⌉, respectively. So, the total number
of isomorphism classes equals (N − 4)/2 when N is an odd multiple of two.
The J4-characteristics in both series are odd multiples of two. Unlike when
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N is a multiple of four, the isomorphism classes in series C and D for a given
row size N are not uniquely identified by their J4-characteristic, except for
the class whose J4-characteristic equals |8−N |. When the J4-characteristic
differs from |8 − N |, the zero part of the matrix can be used to determine
whether the design belongs to series C or D by checking the inner products
of its columns. The design belongs to series C if the inner products are all
nonzero, and to series D otherwise. We summarize the results as follows:

Theorem 4. For row sizes N ≡ 2 (mod 4), the following properties

hold for the designs in C(N, 4):

1. The number of isomorphism classes equals (N − 4)/2.
2. The possible values of the J4-characteristic are |N − 4(2λ + 1)| for

λ = 0, . . . , (N − 6)/4.
3. The J4-characteristic of |N − 8| uniquely determines one of the iso-

morphism classes for a given N value.

4. The remaining isomorphism classes can be divided into pairs with

unique J4-characteristics.

5. A generalized aberration criterion for definitive screening de-

signs. By studying the information matrix of a response surface model, in-
cluding the intercept and all linear effects, quadratic effects and two-factor
interactions, it is easy to establish the following properties of model matrix
columns for any definitive screening design: (1) linear effects are orthogonal
to each other, (2) linear effects are orthogonal to quadratic effects, (3) linear
effects are orthogonal to two-factor interactions, (4) the inner product of
any pair of quadratic effect columns equals 2N − 4, (5) the inner product
of any quadratic effect column involving a given factor with a two-factor
interaction column involving that factor equals 0, and (6) the inner product
of any quadratic effect column involving a factor with a two-factor interac-
tion column not involving that factor equals ±2; see Jones and Nachtsheim
(2011).

For a given run size 2N+1 and a given number of factors k, there may be
several non-isomorphic definitive screening designs. When considering the
properties of the columns of the response surface model’s model matrix,
the inner products of pairs of two-factor interaction columns are the only
variable features in a definitive screening design of a given run size. This
suggests that we should rank the definitive screening designs according to
the extent to which two-factor interactions are aliased. We can do this by
considering the J4-characteristics of all four-factor projections of the defini-
tive screening designs. As definitive screening designs and their projections
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are folded-over conference designs, the possible J4-characteristics of four-
factor projections of definitive screening designs are readily obtained from
Theorems 3 and 4. More specifically, the J4-characteristic of a four-factor
definitive screening design is twice the J4-characteristic of the corresponding
conference design. Likewise, the J4-characteristic of any possible four-factor
projection of a definitive screening design is twice the J4-characteristic of
the corresponding four-column projection of the corresponding conference
design. Theorems 3 and 4 therefore have the following corollary:

Corollary 1. For any four-factor definitive screening design involving

2N + 1 runs:

1. If N ≡ 0 (mod 4), the N/4 possible values of the J4-characteristics
are 2N − 8, 2N − 16, . . . , 0.

2. If N ≡ 2 (mod 4), the (N−4)/2 possible values of the J4-characteristics
are 2N − 8, 2N − 16, . . . , 4.

When a four-factor definitive screening design has to be selected for an
experiment, it is best to pick one that minimizes the J4-characteristic. This is
because the absolute correlation between each of the three pairs of two-factor
interaction contrast vectors involving all four factors equals J4/(2N − 4).
Small correlations between the contrast vectors result in small correlations
for the estimators in any model involving two two-factor interactions and a
smaller bias in any model involving only one of the two-factor interactions.

When a definitive screening design with more than four factors has to
be selected, we suggest determining the frequency vector F4 of the J4-
characteristics of 2N − 8λ for λ = 1, . . . , N/4 when N is a multiple of 4, or
λ = 1, . . . , (N − 2)/4 when N is an odd multiple of 2. The definitive screen-
ing designs under consideration are then ordered based on that vector. More
specifically, we sort the designs in ascending order of the F4 vector’s first
entry. Designs with the same first entry are sorted in ascending order of the
second entry. The process continues until a unique order has been established
or all entries have been considered. We define the generalized aberration of
a definitive screening design as its rank after the sorting procedure. A design
with rank 1 thus has a minimum generalized aberration.

The generalized aberration criterion for orthogonal two-level designs of
Deng and Tang (2002) is based on the confounding frequency vector (F3, F4,
. . . , Fk), where Fi denotes the frequency vector of the nonzero Ji-characteris-
tics and k is the number of factors or columns in the design. We base our
generalized aberration criterion for definitive screening designs on the F4

vector only for the following reasons. First, definitive screening designs are
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Table 10

F4 vectors for all 49-run definitive screening designs involving 24 factors

Design F4(40, 32, 24, 16, 8, 0)

1 0 0 0 3036 3036 4554
2 18 12 114 2652 2904 4926
3 24 12 120 2604 2892 4974
4 24 16 120 2588 2892 4986
5 24 21 150 2508 2862 5061
6 24 24 192 2412 2820 5154
7 30 24 150 2460 2856 5106
8 36 20 180 2380 2820 5190
9 66 0 330 1980 2640 5610

fold-over designs, so that any Ji-characteristic for an odd value of i is zero.
This is due to the fact that the Ji-characteristic of a conference design’s
mirror image is the negative of the Ji-characteristic of the original confer-
ence design when i is odd. As a result, Fi vectors are zero vectors when
i is odd, for any definitive screening design, and therefore do not help to
distinguish alternative design screening design options. Second, the Fi vec-
tors for even values of i larger than 4 do not contain information that is
relevant to experimenters. As a matter of fact, these vectors quantify the
aliasing of contrast vectors corresponding to third-order and higher-order
interaction contrast vectors. Generally, such interactions are unimportant
and most experimenters assume they are negligible.

To illustrate the usefulness of our generalized aberration criterion for
definitive screening designs, we studied cases with 24 factors in 49 runs
and 82 factors in 165 runs. For the first of these cases, we generated rep-
resentatives of all isomorphism classes of conference matrices of order 24
with a dedicated computer program. This resulted in 9 different conference
matrices, which confirms the number of isomorphism classes established by
Greig, Haanpää and Kaski (2006). We determined the F4 vectors of the cor-
responding definitive screening designs and ordered the designs according to
their generalized aberration. The F4 vectors are shown in Table 10.

Since the possible nonzero J4-characteristics for conference designs with
N = 24 equal 20, 16, 12, 8 and 4 (see Table 6), the possible nonzero J4-
characteristics for the corresponding definitive screening designs are 40,
32, 24, 16 and 8. The best of the nine non-isomorphic designs has J4-
characteristics of at most 16 and a maximum absolute correlation of 4/11
between pairs of two-factor interaction contrast vectors. In total, there are
3× 3036 = 9108 pairs of interactions with this absolute correlation. For the
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Table 11

F4 vectors for the 165-run definitive screening designs involving 82 factors based on the
26 conference designs of Hurkens and Seidel (1985). For all the designs, max(J4) ≤ 100

and F4(4) equals 1749060 minus the sum of the frequencies stated in the table

Design F4(100, 92, 84, 76, 68, 60, 52, 44, 36, 28, 20, 12)

2 0 0 0 0 0 0 0 0 22140 398520 531360 0
4 0 0 0 0 0 2700 0 55080 139320 116640 252720 453600

13 0 0 0 720 320 3100 10080 32200 83800 173600 340080 481360
23 0 38 4 196 436 3406 8584 30800 84790 178684 345876 484092
24 0 38 4 196 436 3406 8584 30800 84790 178684 345876 484092
21 0 54 108 0 108 7290 3024 36612 92448 163134 330912 480384
22 0 72 18 216 360 4092 10728 31770 82332 172872 340452 479856
7 0 156 0 128 272 3792 7360 31072 84104 181216 349984 475648
8 0 156 0 128 272 3792 7360 31072 84104 181216 349984 475648

15 0 244 0 0 480 4512 7168 31552 84672 173424 352064 479616
11 0 252 0 288 288 4608 5184 25920 87768 185616 364608 454752
12 0 252 0 288 288 4608 5184 25920 87768 185616 364608 454752
3 0 486 0 0 0 8046 3888 30780 92664 173502 331452 443880
1 0 4212 0 0 0 13824 5184 36288 104544 53136 336960 513216

25 2 12 15 186 439 3364 8441 31468 85416 178286 343555 482639
26 2 12 15 186 439 3364 8441 31468 85416 178286 343555 482639
14 8 6 24 144 816 3182 8624 31556 83368 181894 340060 479640
16 18 0 0 594 540 4320 8406 28314 85005 182907 338202 474732
17 18 0 0 594 540 4320 8406 28314 85005 182907 338202 474732
18 36 234 0 216 918 4698 7740 30096 86670 174672 337896 471636
19 36 234 0 216 918 4698 7740 30096 86670 174672 337896 471636
5 52 108 0 288 700 4608 8856 28368 84212 178392 339592 485488
6 52 108 0 288 700 4608 8856 28368 84212 178392 339592 485488

20 72 90 72 144 648 4398 9360 33192 79020 173358 348696 467256
9 396 756 0 2376 2916 7056 9648 23832 81972 158904 296784 492768

10 396 756 0 2376 2916 7056 9648 23832 81972 158904 296784 492768

other eight designs, the J4-characteristics can be as large as 40, correspond-
ing to an absolute correlation of 10/11 and indicating almost complete alias-
ing between certain pairs of two-factor interactions. Therefore, we strongly
recommend to employ the first of the non-isomorphic 24-factor definitive
screening designs in Table 10. The corresponding conference design is given
explicitly in Appendix B.

Hurkens and Seidel (1985) specified how to construct a series of 26 non-
isomorphic conference matrices of order 82 based on sets of mutually or-
thogonal Latin squares. Based on these matrices, we constructed definitive
screening designs with 165 runs and 82 factors. We determined the F4 vec-
tors of these designs and ordered the designs according to their generalized
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aberration. The results are shown in Table 11; the design labels correspond
to those in Hurkens and Seidel (1985). A Matlab program that outputs the
conference matrices as well as the F4 vectors is provided as supplemental
material to this paper (Schoen, 2018).

Since the possible nonzero J4-characteristics for conference designs with
N = 82 equal 78, 74, . . . , 2 (see Table 9), the possible J4-characteristics
for the corresponding definitive screening designs are 156, 148, . . . , 4. There
are thus no non-zero J4-characteristics. This implies that F4(4) =

(82
4

)

−
ΣF4(J4 > 4) = 1749060− ΣF4(J4 > 4), where the sum adds all frequencies
of J4-characteristics larger than 4.

It turns out that none of the 26 definitive screening designs have J4-
characteristics larger than 100. The best of the 26 non-isomorphic designs
has J4-characteristics of at most 36 and a maximum absolute correlation
of 9/40 = 0.225 between pairs of two-factor interaction contrast vectors. In
total, there are 3 × 22140 = 66420 pairs of interactions with this absolute
correlation. The second best and third best designs have pairs of interactions
with absolute correlations up to 0.375 and 0.475, respectively, while the
remaining designs have correlations as large as 0.575 (11 cases) or 0.675
(12 cases). Therefore, we strongly recommend to employ the first of the
non-isomorphic 82-factor definitive screening designs in Table 11.

APPENDIX A: COMPULSORY ROWS IN N × 4 CONFERENCE
DESIGNS

The purpose of this Appendix is to prove that certain rows must be present
in the nonzero parts of N × 4 conference designs. The general shape of
these parts is shown in Table 12. The first column can be taken to contain
only +1 elements. It is convenient to use the symbol k for m − 1. So, if
N = 4m, the number of rows in the nonzero part equals z = 4k. In case
N = 4m + 2, the number of rows in the nonzero part is z = 4k + 2. The
symbols a, b, c, d, e, f, p, q, r, s, u, v and w define nonnegative numbers of rows
for the various level combinations of the columns x2, x3 and x4 in the nonzero
part of a conference design. For example, there are a rows with a +1 for x2,
there are c rows with a +1 for x2 and a +1 for x3, and so on.

A.1. Series A. For the initial four rows of an N × 4 conference design
in series A, the six inner products of the column pairs in Table 5 equal 2
(columns x1 and x2), 0 (columns x1 and x3), −2 (columns x1 and x4), 2
(columns x2 and x3), 0 (columns x2 and x4) and 2 (columns x3 and x4),
which implies that the 4× 4 matrix in Table 5 is not orthogonal. Therefore,
it is not a conference design. However, it can be turned into a conference
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design by adding z = 4k rows for which the inner products of the column
pairs equal −2, 0, 2, −2, 0 and −2, respectively.

In the extra 4k rows, the second column should add up to −2. Therefore,
a = 2k − 1 and b = 2k + 1. The third column’s inner products with the
first and the second column should equal 0 and 2, respectively. Therefore,
c = k − 1, d = k, e = k + 1 and f = k. For the constants p, q, r, s, t, u, v
and w, we can derive four equations based on the values of c, d, e and f and
three equations based on the inner products with column 1–3 necessary to
make the conference design orthogonal. These equations are as follows.

p+ q = k − 1(1)

r + s = k(2)

t+ u = k + 1

v + w = k

p− q + r − s+ t− u+ v − w = 2(3)

p− q + r − s− t+ u− v + w = 0(4)

p− q − r + s+ t− u− v + w = −2

We want to establish that r ≥ 1, t ≥ 1, u ≥ 1 and v ≥ 1. We proof that
r ≥ 1; proofs for the remaining three inequalities are similar.

Suppose that r = 0. In that case, adding up Equations (3) and (4) results
in

(5) 2(p− q)− 2s = 2.

By Equation (2), s = k. Inserting this value in Equation 5 results in p− q =
k + 1. Combining with Equation (1) results in p = k and q = −1. This

Table 12

General shape of the nonzero parts of four-column conference designs

x1 x2 x3 x4

1z 1a 1c 1p

−1q

−1d 1r

−1s

−1b 1e 1t

−1u

−1f 1v

−1w
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is a contradiction, because the length of the vectors in Table 12 cannot be
negative. We conclude that r ≥ 1.

The fact that r ≥ 1, t ≥ 1, u ≥ 1 and v ≥ 1 shows that each N ×4 confer-
ence design of series A must contain a row with (x1, x2, x3, x4) = (1, 1,−1, 1)
(by the condition on r), a row with (x1, x2, x3, x4) = (1,−1, 1, 1) (by the con-
dition on t), a row with (x1, x2, x3, x4) = (1,−1, 1,−1) (by the condition on
u) and a row with (x1, x2, x3, x4) = (1,−1,−1, 1) (by the condition on v).
Therefore, it is without loss of generality that the rows 5–8 of the conference
design can be taken to be those mentioned here. Any further run size then
can only be obtained by taking a column of ones as the first column and
inserting the columns of a three-factor orthogonal array as the second, third
and fourth columns.

A.2. Series B. The initial four rows of a conference design in series B
form a conference design by themselves. Therefore, in any further set of
4k rows, the columns must be orthogonal. By convention, the first column’s
elements all equal +1. The columns 2, 3 and 4 must then form an orthogonal
array.

A.3. Series C. For the initial four rows of an N × 4 conference design
in series C, the six inner products of the column pairs in Table 8 all equal 2.
The initial rows can be turned into a conference design by adding z = 4k+2
rows for which the inner products of the column pairs all equal −2.

Referring to the general outline in Table 12, the second column in the extra
4k + 2 rows should add up to −2. Therefore, a = 2k and b = 2k + 2. The
third column’s inner products with the first and the second column should
both equal −2. Therefore, c = k− 1, d = k+1, e = k+1 and f = k+1. For
the constants p, q, r, s, t, u, v and w, we can derive four equations based on
the values of c, d, e and f and three equations based on the inner products
with column 1–3 necessary to make the conference design orthogonal. These
equations are as follows.

p+ q = k − 1(6)

r + s = k + 1(7)

t+ u = k + 1

v + w = k + 1

p− q + r − s+ t− u+ v − w = −2(8)

p− q + r − s− t+ u− v + w = −2(9)

p− q − r + s+ t− u− v + w = −2
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We want to establish that s ≥ 2, u ≥ 2 and v ≥ 2. We proof that s ≥ 2;
proofs for the remaining two inequalities are similar.

Adding up Equations (8) and (9) results in

(10) (p− q) + (r − s) = −2.

Suppose that s = 0. In that case, by Equation (7), r = k + 1. Inserting this
value in Equation (10) results in p−q = −k−3. Combining with Equation (6)
results in p = −2 and q = k+ 1. This is a contradiction, because the length
of the vectors in Table 12 cannot be negative. We conclude that s ≥ 1. It is
easy to show by a similar reasoning that supposing s = 1 would also result
in a contradiction. We thus have proven that s ≥ 2.

The fact that s ≥ 2, u ≥ 2 and v ≥ 2 shows that each N × 4 conference
design of series C must contain two rows with (x1, x2, x3, x4) = (1, 1,−1,−1)
(by the condition on s), two rows with (x1, x2, x3, x4) = (1,−1, 1,−1) (by
the condition on u), and two rows with (x1, x2, x3, x4) = (1,−1,−1, 1) (by
the condition on v). Therefore, it is without loss of generality that the rows
5–10 of the conference design can be taken to be those mentioned here. Any
further run size then can only be obtained by taking a column of ones as the
first column and inserting the columns of a three-factor orthogonal array as
the second, third and fourth columns.

A.4. Series D. For the initial four rows of an N × 4 conference design
in series D, the six inner products of the column pairs in Table 8 equal
2 (columns x1 and x2), 0 (columns x1 and x3), 0 (columns x1 and x4), 0
(columns x2 and x3), 0 (columns x2 and x4) and 2 (columns x3 and x4).
The initial rows can be turned into a conference design by adding z = 4k+2
rows for which the inner products of the column pairs equal −2, 0, 0, 0, 0
and −2, respectively.

Referring to the general outline in Table 12, the second column in the
extra 4k + 2 rows should add up to −2. Therefore, a = 2k and b = 2k + 2.
The third column’s inner products with the first and the second column
should both equal 0. Therefore, c = k, d = k, e = k + 1 and f = k + 1. For
the constants p, q, r, s, t, u, v and w, we can derive four equations based on
the values of c, d, e and f and three equations based on the inner products
with column 1–3 necessary to make the conference design orthogonal. These
equations are as follows.
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p+ q = k(11)

r + s = k

t+ u = k + 1(12)

v + w = k + 1

p− q + r − s+ t− u+ v − w = 0(13)

p− q + r − s− t+ u− v + w = 0

p− q − r + s+ t− u− v + w = −2(14)

We want to establish that u ≥ 1 and v ≥ 1. We proof that u ≥ 1; the
proof for the remaining inequality is similar.

Adding up Equations (13) and (14) results in

(15) (p− q) + (t− u) = −1.

Suppose that u = 0. In that case, by Equation (12), t = k+1. Inserting this
value in Equation 15 results in p−q = −k−2. Combining with Equation (11)
results in p = −1 and q = k+ 1. This is a contradiction, because the length
of the vectors in Table 12 cannot be negative. We conclude that u ≥ 1.

The fact that u ≥ 1 and v ≥ 1 shows that each N × 4 conference design
of series D must contain a row with (x1, x2, x3, x4) = (1,−1, 1,−1) (by
the condition on u) and a row with (x1, x2, x3, x4) = (1,−1,−1, 1) (by the
condition on v). Therefore, it is without loss of generality that the rows 5
and 6 of the conference design can be taken to be those mentioned here.
Any further run size then can only be obtained by taking a column of ones
as the first column and inserting the columns of a three-factor orthogonal
array as the second, third and fourth columns.

imsart-aos ver. 2014/10/16 file: AoS-DSDisomorphism_v2.tex date: May 7, 2018



24 ERIC SCHOEN, PIETER EENDEBAK AND PETER GOOS

APPENDIX B: BEST CONFERENCE MATRIX OF ORDER 24

0 + + + + + + + + + + + + + + + + + + + + + + +
+ 0 − − − − − − − − − − − + + + + + + + + + + +
+ + 0 − − − − − + + + + + − − − − − − + + + + +
+ + + 0 − − − + − − + + + − − + + + + − − − − +
+ + + + 0 − + − − + − − + − + − − + + − − + + −
+ + + + + 0 − + + − − − − − − − + − + + + − + −
+ + + + − + 0 − + + − − − + − + − + − − + − − +
+ + + − + − + 0 + − − + − + + − + − − − − + − +
+ + − + + − − − 0 + + − + + + + + − − + − − − −
+ + − + − + − + − 0 + + − + + − − − + − + + − −
+ + − − + + + + − − 0 − + − + + − − − − + − + +
+ + − − + + + − + − + 0 − − − + − + + + − + − −
+ + − − − + + + − + − + 0 + − − + + − + − − + −
+ − + + + + − − − − + + − 0 + − − + − + − − + +
+ − + + − + + − − − − + + − 0 + + − − + + + − −
+ − + − + + − + − + − − + + − 0 − − + + − + − +
+ − + − + − + − − + + + − + − + 0 − + − + − + −
+ − + − − + − + + + + − − − + + + 0 − − − + + −
+ − + − − − + + + − + − + + + − − + 0 + + − − −
+ − − + + − + + − + + − − − − − + + − 0 + + − +
+ − − + + − − + + − − + + + − + − + − − 0 + + −
+ − − + − + + − + − + − + + − − + − + − − 0 + +
+ − − + − − + + + + − + − − + + − − + + − − 0 +
+ − − − + + − − + + − + + − + − + + + − + − − 0

SUPPLEMENTARY MATERIAL

Supplement A: Conference matrices of order 82

(doi: COMPLETED BY THE TYPESETTER; .zip). We provide Matlab
code to construct the 26 non-isomorphic conference matrices of order 82 of
Hurkens and Seidel (1985) and to evaluate the F4 vector of the definitive
screening designs with 82 factors based on these matrices.
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