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Abstract

Binary classification refers to supervised techniques that split a set of
points in two classes, with respect to a training set of points whose mem-
bership is known for each class. Binary classification plays a central role
in the solution of many scientific, financial, engineering, medical and bio-
logical problems. Many methods with good classification accuracy are cur-
rently available. This work shows how a binary classification problem can
be expressed in terms of a generalized eigenvalue problem. A new regular-
ization technique is proposed, which gives results that are comparable to
other techniques in use, in terms of classification accuracy. The advantage
of this method relies in its lower computational complexity with respect to
the existing techniques based on generalized eigenvalue problems. Finally,
the method is compared with other methods using benchmark data sets.

1 Introduction

Supervised learning refers to the capability of a system to learn from a set of
examples, which is a set of input/output couples. This set is called the training
set. The trained system is able to provide an answer (output) for a new question
(input). The term supervised originates from the fact that the desired output for
the training set of points is provided by an external teacher.

Supervised learning systems can find applications in many fields. A bank
prefers to classify customer loan requests as “good” or“bad” depending on their
ability to pay back. The Internal Revenue Service tries to discover tax evaders
starting from the characteristics of known ones. As another example, a built-in
system in a car could detect if a walking pedestrian is going to cross the street.
There are many applications in biology and medicine. The tissues that are prone
to cancer can be detected with high accuracy, or the new DNA sequences or pro-
teins can be tracked down to their origins. Given its amino acids sequence, finding



how a protein folds provides important information on its expression level. More
examples related to numerical interpolation, handwriting recognition and Monte-
carlo methods for numerical integration can be found, for example, in [5, 7].
Support Vector Machine (SVMs) algorithms [25] are the state-of-the-art for the
existing classification methods. These methods classify the points from two lin-
early separable sets in two classes by solving a quadratic optimization problem in
order to find the optimal separating hyperplane between these two classes. This
hyperplane maximizes the distance from the convex hulls of each class. These
techniques can be extended to the nonlinear cases by embedding the data in a
nonlinear space using kernel functions [22].

SVMs have been one of the most successful methods in supervised learning with
applications in a wide spectrum of research areas, ranging from pattern recog-
nition [11] and text categorization [9] to biomedicine [12, 4, 15], brain-computer
interface [24, 8], and financial applications [27, 23]. The robustness of SVMs origi-
nates from the strong fundamentals of statistical learning theory [25]. The training
part relies on optimization of a quadratic convex cost function. Quadratic pro-
gramming (QP) is an extensively studied field of mathematics and there are many
general purpose methods to solve QP problems such as quasi-newton, primal-dual,
and interior-point methods. The general purpose methods are suitable for small
size problems, whereas for large problems chunking [16] and decomposition [18]
methods use subsets of points to optimize SVMs. SVM-Lite [10] and LIBSVM
[6] are among the most preferred implementations that use chunking and decom-
position methods efficiently. There are also efficient algorithms that exploit the
special structure of the optimization problem such as Generalized Proximal SVMs
(GEPSVM) [13].

The binary classification problem can be formulated as a generalized eigenvalue
problem [13]. This formulation differs from SVMs since, instead of finding one hy-
perplane that separates the two classes, it finds two hyperplanes that approximate
the two classes. The prior study requires the solution of two different eigenvalue
problems. The aim of this work is to present Regularized General Figenvalue
Classifier (ReGEC), a classification method that uses a new regularization tech-
nique for the solution of the underlying generalized eigenvalue problem. Our work
differs from original method by the fact that the regularization technique we use
permits us to solve only one eigenvalue problem instead of two. Thus, our method
halves the execution time compared to the original method and provides compa-
rable accuracy results.

The notation used in the paper is as follows. All vectors are column vectors,
unless transposed to row vectors by a prime ’. Scalar product of two vectors x
and y in R™ will be denoted by z’y, 2-norm of = will be denoted by ||z| and the
unit vector will be denoted by e.

The remainder of the the paper is organized as follows. Section 2 describes how
the generalized eigenvalue classifier differs from the generic SVM methods. In
Section 3 regularization technique is presented. In Section 4, numerical experi-
ments are reported, and finally, in Section 5, conclusions are drawn and future
work is proposed.



2 Related work

SVM algorithm for classification consists of finding a hyperplane that separates
the elements belonging to two different classes. The separating hyperplane is
usually chosen to maximize the margin between the two classes. The margin can
be defined as the minimum distance between the separating hyperplane and the
points of either class. The optimum hyperplane is the one that maximizes the
margin. The points that are closest to the hyperplane are called support vectors,
and are the only points needed to train the classifier. Consider two matrices
A € R™™ and B € R¥*™, that represent the two classes, each row being a point
in the feature space. The quadratic linearly constrained problem to obtain the
optimal hyperplane (w, b) is:

w'w

min f(w) = 5 (1)
s.t. (Aw+1b) >e
(Bw+b) < —e.

Mangasarian et al. [13] proposes to classify these two sets of points A and B
using two hyperplanes, each closest to one set of points, and furthest from the
other. Let 2w — v = 0 be a hyperplane in R™. In order to satisfy the previous
condition for the points in A, the hyperplanes can be obtained by solving the
following optimization problem:

Aw — 2
min 7H v e’yHT (2)
w70 || Bw — ev||
The hyperplane for the B can be obtained by minimizing the inverse of the

objective function in (3). Now, let

G=[A —¢|[A —¢, H=[B —¢€|[B —¢], z=[w" 4], (3)

then equation (2), becomes:
. 2/Gz
A @
The expression in (4) is the Raleigh quotient of the generalized eigenvalue
problem G = AHx. The stationary points are obtained at and only at the eigen-
vectors of (4), where the value of the objective function is given by the eigenvalues.
When H is positive definite, the Raleigh quotient is bounded and it ranges over
the interval determined by minimum and maximum eigenvalues [17]. H is positive
definite under the assumption that the columns of [B  — e] are linearly indepen-
dent. The inverse of the objective function in (4) has the same eigenvectors and
reciprocal eigenvalues. Let 2, = [w1 7] and 20 = [wa 2] be the eigenvec-
tors related to the eigenvalues of smallest and largest modulo, respectively. Then
x'wy —v1 = 0 is the closest hyperplane to the set of points in A and the furthest
from those in B and z'wy — v2 = 0 is the closest hyperplane to the set of points
in B and the furthest from those in A. This is depicted in the examples shown in

Figure 2.
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Figure 1: Separation obtained with generalized eigenvectors

A standard technique in SVMs to obtain a greater separability between sets
is to embed the points into a nonlinear space, via kernel functions. In this work
we use the Gaussian kernel,

2
llei—ayl

K(zia)=e o . (5)

In (5), z; and z; denote two points in the feature space. This technique usu-
ally allows one to obtain better results, as shown in several applications. Results
regarding nonlinearly separable problems [1, 2] still hold and a formulation for
the eigenvalues problem can easily be derived. This formulation is given in the
next section.

3 Regularized method

Recall that A and B are the matrices containing the two classes of training points,
with each row representing a point in the future space. Let G and H be as defined
in (3). Note that even if A and B are full rank, matrices G and H are always
rank-deficient. The reason is that G and H are matrices of order m + 1, and
their rank can be at most m. The added complexity due to singularity of the
matrices means that special care has to be given to the solution of the general-
ized eigenvalue problem. Indeed, if the null spaces of G and H have a nontrivial
intersection, i.e. Ker(A)( Ker(B) # 0, then the problem is singular and a regu-
larization technique is needed to solve the eigenvalue problem.

Mangasarian et al. proposes to use Tikhonov regularization applied to a two-
fold problem:

- [lAw — ey]” + 0]|2?

min , 6
w,y£0 | Bw — ev||? (6)
and 2 | 5.2
Buw —
iy 180 =P+ 1P .
waZ0  [[Aw — ey

where ¢ is the regularization parameter and the new problems are still convex.
The minimum eigenvalues-eigenvectors of these problems are approximations of
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the minimum and the maximum eigenvalues-eigenvectors of equation (4). The
solutions (w;,;),7 = 1,2 to (6) and (7) represent the two hyperplanes approxi-
mating the two classes of training points.

In practice, if BG — aH is nonsingular for every a and (3, it is possible to
transform the problem into another problem that is nonsingular and that has the
same eigenvectors of the initial one. We start with the following theorem whose
proof can be found in [21], p. 288.

Theorem 3.1 Consider the generalized eigenvalue problem Gx = AHx and the
transformed G*x = AH*x defined by:

G*:TlG—(SlH, H*:TQH_52G, (8)

for each choice of scalars T, 7o, 61 and d2, such that the 2 x 2 matriz

[T &
2= < 52 T1 ) (9)
is nonsingular. Then the problem G*x = AH*x has the same eigenvectors of the

problem Gx = AHz. An associated eigenvalue \* of the transformed problem is
related to an eigenvalue \ of the original problem by

B ToA* + 61
N T1 +(52)\*.

R In the lAinear case Theorem 3.1 can be applied. By setting m; = 7o = 1 and
61 = —0d1, 69 = —0d9, the regularized problem becomes

|l Aw — ey||? + 61 || Bw — ev]|?

w20 || Buw — ey|2 + &) Aw — e

(10)

If §1and & are non negative, 2 is non-degenerate. The spectrum is now shifted
and inverted so that the minimum eigenvalue of the original problem becomes
the maximum of the regularized one, and the maximum becomes the minimum
eigenvalue. Choosing the eigenvectors related to the new minimum and maximum
eigenvalue, we still obtain the same ones of the original problem.

This regularization works for the linear case if we suppose that in each class
of the training set there is a number of linearly independent rows that is at least
equal to the number of the features. This is often the case and, since the number
of points in the training set is much greater than the number of features, Ker(G)
and Ker(H) have both dimension 1. In this case, the probability of a nontrivial
intersection is zero.

In the nonlinear case the situation is different. Using the kernel function (5),
each element of the kernel matrix is

ll4;— B,

K(A, B)i,j =e o . (11)
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Let

then, problem (2) becomes:

KA, Chu— e
. 12
200 | K (B, Oy — en]P 12)

Now the associated eigenvalue problem has matrices of order n + k + 1 and rank
at most m. This means a regularization technique is needed, since the problem
can be singular.

We propose to generate the following two proximal surfaces:

K(z,C)lu1 =1 =0, K(z,Clug—y2 =0 (13)
by solving the following problem

KA, CJu— ey + 8| K pu — e
w20 [[K(B, Oy — |2 + D[R au — en?

(14)

where K4 and Kp are diagonal matrices with the diagonal entries from the ma-
trices K(A,C) and K(B,C). The perturbation theory of eigenvalue problems
[26] tells us that if we call z(d) an eigenvalue of the regularized problem, then
|z — 2(0)| = O(9), where z is ... and O() represents .. ..

As mentioned in the previous section, the minimum and the maximum eigen-
values obtained from the solution of (14) provide the proximal planes P;, i = 1,2
to classify the new points. A point x is classified using the distance

_ K (@, C)u—?

dist(xz, P;) = TalP? . (15)

and the class of a point x is determined as

class(z) = argmin;=1 2{dist(x, P;)}. (16)

In the next section we present comparisons of accuracy and speed of the pro-
posed method to the original generalized proximal classifier as well as the widely
used SVMs implementations.

4 Numerical results

The aforementioned methods have been tested on benchmark data sets publicly
available. Results regard their performance in terms of classification accuracy
and execution time. We used data from different repositories: UCI repository
[3], Odewahn et al. [20], and IDA repository [19]. These repositories are widely
used to compare the performance of new algorithms to the existing methods. The
results regarding the linear kernel have been obtained using the first two repos-
itories. The third one has been used in the non-linear kernel implementation.
For each data set, the latter repository offers 100 predefined random splits into



dataset n+k dim ReGEC GEPSVM SVMs

NDC 300 7 87.60 86.70 89.00

Cleveland Heart 297 13 86.05 81.80 83.60
Pima Indians 768 8 74.91 73.60 75.70
Galaxy Bright 2462 14 98.24 98.60 98.30

Table 1: Classification accuracy using linear kernel

dataset n+k test m 1) c ReGEC GEPSVM SVM
Breast-cancer 200 77 9 1le03 50 73.40 71.73  73.49
Diabetis 468 300 8 1.e-03 500 74.56 74.75  76.21
German 700 300 20 1.e-03 500 70.26 69.36  75.66
Thyroid 140 75 5 1l.e03 0.8 92.76 92.71  95.20
Heart 170 100 13 1.e-03 120 82.06 81.43 83.05
Waveform 400 4600 21 1.e-03 150 88.56 87.70  90.21
Flare-solar 666 400 9 1.e-03 3 58.23 59.63  65.80
Titanic 150 2051 3 1.e-03 150 75.29 75.77  77.36
Banana 400 4900 2 1.e-05 0.2 84.44 85.53 89.15

Table 2: Classification accuracy using gaussian kernel

training and test sets. For several algorithms, results obtained from each trial,
including SVMs, are recorded. The accuracy results for the linear kernel SVMs
and GEPSVM are taken from [13] and for the non linear kernel from [19]. Exe-
cution times and the other accuracy results have been calculated using an Intel
Xeon CPU 3.20GHz, 6GB RAM running Red Hat Enterprise Linux WS release 3
with Matlab 6.5, during normal daylight operations. Matlab function eig for the
solution of the generalized eigenvalue problem has been used for GEPSVM and
ReGEC. The latest releases for LIBSVM [6] and SVMlight [10] have been used to
compare these methods with SVMs.

In Tables 1 and 2, classification accuracy using linear and gaussian kernels have
been evaluated. Tables columns represent: data set name, the number of elements
in the training set (n+k), the number of elements in the test set and the accuracy
results for ReGEC, GEPSVM and SVMs. In Table 1, the accuracy results have
been evaluated using ten fold cross validation. In Table 2, the random splits of
IDA repository have been used. In the linear case comparable accuracy results
have been obtained by the three methods. Using the gaussian kernel, ReGEC
and GEPSVM show similar behavior yielding always results slightly lower than
SVMs.

In Tables 3 and 4, elapsed time is reported. In the linear case ReGEC and
GEPSVM outperform SVMs implementations (LIBSVM and SVM light) in all
cases. Furthermore ReGEC is at least twice faster then GEPSVM. When the
gaussian kernel is used, SVMs implementations achieve better performances with
respect to the eigenvalues based methods. In all cases, ReGEC is faster than
GEPSVM.



dataset ReGEC GEPSVM LIBSVM SVM light

NDC 0.1e-03 0.2e-03 0.8991 22.002

Cleveland Heart  1.92e-04 3.58e-04 9.90e-03 0.3801
Pima Indians 1.21e-04 2.36e-04 15.8737 48.8092
Galaxy Bright 0.3e-3 0.5e-3 1.2027 21.128

Table 3: Elapsed time in seconds using linear kernel

Dataset ReGEC GEPSVM LIBSVM SVM light

Breast-cancer 0.0698 0.3545 0.0229 0.1188
Diabetis 1.1474 5.8743 0.1323 0.2022
German 3.8177 25.2349 0.2855 0.4005
Thyroid 0.0243 0.1208 0.0053 0.0781

Heart 0.0316 0.2139 0.0172 0.1372
Waveform 0.5962 4.409 0.0916 0.2228
Flare-solar 1.8737 16.2658 0.1429 4.4524
Titanic 0.0269 0.1134 0.0032 7.1953
Banana 0.4989 3.1102 0.0344 1.3505

Table 4: Elapsed time in seconds using gaussian kernel

Finally, a graphical representation of the classification surfaces obtained by
ReGEC, GEPSVM and SVMs is given in Figure 4 relatively to Banana dataset.
The three methods show similar class regions. SVMs obtain smoother borders
and more regular regions. These differences depend upon the fact that in SVMs
the surfaces are characterized by the support vectors and the penalties terms,
while in the eigenvalues methods all the points contribute to the solution surfaces.
This behavior depends on the fact that eigenvalues methods always maximize the
classification accuracy on the training set with respect to kernel and regularization
parameters.

5 Conclusions and future work

Research activities related to supervised learning have an important role in many
scientific and engineering applications. In the present work a novel regulariza-
tion technique and its application has been proposed and tested against other
methods on a number of datasets. Results show that the proposed method 7) has
a classification accuracy comparable to other methods, ii) has a computational
performance comparable to most of the other methods, and #ii) is much faster
then the others in the linear case.

In the last years there has been a wide effort devoted to the implementation
of algorithms for the efficient computation of eigenvectors corresponding to ex-
tremal eigenvalues of large, sparse and symmetric matrices on distributed memory
multiprocessors (see for example [14]). Therefore eigenvalue based techniques are



Figure 2: Separation surfaces obtained with ReGEC, GEPSVM and LIBSVM on Banana
dataset

attractive for the classification of very large sparse data sets.

Future work will regard the verification and comparison of the proposed clas-
sification method on large data sets with respect to other methods using high
performance computers.
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