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A (lassification of Almost Contact Metric Manifolds (*).

D. CaneA - C. GONZALEZ

Summary. — It is obtained a compleie classification for almost contact metric manifolds through
the study of the covariamt derivalive of the fundamental 2-form on those manifolds.

0. — Introduction.

A (2n - 1)-dimengional differentiable manifold M of class C® is said to have an
almost contact structure (J. W. GRAY [6]) if the structural group of its tangent
bundle reduces to U(n)x1; equivalently (8. SAsAKT and 8. HATARKEYAMA [15], [17]),
an almost contact structure is given by a triple (g, &, ) satisfying certain conditions
(see section 1). Many different types of almost contact structures are defined in the
literature (cosymplectic, Sasakian, almost cosymplectic, quasi Sasakian, normal,
a-Kenmotsu, a-Sasakian, trans-Sasakian, ..., [2], [3], [9], [14]). These types of struc-
tures bear sufficient resemblance to cosymplectic and Sasakian structures so that
it is possible to generalize a portion of cosymplectic and Sasakian geometry to
each type. ‘

The main purpose of this paper is to fit all of these classes into a general system,
which in a reasonable sense is complete. For it, we shall consider a real vector space V
of dimension 2n + 1 with an almost contact metric structure and we shall study
the representation of the group U(n)x1 on a certain space C(V). Geometrieally
C(V) can be interpreted as the space of tensors of type (0, 3) over V which satisfy
the same symmetries as the covariant derivative of the fundamental 2-form of an
almost contact metric manifold. We give a decomposition of C(V) into twelve irre-
ducible invariant components C;, ¢=1,...,12, under the action of the group
U(n)x1. It is possible to form 2* different invariant subspaces from these twelve,
corresponding to each invariant subspace a class of almost contact mefric manifolds.
For example, {0} corresponds to the class of cosymplectic manifolds, C; to the class
of x-Kenmotsu manifolds, C; to the class of «-Sasakian manifolds, C,® C, to the
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class of almost cosymplectic manifolds, C;@ C, to the class of quasi Sasakian
manifolds, C;P C; to the class of trans-Sasakian manifolds, and C,PC, D CD
@ CeP C, P C; to the class of normal manifolds.

In section 1, we give some results on almost econtact manifolds. In order to ob-
tain the decomposition of C(V), we study in section 2 the space of the invariant
tengors of type (0, p) under the action of U(n) x1 finding a basis for this space, and
in section 3 we obtain a set of generators for the vector space of the quadratic in-
variants of C(V). In section 4, we give the decomposition of C(V) and the linear
relations among the quadratic invariants for each of the irreducible subspaces C;.
In section 5, we give the characterization of the twelve classes of almost contact
metric struetures on a manifold and we relate these classes with those studied in
the literature. Finally, in section 6 we construct examples of different types of almost
contact mefrie structures on the product of an almost Hermitian manifold with R,
on the hyperbolic space, on the generalized Heisenberg groups H(p, 1) and H(1,r),
and on other Lie groups of matrices included in the Kowalski’s classification for
generalized symmetric Riemannian spaces of dimension n<5 ([12]). These examples
illustrate many types of the classification obtained in this paper.

‘We wish to express our hearty thanks to O. KowALskr, L. A, CORDERO and J. A.
OusifaA for several comments useful in the preparation of this paper.

1. — Preliminaries.

Let M be a real (2n + 1)-dimensional €® manifold and X(M) the Lie algebra
of 0= vector fields on M. An almost contact structure on M is defined by a (1,1)-
tensor field ¢, a vector field £ and & 1-form » on M such that for any point v € M
we have

where I denotes the identity transformation of the tangent space T,M at «.
Manifolds equipped with an almost contact structure are called almost contact mani-
folds. A Riemannian manifold M with metric tensor g and with an almost contact
structure (¢, & #) such that

gloX, 9Y) = g(X, ¥) — n(X)n(¥),

where X, ¥ € L(M), is an almost contact metric manifold. Then g is called a com-
patible metric and M is said to have a (g, £, ¥, g)-structure or an almost contact
metric strueture. The existence of an almost contact structure on M is equivalent
to the existence of a reduetion of the structural group to U(n)x1, i.e. all the ma-
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trices of O(2n - 1) of the form
A B 0
—B 4 o}’
0 0 1

being A and B real (n,n)-matrices.
The fundamental 2-form @ of an almost contact metric manifold (M, ¢, &, 7, g)

is defined by
DX, Y)=y9X,¢Y),

for all X, YeX(M), and this form satisfies yADP"#~ 0. This means that every
almost contact metrie manifold is orientable.
If V is the Riemannian conneetion of g, it is easy to prove

(1.1) (VONY, Z) = g(Yi (VX‘P)Z) y
(1.2) (V= ONY, Z) 4 (Vx D)@Y, 9Z) = n(Z)(Vxn) Y — n(¥Y)(Ven)@Z ,
(1.3) (Van) ¥ = g(¥, Vz&) = (VxD)(§, ¢¥) .

The exterior derivatives of # and @ are given by

(1.4) 2dn(X, ¥) = (Van) ¥ — (Vo) X,
(1.5) 3dD(X, Y, Z) = &(V:P)¥, Z),
where & denotes the eyclic sum over X, Y, Ze X(M). If {X,, X, &}, i=1..m,

is a local orthonormal basis, defined on an open subset of M, the coderivatives of @
and 7 are computed to be

(1.6) 0D(X) = — 3 {(V5, D)X, X) + (Vor, D)X, X)} — (V:D)E, X)
i=1
(1'7) 677 == z {(in"?)xz + (thxm)‘PXc} *

i=1

An almost contact structure (g, &, ) is said to be normal if the almost complex
structure J on M xR given by

a ad
(1.8) 7(x, 0 5) = (px—agn0) 5),
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where a is a C° function on M X R, ig integrable, which is equivalent to the condi-
tion [g, ] + 2dnp® & = 0, where [p, ¢] denotes the Nijenhuis torsion of ¢.
An almost contact metrie structure (g, &, 7, ¢9) in M is said to be:

Almost cosymplectic if d® = 0 and dy = 0.

Cosymplectic if it is almost cosymplectic and normal.

Quasi Sasakian if d® = 0 and (g, & ») is normal.

Almost o-Kenmotsu if dyp = 0 and dD(X, Y, Z) = 3aS{n(X) D(Y, Z)}, being «
a differentiable function on M.

«-Kenmotsn if it is almost o-Kenmotsu and normal.

Almost a-Sasakian if «® = dy, being o differentiable function on M.

o-Sasakian if it is almost «-Sasakian and normal.

For « = constant our definition of almost x-Kenmotsu and almost «-Sasakian
structures coincides with the struetures introduced in [9].

Moreover, (g, &7, g) is said to be Kenmotsu if it is 1-Kenmotsu, contact if it
is almost 1-Sasakian, and Sasakian if it is 1-Sasakian. For an extensive study of
these structures we refer to [2], [3], [9], [11], [16]. On the other hand, J. Oubifia
defined other classes of almost contact metric structure through the almost Her-
mitian structure (J, k) on M X R, where J is given by (1.8) and k is the product me-
tric of ¢ and the Huclidean metric on R. Next, we recall some of these classes
(see [13], [14]):

Nearly-K-cosymplectic if (Vzg)Y -+ (Vyp)X = 0 and V& = 0.
Quasi-K-cosymplectic if (Vxp)Y -+ (Vox@)pY = n(Y)Vyzé.
Semi cosymplectic if 6P = 0 and dn = 0.

Trang-Sasakian if

(Ve®)(T, ) = — = {(9(X, VinlZ) —g(X, Zyn( V) 00(E) +

+ (9(X, pY)(Z) — g( X, pZ)y(Y)) bn} .

Nearly-trans-Sasakian if

1
(VD) X, Y) = ~5m {9(X, X)6D(Y) — ¢g(X, Y)0D(X) + g{pX, Y)n(X)on},
and

1 .
(Vam) ¥ = — o (9@ X, pY) 0 - 994, Y) D)) .

Almost-K-contact if V.o = 0.
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2. — Invariant tensors of U(n) x1.

Let V be a n-dimensional real vector space. We denote by GL(V) the group of
all nonsingular linear transformations. A tensor f of type (0, p) on V is invariant by
a subgroup G of GL(V) if and only if

(2.1) f(0Byy vy 02,) = F(Bry vy €5)

for all e G and »,€ V. We denote by ®2V the space of the tensors of type

(0,p) over V and by (®SV)* @) the subspace of ®,V consisting of the tensors f

on V which satisfy (2.1). :
Now, let V be a real vector space of dimension 2» -~ 1 with an almost contact

structure (g, &, ) and a real positive definite inner product ¢, >. We assume that
{, » compatible with the (¢, &, n)-structure in the sense that

Lz, gy = <z, 4> — nlz)n(@) .
We consider the group U(nr) X1, which ean be written as
Un)x1 = {o€ GL(V): ol;e U(n) and of = &} .
where V denotes the orthogonal complement of the suspace spanned by &, i.e.,
V={reViKa, & = 0}.
It is well-known that (@, ¢, >) defines on ¥ an almost Hermitian structure and

Uln) X1z~ Un) .
Put,

A= aim (V) (Um)) and p? = dim (R V) U(m)x1).

Then we have,

=0, ifpis odd,
and for the even case N. Iwahori has proved in [8] that
AP =2°2p—1)(2p— 3)...31 for p<n.

We shall say that a mapping ¢ from the set of 2p integers {1, 2, ..., 2p} onto the
set of p integers {1,2,...,p} is admissible if, for every integer i, L<i<p, o (i)

<
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consists of two integers. Let us identify two admissible mappings o, 7 if
{o7*(1), ..., 0X(p)} and {r~'(1),..., 7Y (p)} coincide up to their orders. We denote
by 4, the set of all admissible mappings.

Let us associated to g€ 4, the tensors of type (0, 2p) Fir% a;= 0,1, on V
as follows:

(2.2) 1”2‘“““”(% vy Byy) = L, (2 mk;) e 8, (@ wkp) s

where {k,, k;} = 07'(j), k, <k, =1,...,p), o=, ), and £,= F.
Then {F*-*} forms a base of (®3, V)¥(U(n)), [8].

THEOREM 2.1. — If p<2n, then we have

[P
u=y (q) Az=e . where 20 =1.
=0

Proor. From V = V® {£}, where {£} is the subspace of V spanned by &, we
obtain the following decomposition of @V into direct sum of subspaces:

RV =8, .. D EH,
where,
By= @V
H=(RQ(®)_")D(VORD(R_.7))D...® (-, )®R)

B,= (RRR(D_,MBRIVOIR(R_; 7)) ®... O((R°_, VY QRIR)

I T I I R S T N T R T T S T S S A I I N A Y

(@S VHUm)x1) = 3 B Tm) x1) .
¢=0
Now, since U(n)x1 leaves invariant every element of R, we have,
(T (@ R (Um) x1) = (@ MHUm) ® R= () NHU) .
Thus,
dim E4(U(n) x1) = (’q’) Jo=a,

This proves the required result.



D. CHINEA - C. GOoNzZALEZ: A classification, ete. 21

Consider the tensors of type (0,2p)F, F’;‘l"'“f’, F’Z‘;ﬁ;’;l"fjm, 0<s<p, ;= 0,1,
on V defined by

Fwyy .y @ay) = (@1, &) oo {gpy £

By (@, ey my,) = FJ (T 0y By

with F2%# given in (2.2), @i =T+ P&, T Vy

Bore o (B, 0y &,,) = FZ""%(@Ia e &)

Qlast1e.-lap
with
1< o <, <2y 1<l < oo <19, <2P, 45 Gogi

where

o, =%+ 8,5 i=1,.,28, =& k=1..,20p—59)),

and in other case:

Fopem o (@ ey 0,,) = 0.

Qfzst1...82p\ 17 “*° 7 V2p

Then,

COROLLARY 2.1. — {F, Foror Fo* . % i3 a base of (®9, V) (Un)x1) and

Qigs+1...92p

F"o‘l...“s } is one of (®g”+1V)#(U(’n)X1)-

Qbas+1.. tapr

3. — Quadratic invariants of C(V).

The covariant derivative V@ of the fundamental 2-form @ of an almost contact
metric manifold M is a covariant tensor of degree 3 which has various symmetry
properties. We shall define a finite dimensional vector space C(V) that will consist
of those tensors that possess the same symmetries.

Let V be a real vector space of dimension 2% - 1 with an almost contaet strue-
ture (g, &, ) and a compatible metric {, >. Let C(V) be the subspace of @2V de-
fined by

C(V) = {xe @ V/ulm, y, 2) = — alw, 2, y) = — al@, @y, p2) +
C @)l & 2) + nE)ale, v, O}

The natural representation of U(n) x1 on V induces a representation of U(n) X1
on XV defined by

(3.1) (@) (@yy vy @) = (@7 @y, oony 07 10,)

for €V, ac U(n)x1, ac @°V.
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The quadratic invariants of @)V may be written as follows

Pla) = 3 (65,5 ey 6;,) (65, ...

where {,, ..., 6,41} 18 an arbitrary

Fe(®), VUn)x1).

3 Vip.

orthonormal basis of V,
Furthermore, all the quadratic invariants of a subspace

G, ) (65 .y €565 .006)

x€ @SV and

of @,V are restrictions of quadratic invariants of ®°V [1].

THEOREM 3.1. — The space of the quadratic invariants of C(V) is generated by the

following 18 imvarianis:

(%) = Z x(6;, €5, €x)®

1,4,k

() = 2 o€y €55 1) o{@es, E;y €1);

14,5
t5(a) = Z alé, e;y 6:)%;
ik
= 2 (&, €;, er)ale;y & €);
ik
to{o) = D afesy €5, &) x(pey, @e;, £);

()

iy () :Eoce”e,, a(e;, ey &);

[

T1a(ot —de,@,,@k alpe;, &, en);
ik

is{o) = Z“ zafpeu o(es, €54 £);

isd

7/17 Z * 339 iy (Bk (57 E, 3k)
ik

b

where {ey, ...,

() = z (e, €, ) o(e;, 6y €r)
iydyk

() = z o(e:y €y €:)x(e;, €y )
iyd,k

ig(x) = Z a(e:, &, €;)*
i,k

() = z‘x(euen Yo(e; €4y &)

Z o(e:y €:y E)orle;, €5, &)

5§

tya(a) = z olesy €5y &) olge;, pes, &)

s

tro(0) =

tya() = z o(e:y @eiy E)ale;, pe;, &)

iyd

Z alg, &, er)?
P

big() =

tglar) = z (e sy o) al(éy &, e)

ik

620y &} 18 an orthonormal basis of V and ac C(V).

Proor. — From corollary 2.1, the quadratic invariants of C(V) are of the fol-

lowing type:

(3.2) Plo) = Z 064, €5y €5) 0005,y 655 €5 ) (€4 €05 €55 565,65 ),

where o e C(V) and F is a linear combination of

{Foclu A Facl

Qiz...ig?

*1%
etsis)

The invariants i,(x), éx(c), i5(%) and 4,(x) are obtained by taking F%**, iy(a)

by ngz.. ;. and using F%% we determine the remaining invariants i,(e).

e

Qisls

Thus, taking
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into account the symmetries of o and (3.2), every quadratic invariant is a linear

combination of ;(x), ..., 4{ct).
If dim V =3, we have the following linear relations between the quadratic

invariants:

(o) = Byo(@) — dg(er);  inlar) = 95(x)
3.3
39) T1a(ot) = tGro(ot) — B6();  taalex) == Gglax) + Fo(ot) — G50(et)

being zero the invariants i,(c), i5(a), 45(x), 14(c), Fs(cx), Ga(0r), Eyslc)y 437(0t) DA 415(x).
For dim V = 5, it follows that

() = 2{7:2(“) -+ ":4(“)} ’

tg{ot) = 2{’54(“) - iz(“)} .

4. — The decomposition of C(V).

In this paragraph, our aim is to give a complete decomposition of C(¥) into
orthogonal irreducible factors.
The space C(V) has a natural inner product induced from that on V:
2n+1
{ay &) = Z (€55 €5, 1) (€5, €5, €1)

iyd,k=1

where «, &€ C(V) and {e;} is an arbitrary orthonormal basis of V.
Since,

(azy a8y = o, &y, ac Um)x1l, a dGeCT),

the orthogonal complement of an invariant subspace of C(V) is also invariant.
Further, it follows from this that the standard representation of U(n)x1 on C(V)
is completely reducible.

Now, we introduce three subspaces D,, ¢ =1, 2, 3, of C(V), as follows,

Dy = {‘x eC(V): alé, », y) = a(z, & y) = 0}
D= {‘x e C(V): (@, ¥, 8) = n(w)all, y, 2) + n(y)alw, & 2) + n(z) a(, ¥, E)}
Dy = {ae C(V): alz, y, 2) = n@)n)«(&, & 2) + n@)n) al, ¥, £)} .

Then, we have,
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PrOPOSITION 4.1. — If dim V=20 -1, n>2:
C(V)=D:DD,D D, .

If n =1, then D= {0}.

Moreover, these spaces are mutually orthogonsl and imvariant under the action of
Un) x1.

Next we shall give a decomposition of the subspaces Dy and D, into orthogonal
irreduecible factors.

Let V be the orthogonal complement of the subspace spanned by & The endo-
morphism ¢ induces on ¥ a complex structure and <, » is a Hermitian inner product.
Gray and Hervella [5] decomposed the vector space

W= {aec @, 7/0‘(977 Y, 2) = — al@, 2, y) = — o, gy, gr), &, ¥, 2 € 7}

into four irreducible and invariant subspaces under the action of U(n). Since D,
is naturally isomorphic to W, we have,

THEOREM 4.1. — If dim V =2 + 1, » > 2, then:

®1= 61@82@ Ca@ 847

where

G = {“E C(V): al, », y) = al®, ¥, §) = 0} y

C,= {“E (V): S alz, y,2) = 0, x(, ¥, §) == 0} s

T,Y,%

Cy= {05 € C(V): alm, y, 2) — ooz, py, 2) = 0, 01200 = 0} ’
, 1
Ci= {95 e C(V)/alz, y, 2) = m [(<@7 ¥ — 77(59)7](?/)} Cy02(2) —
— (K@, 2) — n(®) 9(2)) cnanly) — (=, @YD Cre{@R) + (W, @) Cpalgy) ],  and e,x(8) = 0}

for any z,y,2€V and cpa(@) = 3 afe;, €, 1), where {e}, i =1,...,2n + 1, is an
arbitrary orthonormael basis of V.
For n=1, Dy={0}; and for n =2, D, = C,P Cy:
These subspaces are mutually orthogonal and invariant under the action of U(n) X 1.
In order to decompose the subspace D, we introduce the endomorphism y given by

1 - S
(woy(m, ¥, 2) = 5 [, peon(y)Craa(E) — (&, pyon(2) Crao(€)],
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for any w,y,2€V, where €,x(f) = > ale,, pe;, #), and {e,} is an arbitrary ortho-
normal basis of V. Then y commutes with the action of U(n)x1, p?=p and
D,=keryPImy. We have,

Imy = {zx € C(V)/u(m, y, 2) = 217—@ [z, @zon(y) el ) — (z, ¢y>17(2)512cx(§)]} .

We shall denotes this subspace by C;.
In ker y = {ax € Dy: Tipa(§) = 0} we define the endomorphism y by

(220, 9, 2) = 5= [, Yo(R) exse€) — o, 1 (9) xa(d)]

It is easy to check that y commutes with the action of U(n)x1 and y2= 4.
Thus,

kery = ker y ®Im y,

and
Co=1Imy = {rx € C(V)[aw, y, 2) = 21~—n (<@, ¥>1(2) es20(§) — <o, z>n(y)cmrx(§)]} ,
ker y = {x € Dyfepa(E) = Ga(£) = 0} .
Now, we consider the endomorphism y on ker y given by
(ya)@, ¥, 2) = n(e) oxlow, @y, &) + n(y) aler, & g2) — n(@)al&, y, ) .

Since p?=1, y admits the eigenvalues - 1,— 1 and the eigenspaces

(ker x),. = {x € Dy: alz, y, 2) = &) alpz, @y, &) + n(y)alp, & p2)}
(ker y)_= {a€ Dy: afw, y, 2) = — 5(2) g, @y, &) — n(y) alpx, & ¢a) + y@)alé, y, 2)}

are invariant, mutually orthogonal and
ker y = (ker ), @ (ker y)_.
In (ker y)_ the endomorphism 7 defined by
(va)(@, ¥, 2) = y(@)alé, ¥, 2)
commutes with the action of U(n)x1 and satisfies v2= 7. Thus,

(ker y)_=kert@®Imr,
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where

ker v = {a€ Dy: alw, ¥, 2) = — () g, ¢y, &) — n(y) xlga, &, p2)}
Im7 = {“ € C(V)[a(z, y, 2) = — n(m)“(57 PY, qu)} .
We denote the space Im v by Cy.

Finally, we introduce in the subspaces (ker y), and ker v the same homomor-
phism ¢ given by

(00)(®, 4, #) = %[n(z)(“(% Yy &) + «ly, @, E)) - 77(:’/)(0‘("1"7 2 &) + alz, o, 5))]7

¢ is an endomorphism in each subspace which commutes with the action of U(n) X1
and satisfies p? = p. Hence (ker y), and ker v can be decomposed into mutually
orthogonal and invariant subspaces as follows:

(ker y), = C, PGy, kerv= CyDCy,

where

C, = {ae C(V): a(®, ¥, 2) = n(2)aly, z, §) — n(y) «lpa, 2, &), opa(f) = 0}
Gy = {GCE C(V): alm, ¥, 2) = — n(&) Ly, , &) — nly) elpz, gz, &), Chal(f) = 0}
Gy = {“E C(V): a(m, y, 2) = n(z)aly, 4, §) + nly) alpz, @2, f)} »

Cy= {“E C(V): alm, y, 2) = ~— n(#)aly, &) -+ n(y) gz, @z, 5)} .

Thus, we can conclude,

THEOREM 4.2. — If dim V == 2u + 1, n>2, then

D= 05@...@@11,
and if » =1,

202: G5® ee@ G, .

These subspaces are mutually orthogonal and invariant under the action of U(n) x1.

From theorems 4.1, 4.2 and proposition 4.1, C(V) decomposes as a direct sum of
twelve subspaces C;, 4 = 1,...,12, invariant under the action of U(n)x1 (where
(312 = :Da)-

In order to prove that the decomposition given before is irreducible, it is suf-
ficient to check that the space of the quadratic invariants of each C; has dimen-
sion one [1].
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Using theorem 3.1 it follows that

and

”“I 2= () + () - 2ig(e) + trelcr)
[ e1a(er) |2 = ta(er) + rocr) 4 felr) + 2445(c)

[Zaafe0) |2 = dale) + %aaler) -

Moreover, we have:

(@) If x€ D, then i,(x) = 0 for m>5.
(b) If x e D,, then i,(x) =0 for m =1, 2, 3, 4,16, 17, 18,

From these results we give in table I the linear relations among the quadratic
invariants for each of the irreducible suspaces C; (Here we denote by A to the
set {1,2, 3, 4,5, 7,11, 13,15, 16, 17, 18}).

TasLe I
Classes  Linear relations among the quadratic invariants (dim ¥V >17)
G () = —dy(e) = —dg(e) = [[a?; dulx) =0 (m>4)
& () = ig(a) = —dglar) = J[*s  dp(@) =0 (m>4)
G, dy() = dg(a) = [lalf®; dy(e) = i,u(0) = 0 (m>4)
e (0 = 84(0) = iy (#) = 3 02@)6); @) = in@) = O (m> 4
4 [N OC) = g{a) = (’I’b - 1)2 7/4(05) = = 1)2%: 012(95)(3];)’ 12(“) = %m(“) = (m > )
1
& tg(0r) = — dg(e) = () = — dpy(e) = o 1a(®)3 Aao(®) = (o) = 0 (med)
1
Cs 15(%) = dg(or) = idg(er) = dyp(er) = %im(a); tyy(e) = dp(a) = 0 (m e 4)
2
C, tg{or) = dg(or) = dg(er) = — dpa(er) = @3 tro{e) = Gy(e) = i) = 0 (med)
Cs tgla) = — dg(a) = d4(a) = — Gpp(et) = HE;IE; (o) = ty4(%) = t{er) = 0 (med)
2
G Gg(0r) = ig(xt) = — dy(at) = — iye(er) = ”_O;lL; t10(@) = fgg(er) = i) = 0 (m e 4)
; :
Cyo iofa) = — () = — g(0) = dga(o) = ”—°‘2—”~; i10(0) = igg0) = Gp(e) = O (m € A)
Cu i) =lal% in@)=0 (ms b)
C inelo) = [laff?; dp(e) = 0 (m+# 16)
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The corresponding results for the generators of the quadratic invariants with
dim V = 3 are done in table II (see (3.3)).

TasLe II

Classes  Linear relations among the quadratic invariants (dim V= 3)

G is(o) = dg(o) = $8L(e)(8)s i10(0) = 15(@) == (@) = 0

Cs (o) = dy(a) = Fige(a) = %0?2(“)(5)5 dy5(0) = tyg(e) = 0
e o

G, tgla) = — dy(x) = 3 dler) = dygla) = dye(a) = 0

Cp tygla) = Jef?; 1g(ar) = dg() = fyo(et) = 15(@) = 0

Finally, for dim V = 5, the corresponding linear relations are the same as in
table 1.
So, we conclude

THEOREM 4.3. — The decomposition of C(V) given before is irreducible under the
action of U(n)x1.

REMARK. ~ If dim V = 24 4 1,

dim C, = tnn—1)n—2); dimC, =%n(n—1){n-+1); dimC;=n(n -+ 1)(n—2);
dim G, = dim G, = 2n; dim C; = dim C; = 1; dim G, = dim Cy= n?— 1;

dim Gy = n{n + 1); dim Cy=dim C; =n(n—1).

5. — Classification of almost contact metric structures.

Let M be a manifold of dimension 2% - 1 with an almost contact metrie struc-
ture (¢, &, %, 9). For every v M, (T, M, ¢,, £,,%,) is an almost contact vector
space with compatible metric g,. Hence it is possible to decompose the vector space
C(T.M) as in the previous section. Let U be one of the invariant subspaces of
C(I,M). We say that M is of class U if (V®), belongs to U, for all x € M, where
V@ is the covariant derivative of the fundamental 2-form @ of the almost contact
metric structure (g, &, 5, g). From equations (1.6) and (1.7) we have

EIZ(V@)m(Em) = 5779: .
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for all e M and X,e T, M. Then, using the defining conditions of each subspace C;
and formulas (1.3), (1.4) and (1.5), we deduce the following.

THEOREM 5.1. ~ The defining relations for each of the twelve classes (being n>3)
are given in Table III. If n=2, C= Cy= |C|; and if n =1, C,= |C| for
1=1,2,3,4,7,8,10, 11, where |C| denotes the class of cosymplectic manifolds.

TasrLe I1II
Classes  Defining conditions
G (VxP)X,Y)=0, V=20
G, dP = Vy =0
C; (Ve ONY, Z) — (Vs )@Y, Z) =0, 6P =0
Cy (Vx D)X, Z) = — 2<n{_ 0 [9(pX, 9¥)0D(Z) — g(pX, 9Z) 6P (Y) —

— P(X, Y)0D(pZ) + (X, Z)6D(pY)}; 0P(E) =0

1
G, (Ve )Y, Z) = o [P(X, Z)n(¥) — O(X, T) n(Z)] o1
1
Cy (Vx @)Y, 2) = - [g(X, Z)n(¥) — g(X, ¥) n(Z)]6D()
¢, (Ve D), Z) = 9(Z)(Ven) X + n(T)(V zm) Z, 6B =0
Cs (Ve O)T, Z) = — n(Z) (Vo) o X + (T (Vpzm) Z, 60 =0
Cy (Vz D)(T, Z) = n(Z)(Vyn) pX — q(T) (V1) Z
Cuo (Vx O)T, Z) = — 5(Z) (V1) pX — n(T) (Vo) 2
Cu (V®)Y, Z) = — n(X}(V: D) (@Y, ¢Z)
Cuy (Ve ®)(T, Z) = n(X) q(Z)(Ven) 9¥ — n(X) (T )(Ven) Z

Now, we explain how some classes just introduced coincide with classes studied
by various authors (see section 1):

|C] = the class of cosymplectic manifolds.

C,= [nKC| = the class of nearly-K-cosymplectic manifolds.

C:P Cy= [a0| = the class of almost-cosymplectic manifolds.

C; = the class of o-Kenmotsu manifolds, for all differentiable function .
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C; = the class of x-Sasakian manifolds, for all differentiable function o.

Cs @ Gy == [t8| = the class of trans-Sasakian manifolds.

C; P C, = [¢8]| = the class of quasi-Sasakian manifolds.

C:® C, D Cy= |sON| = the class of semi-cosymplectic and normal manifolds.
C; P C;® C; == [ntS| = the class of nearly-trans-Sasakian manifolds.
CRCOHCOCy= |gKC| = the class of quasi-K-cosympleetic manifolds.
CPRCPRCGHCHC,P Cy= |N| = the class of normal manifolds.
DPDCPCDC, P Cs@D CyP Cyp = |aKe| = the class of almost- K-contact manifolds.

CLRCOHCPRCHCRCPCHD CL® Ci= |sC]| = the class of semi-cosympleetic
manifolds.

6. — Examples.

A) Examples of almost contact metric manifolds of type D,.

Let (M, J,h) be an almost Hermitian manifold, dim M = 2n. In M xR we
consider the almost contact metrie structure (¢, &, 7,9) given by

d d d
W(X7“&E):(JX7O)7 52(07%)9 77(X7“&E):a7
d d )
g((X,d;l"t)y (y,b&‘i)):h(x, Y) '{"“b,

where @ and b are ¢® functions on M X R, X, Y € L(M). Then, we have

ProrosiTIiON 6.1,

(i) M xR is of class C, iff M is nearly-Kaehlerion.
(ii) M xR is of class C, iff M is almosi-Kaehlerian.
(iii) M <X R s of class C, iff M is Wy-manifold.
(iv) M xR is of class C, iff M is W,-manifold.

In order to construct examples of class D;, through the previous proposition,
let us consider the following manifolds:

1) R?», endowed with the standard Kaehler structure.

2) T(M), the total space of tangent bundle of a nonflat Riemannian mani-
fold M, endowed with the standard almost Kaehler strueture [18].
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3) 8¢, 82 x R*, N, X R* (N, being a nonplanar minimal surface in R®) endowed
with the almost complex structure induced from the Cayley numbers [4].

4) M= 8*x (N, xR, M= T(M)xX(N; xR, My= 8¢ xT(M)x (N, xR* en-
dowed with the product almost Hermitian structures.

Then, taking into account proposition 6.1, we have

B) R |C]; 8*xRe C,— |C|; T(M)xRe C,— |0]; NyxRe C— |O[;

SrtxS#ixRe C— |0], (k>1); BExRie G @ C— (G U GCy);
M, xReC,@ C— (C,U Gy); M, xReC® Cy— (CU Cs);
S#tix St Re C; D Ci— (G U Cy); MXReCPCPHC— (CU CuU Gy);

MIXReCPCPC,— (CU CU Cy); MIXReC® CDC— (CU G U Gy,

where we denote M} and M) the manifolds which are obtained from the manifolds
M, and M, by making a (non trivial) conformal change of the metric.

B) Almost contact metric structures on the hyperbolic space.

Let (H2"*1, ds?) be the (2n - 1)-dimensional hyperbolic space, i.e.,

Hertt = {(wy, ..., Bynss) € R¥H1 ;> 0}

and ds? is the Riemannian metrie given by

2n+1
ds*= (o)™ > (dw)®, (¢£0).

i=1

The vector fields B, = cx,(d/0s;), 1 =1, ...,2n + 1, form an orthonormal basis
for this space. Let (g, & 7, ds?) be an almost contact metric structure on H,
and ¢; the components of ¢ with respect to the basis {&, ..., By} If @} = con-
stant and #>2, we have that (g, &, 7, ds?) is

(i) G, iff & = ox,(0/0my).

In particular, if ¢ =—1 (g, & 7, ds?) is Kenmotsu.

2n+1
(i) Co® Cou— (CuU Cyp) HE & = 3 w1 %,(0/0m;), (k:= cte)
i=2
2n+1
[ili) C,DC;P Cra— (C,U G U Cyy) iff &= > w,ki(0/0w;), where k;+= 0 and
k., 0 for some 7> 1. i=1
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Tinally, in (H3 ds?) the almost contact metrie structures (g, &, , ds?) given by

. 0 G
@; == constant & = %, e -+ z &,y ek kyy ks = cte,
] 3

are of class Ci,.

0) Almosi contact metric struciures on the generalized Heisenberg group H(p, 1), p>1.
Let H(p, 1) be the group of matrices of real numbers of the form

1 4 ¢
a=10 I, ‘B
0 0 1

where I, denotes the identity p Xp matrix, 4 = (ay,...,a,), B= (b, ...,b,) e R®
and ce R. H(p,1) is 2 connected simply connected nilpotent Lie group of dimen-
sion 2p + 1 which is called a generalized Heisenberg group (see [7]). Moreover,
H(p, 1) is & Heisenberg group ([10]).

A global system of coordinates (@, %44, 8), 1<i<p, on H(p, 1) is defined by

zi{e) =a;, Xyla)=20;, =zl@)=r¢c, [A<<igp).

A basis for the left invariant 1-forms on H(p, 1) is given by
D
%= 08, U= Ay, Y= de— D 3,d0y,,
i=1

and its dual basis of left invariant vector fields on H(p, 1) is given by

Xy= e Xmﬂ:i‘l“%—‘ Z =

t=1,..,p.
awi ’ H 7p

»
@
e

Define a left invariant metric on H(p,1) by
20
g = z‘xk®“k+ YRy .
k=1

With respect to this metric the basis {X,, Z}, k =1, ..., 2p, is orthonormal.

Now let (g, &, 7, 9) be an almost contact metric structure on H(p, 1) and ¢ the
components of ¢ with respect to basis {X,, Z}. Then, using the Riemannian con-
nection of the metric g, we obtain:

If 7 =¢, (pﬁ: constant and

- ) i C
‘P?H_ = @rir Poii = @y L<L <P
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D
then (g, & 7, g) is of class C;@ C;— [C|. Moreover, it is C, iff ¥ ¢?*'=0, and it
i=1
is G, iff ¢?7' = ¢y*’ = 4, (A = constant # 0), and the other components of ¢ are
zero.

D) Almost contact metric structures on the generalized Heisenberg group H(1,r), r > 1.

The generalized Heisenberg group H(1, ), # > 1, is the Lie group of real ma-
trices of the form

where I, denotes the identity » X» matrix, 4 = (a,, ..., &,), B = (b, ..., b,) e R" and

¢e R. This group is a connected and simply connected nilpotent group of dimension

2r 4~ 1. The dimension of its center is > 1 and so H(1, r) is not a Heisenberg group.
A global system of coordinates (x;, #1:,2) 1<i<r, on H(l,r) is defined by

z(a) = a;y (@) =b;, 2(a)=c.
A basis for the left invariant 1-forms on H(1, ») is given by

o= dwi ’ Ly g == dwr_l.; ’ Y= dz ’

and its dual basis by

2 2 o
Xi:____" Xf+i~8m_w’ Z—@’l‘iglea—wr;.

This basis is orthonormal with respect to the left invariant metric defined by

2r
g:kz“k®ka+ Y@y .
=1

Now, let (¢, &, 7, g) be an almost contact metric structure on H(1,r) and @ the
components of ¢ with respect to basis {X;,Z}, k=1,...,2r. Then, using the
Riemannian eonnection of the metric g, we obtain:

1) If Z = ¢, ¢ = constant and

r+i

@;

rrio

=—¢;,;=0 ¢li= ¢

then (g, & #, g) is of class C,.
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2) If Z = §, ¢ = constant and

r+i__ ¥+

Y = P Pre; = ‘PZ: =0
then (g, &, 71, g) is of class C,.

REMARK. ~ Let ['(p, 1) and I'(1, 7) be the subgroups of matrices of H(p, 1) and
H(1, r), respectively, with integer entries and define N(p,1) = I'(p, I\ H(p, 1) and
N, r)y= I, r)NH(,r) be the spaces of right cosets. Then N(p,1) and N(1,7)
are compact nilmanifolds [7]. Denote by ((§, &, 7, §) the pro,ections on N(p,1) and
N(@@,r) of the almost contact metric structures defined in C and D, respectively.
It’s easy to check that (§, £, 7, §) belong to the same class that the corresponding
structure (g, &, 7, g) on H{p,1) and H(1,7r).

E) Other ewamples.
Let G be the Lie group of real matrices of the form

with the left invariant mefrie
g = e du? 4 e~2=dy? - A2de?, A>0.
(@, g) is a 4-symmetric space, which is isomorphic to the semi-direct product

of R and Rz, both with the additive group structure, and where the action of R
and R3 is given by the matrix

¢ 0

0 e|’

i.e., the group F(1,1) of rigid motions of the Minkowski 2-space.
With respect to the metric g, the basis of invariant vector fields {X,, X,, X,}
given by

g
0%

Sl

L0 .
X,=¢ Frl XZ—E@’ X, =

if orthonormal.
It is easy to see that an almost confact metric structure (¢, &, %, g) on @ is of
clags G, if £ = X, or & = X,; and it is of class G, if & = X,.
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Finally, we obtain an example of manifold belong to C,. For it, we consider
the complex matrix group @ of the form

e 0 2
a=10 et w
0 0 1

Here 2, w denote complex variables and ¢ a real variable. This Lie group is dif-
feomorphic to C*(z, w) X R(¢). A left invariant metric on @ is

(6.1) g = dzdz + dwdw -+ di?.

The vector fields {Z,, Z,, Z,, Z,, W} given by

0 0 0
Zl:ené—é’ Z2:g~zt%’ W:_a_z,

are invariant under the action of @ and they form an orthonormal basis of the Lie
algebra of G. Put

X,=V2Re (Z1+ Zy), X,=+V2Im(Z,+ Zs)
Xo=+V2Im (%,— %)), X,=+2Re(Z,—7Z,).
Identifying C? X R with the real cartesian space RS with invariant Riemannian
metric obtained from (6.1), it follows that {X,, X,, X;, X,, W} is an orthonormal
basis on this space.

Now, let (@, &, 7, g) be an almost contact metrie structure on @ and ¢! the compo-
nents of ¢ with respect to basis {X,, X,, X;, X,, W}. Then we obtain:

1) It §= W, ¢} = constant and
g, =¢; and g, =g

then (g, & 7, ) is cosymplectic.
2) If § =W, ¢ = constant and

vy~ ¢y and @7 ¢

then (g, &, %, g) is of class Cy,.
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An example of almost contact metric structure satisfying the last condition, and
so of class Cu, is the following:

@9z, = 124, , 92y = iZy, ‘PZ1= - iZ_z;
9Zy=—iZy; E=W; n=dt.

Note. ~ We learned later (by a private communieation of I.. VANHECKE) on that
the decomposifion given in this paper has also been obiained by F. BouTEN during
the preparation of hers doctoral dissertation (unpublished but announced in the
abstracts of the IX Osterreichischer Mathematiker Kongress, Salsburg 1977, p. 83).
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