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AMERICAN MATHEMATICAL SOCIETY
Volume 318, Number 1, March 1990

A CLASSIFICATION OF BAIRE CLASS 1 FUNCTIONS

A. S. KECHRIS AND A. LOUVEAU

ABSTRACT. We study in this paper various ordinal ranks of (bounded) Baire
class | functions and we show their essential equivalence. This leads to a natural
classification of the class of bounded Baire class | functions %, in a transfinite
hierarchy 95’1{ (€ < w,) of “small” Baire classes, for which (for example) an
analysis similar to the Hausdorff-Kuratowski analysis of Ag sets via transfinite
differences of closed sets can be carried out. The notions of pseudouniform
convergence of a sequence of functions and optimal convergence of a sequence
of continuous functions to a Baire class | function f are introduced and used
in this study.

Let E be a compact metrizable space. Qur aim is to analyze, from a descrip-
tive theoretic point of view, the set of Baire class 1 functions on E. Various
ordinal assignments have been proposed for Baire class 1 functions, especially
in Banach space theory. In the first part of this work, we will associate to each
Baire class 1 function on E three different ordinal ranks, each corresponding to
one of the standard equivalent descriptions of Baire class 1 functions, in terms
of (i) complexity of inverse images of open sets, (i1) existence of continuity
points on closed sets, and (iii) as limits of sequences of continuous functions.
We will then show the essential equivalence of these ranks for bounded Baire
class 1 functions, thus establishing a “quantitative” version of the equivalence
of the above descriptions.

This yields, in §2, a natural classification of the set %|(E) of bounded

Baire class 1 functions into a transfinite hierarchy of Banach algebras (%’f(E ),
¢ < w,, that we call (bounded) functions of small Baire class ¢ . In §3, we study
the first level 95’11 of this hierarchy, showing that it corresponds to a previously
considered notion, the so-called strict Baire class 1 functions, the uniform limits
of differences of bounded semicontinuous functions. We also define a natural
rank on the subset DBSC of differences of bounded semicontinuous functions,
and a rank on functions not in DBSC, and show that these two ranks are un-
bounded below ,, on DBSC and on 95’11 \ DBSC respectively.

In §4, we give two other different approaches to our classification. The first
one uses the notion of (transfinite) alternating sums of usc functions, and allows
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210 A. S. KECHRIS AND A. LOUVEAU

us to characterize each level %f in a way very similar to the classical Hausdorff-
Kuratowski analysis of Ag as differences of closed sets.

The second one uses a notion of pseudouniform convergence of a sequence of
functions, intermediate between uniform and pointwise convergence. Starting
from the continuous functions on E and closing under the taking of pseudouni-
form limits of bounded sequences yields the bounded Baire class 1 functions
on E. Moreover, the natural hierarchy within %, associated to this operation
is exactly the hierarchy (%f )é<w, -

In the final section, we come back to one of the tools we introduce for study-
ing Baire class 1 functions, the notion of optimally converging sequence, which
generalizes the concept of uniform convergence for the case where lim f, = f
is not continuous. Roughly speaking, a sequence ( fn) of continuous functions
optimally converges to f if it converges (pointwise) to f, and its rate of con-
vergence is least among all sequences of continuous functions converging to it
(this is measured by a countable ordinal, see §1). Extending the classical result
about uniform convergence, we show in §1 that for any bounded sequence of
continuous functions converging to some f, there exists a sequence of convex
combinations optimally converging to f.

Applying this to the case of derivatives, we show that for any differentiable
function F on, say, [0, 1] there is a sequence of step functions h,(x) uni-
formly converging to 0 in » such that the associated differences

(F(x + h,(x)) = F(x))/h,(x)

optimally converge to the derivative F’', but we construct examples of differ-
entiable functions F for which for any sequence of numbers 4, — 0, the
sequence (F(x +h,(x)) — F(x))/h, is arbitrarily far from being optimal.

1. THE THREE RANKS

Here and below E is a compact, metrizable space.

I. The separation rank (Bourgain [B]). Let 4, B be two subsets of E. We
associate with them a derivation on closed sets, by

’ [ _

P, ,=PRANPNB
and then by transfinite induction P, = P, PtV = (P\"}), , and PV, =

Noes Pf& for limit 4. We set
least a(Pf(;t}g) =, if such an « exists,
@, otherwise,

a(P,A,B):{

and let a(4,B) = o(E,A4,B). As is well known, a(4,B) < w, iff one can
separate 4 from B by a set which is a (transfinite) difference of closed sets, and
the ordinal a(A4,B) “measures” the minimal length of such a difference. (It is
not hard to check that if a(4,B) = A+n, with limit 4, then the minimal length
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BAIRE CLASS 1 FUNCTIONS 211

is either A+ 2n or A+ 2n — 1. Note that classically one uses a slight variant,
the derivation P;’ 5= PN AN B which is not symmetric, and less adapted to
our purposes.)

Suppose now f: E — R. For each pair r, <r, of rationals, let

alf,r,r)=a({x €E: f(x)<r},{x€E: f(x) =1}
and finally define the separation rank o(f) by

a(f) =sup{a(f,r,,r):r,€Q,r,eQ,r, <r}.

Proposition 1. 4 function f is Baire class 1 iff o(f) < w, .

Proof. If o(f) < @, one can always separate {f < a} from {f > b}, for
a < b,bya GyNF, set by the definition of a(f). Hence {f < a} is an
intersection of countably many G; sets, hence is G, and similarly for {f > a}.
It easily follows that f_l(F ) is G; for all closed F in R, i.e., f is Baire
class 1. Conversely, if f is Baireclass 1, 4={f<r} and B={f>r,} are
disjoint G, -sets in E, and as is well known, this implies o(f,r,,r,) < @, .
(Note thatif P=E}', #0, P=PNANPNB,sothat PN4 and PNB are
both dense G; setsin P, hence PN ANB # &, a contradiction.) And finally
a(f) =sup, .. a(f,r ,r,) isless then @, too. O

This rank was introduced by Bourgain in [B], who showed that if (f)) is
a bounded sequence of continuous functions on E which is relatively com-
pact (for the pointwise convergence) in %, (E), then the rank a is uniformly
bounded on the closure of (f)).

However, this rank does not seem very convenient if we consider functions
which are not necessarily bounded. We will see, e.g., that sup{a(f + g): f,
g Baire class 1 with a(f) = a(g) =2} = v, .

I1. The oscillation rank. (This rank has been considered by many authors, in-
cluding S. Argyros, R. Haydon and others, see e.g. [H-O-R].)
Define, for f: E — R, the oscillation function
osc(f,x) = inf{ sup |f(x,)— f(x,)|: V open, X € V}
Xy, xX0€V
and similarly, for P a subset of E,

osc(f,x,P) =osc(flp,x).
Consider now, for each ¢ > 0, the derivative operation
P p;f: {xeP:w(f,x,P)>¢}

and by iterating define again Pg"‘, ’ for a < w,, and let

b4 SP = .
Blf>e.P) {wl otherwise,

and set B(f,¢e) = B(f,e,E) and finally define the oscillation rank B(f) of f
by B(f) =sup, o B(f.¢).

least a(P;" , = @), if such an « exists,
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212 A. S. KECHRIS AND A. LOUVEAU

Proposition 2. A function f: E — R is Baire class 1 iff f(f) < w, .

Proof. We use the following well-known characterization of Baire class 1 func-
tions: [ is Baire class 1 iff for every nonempty closed P osc(f,P) takes
arbitrary small values, i.e., forall ¢ > 0 PE*, s#EP.It follows that if f is Baire
class 1, and & > 0, the sequence E _r must stabilize at &, i.e., f(f,¢€) < w,.
Conversely, if f is not Baire class 1, then for some nonempty closed P and
some ¢ > 0, PE = = P, and by induction P C EE, for all @ < w,, hence

B(f.e)=w,. O

III. The convergence rank. Given a sequence [ = ( f,) of real functions on E,
define, following Zalcwasser [Z] and Gillespie and Hurwicz [G-H] a derivative
operation on closed sets, for each ¢ > 0 by

Pr—»Pg'j:{xeP: for every nbhd U of x and any p e N,In > m > p
and x' € PN U with | £, (x) — [ (X)) = €}

(In other words, P 7 is obtained from P by deleting the relatively open sets
in P on which the sequence (f,) is e-uniformly convergent.)
Again define by induction the iterates P:T’ and let

- least a(P*- = @), if such an « exists,
V(f,s,P)={ o

W, otherwise,

and also y(f,¢) =7(f,¢,E) and y(f) =sup,,7(f,¢).

It is easy to verify that if £ is a sequence of functions on E with y(7) <w,
the sequence f pointwise converges on E. For if x € E and ¢ > 0 is given,
x ¢ E5 for some a, hence in particular 3n,, Vr, m > nylf, (x)—-f, (x)| < ¢
and the sequence (f, (x)) is Cauchy in R. A sequence (f,) with y(f,) < o,
is sometimes called quasiuniformly convergent. Note that if 7 consists of Baire
class 1 functions and y(f) < @, , the pointwise limit f =lim, f, is also Baire
class 1, so that in general pointwise convergence does not imply quasiuniform
convergence. However the notions coincide for sequences of continuous func-
tions:

Proposition 3. Let f = ( f,) be a sequence of continuous functions on E , point-
wise converging to some f. Then y(f) < w,.

Proof. It is enough to show that P # & and ¢ > 0, P 7 # P. Assume the
contrary, so that for each peN, {x € P:3dm, n >p|f ( ) £ ()] >¢€/2} is
dense, and clearly open, in P. By Baire’s theorem, there is an x € P with Vp
Im, n>p|f,(x)— f,(x)] >e&/2, and the sequence (f,(x)) does not converge.
O

It is immediate to check that f converges uniformly iff y(f) = 1. (Here
compactness of E is used in an essential way.) In §4, we will also consider an
intermediate convergence notion, corresponding to y(f) < w.
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BAIRE CLASS 1 FUNCTIONS 213

We now come back to ranks of Baire class 1 functions. As is well known,
Baire class 1 functions on E are pointwise limits of sequences of continuous
functions; hence, we can define the convergence rank y(f) of a Baire class 1
function / on E by

y(f) = inf{y(F): T € C(E)N, T — f pointwise}

so that the ordinal y(f) measures the “best possible rate” of convergence to f
of a sequence of continuous functions. And we say that a sequence f = ( f,) of
continuous functions is optimally convergent if it pointwise converges to some
f, and moreover y(f) = y(f). Heuristically, this notion is interesting among
other things in concrete situations in analysis, when the Baire class 1 functions
occur through a “natural” approximation process, like in the cases of derivatives
and Fourier series. The question whether the natural approximation process is
always optimal (in the above precise sense) may be a clue about the difficulty
of the problems under study. We will come back to this question in the last
section, with the particular case of derivatives.

2. THE HIERARCHY (%’f) f<w, OF (BOUNDED) SMALL BAIRE
CLASS ¢ FUNCTIONS

Our main purpose in this section is to relate the various ranks defined in §1.
First an easy proposition.

Proposition 1. Let f be a Baire class 1 function on E. Then o(f) < p(f) <
y(f).

Proof. (i) a(f) < B(f). Let r, < r, be givenin @, 4 = {f < r} and
B={f>r,}. Let e=r,—r . If P isclosed and x € P\P;’f, there exists a
nbhd V of x such that osc(f,V NP) < ¢, so that ¥ cannot meet both ANP
and BN P. This P; 5 C P;) ; forall P, and hence by induction PZ’ s C PZ ;
and a(f,r ,r) < B(f,r,—r) sothat a(f) < B(f).

(i) B(f) < y(f). Let f be a sequence of continuous functions with lim f =
f. Wewant B(f) <y(f). As before it is enough to show, for any closed set P
and ¢ >0, Pe*’f - Pg'/_,,j. But if x € P\Pe'/3,7, there is a nbhd V' of x and
n, € N with |fn(x') —fm(x')| <¢/3 for m, n > n, and x' € PNV . Letting
m — oo we get |f,(x")— f(x')| <¢/3 forall n>n, and x' € PNV . Let
V' CV bea nbhd of x where osc(fno) <¢/3. Thenon V'NP

1F) = M <1, () = £, (") +2¢/3 <e. D

Proposition 2. Let [ be a Baire class 1 function. Then
(i) f is continuous on E iff a(f)=B(f)=y(f)=1.
(ii) If f is semicontinuous on E, a(f) < 2.
(iii) There exists on E =[0,1] a bounded usc function f with B(f)=w.
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214 A.S. KECHRIS AND A. LOUVEAU

Proof. (i) If f is continuous, y(f) = 1 by considering the constant sequence
S=(,) with f =f. If a(f)=1, {f<rpn{f>r} =0 forall r, <r, in
Q, hence {f<r} and {f >r,} areclosed forall r, r,, and finally FYF)
is closed for any closed set F-CR.

(ii) If f is (say) usc, then B ={f > r,} is closed, hence if 4 ={f<r},

P, ,=PNANPNB=PNANBCB,

hence P;”B CANB = foranyclosed P,and a(f) <2.
(iii) Let K, € [0,1] be a decreasing sequence of nonempty compact sets,
with K, , nowhere dense in K,. Let f =3, 27" -1, . Clearly f is usc,

with 0 < £ <1 on E. Now a direct computation shows that for ¢ = 27",
E!, =K, for 1 <p < n and E:ffl = &, so that B(f,27") =n+1 and
B(f)=w. O

The preceding example shows that one cannot hope equality between the
ranks. We will see that w is the upper bound of B(f) (and y(f)), for bounded
functions f with «a(f) = 2, and that there is no upper bound in case f is
allowed to be unbounded.

The next result gives the exact relationship between B(f) and y(f) in case
f is bounded, in a very strong form.

If f=( /,) is a sequence of functions, let us say that a sequence g = (g,)
is subordinate to (f,), denoted g < f, if for all n g, € conv((f,),>,) . (Here
conv((k,)) denotes the set of convex combinations of the 4,’s.)

A classical result of Mazur asserts that if f = ( /,) is a bounded sequence of
continuous functions on E which pointwise converges to a continuous function
f, there exists a sequence g subordinated to f which uniformly converges to
f . The following result is the generalization of Mazur’s result to the case where
f is not necessarily continuous.

Theorem 3. Let f = ( /) be a bounded sequence of continuous functions on E,
pointwise converging to some (bounded) Baire class 1 function f. Then there
exists a sequence g subordinated to f with y(g) = B(f). In particular, for any
bounded Baire class 1 function f, the convergence rank y(f) and the oscillation
rank B(f) coincide. (To see that this is indeed a generalization, notice that if f
is continuous, then B(f)=1,s0 y(g) =1, i.e., g converges uniformly.)

Proof. Note the following easy application of the Hahn-Banach theorem: If
K C E is compact and ( fn) is a bounded sequence in C(K) converging point-
wise to f, and osc(f,K) < &, then 3g € conv((f))llg — fIl < &. (Here
Al = NAllx = sup ek |A(x)].)

[To see this, let osc(f,K) = 2¢' < ¢. By adding a constant if necessary,
we may assume ||f|| = &', and it is enough to find g € 4 = conv((f,)) with
lgl<d=¢e—¢.If A and B;={ge C(K):|g| <} are disjoint, we can by
Hahn-Banach find a measure u € M(K) with, forsome ¢ > 0, u(h) <c < u(g)
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BAIRE CLASS | FUNCTIONS 215

for h € B; and g € 4. The first inequality gives |ju| < ¢/d. The second one
gives u(f,) > ¢ for all n, and by bounded convergence u(f) > c¢. But then
c<uN) <l Ifll<c-€/d,ie., & >0 =¢e—¢ contradicting the fact that
2e' < e ]

Applying this fact to each Ap = conv(( fn)n2 p) , one gets that if (f,) is a
bounded sequence in C(K) converging pointwise to f on K with osc(f,K) <
¢, there is a subordinated g = (g,) < (f,) with |g, — fll, <& forall n.

Let now (f,) be bounded in C(E), f, — f. Let (U,), . be a ba-
sis for E, and enumerate in a single sequence (K,,¢e,) all pairs of form
(B3 ;NT,,,27%) where &< B(f,27"), and m is such that Ej_, ,NU, #
& and osc(f, Eg_k /N U,) < 27k, Applying the above remarks successively
to each K, and ¢,, one defines inductively g” such that g, = 7 and 27" <
2’7, with ||g” - 1] x, < ¢, forall n. Let T =(g,) be the diagonal sequence,
ie., g, = g,':. Clearly g < f. Moreover for all p g, ‘f”K,, <eg, for n>p,
because Hgfl’ ~fllg, <¢, forall g,andfor n2p g, = g € conv((gg)q).

We claim that (Z) < B(f). To see this, it is enough to show that for &£ > 0
and k such that 27% < ¢/2, one has for all { < w, Ef,g C Eg-k e This is
proved by inductioh on &. The case £ = 0 and £ limit are trivial. So assuming
E{; CEj, ,,weshowthat ESY' C ES) .. Let x € ES ;.\ E5*} .. Then for
some m X € U, and K = Eg_k,fnﬁm is such that osc{f,K) < 27X Then
for some p (K,Z“k) =(K,,¢,),sothat for n 2 p, m2p |g, - ¢g,lx <
2-|lg, — fllx < 2¢, <& and a fortiori this is true on U, nEf’§ CK nEf’g , SO

that x ¢ E*"'. This finishes the proof. O
€2

The preceding result has lots of applications besides proving B(f) = y(f)
for bounded Baire class 1 functions. It can be used, for example, to show that
many properties of a bounded Baire class 1 function f are shared by sequences
of continuous functions optimally converging to it. Here are some instances of
this phenomenon:

L If ||f]l £ M, thereis f, — f optimally with sup, |If,[| <M .

2. If E is convex compact metrizable, and f is affine Baire class 1, there is
a sequence of affine continuous f,’s converging optimally to f.

3. If X is a separable Banach space, E = B (X *) is the unit ball of the dual
X" with the w”-topology, and x™* is an element of X" which is first class
on E, there is a sequence (x,) € X converging optimally to x™* on E.

To see this, it is enough by the preceding theorem to show that in each
case there exists a bounded sequence ( fn } of continuous functions with the
desired properties converging pointwise to f, for the properties clearly go to
subordinated sequences. This is trivial for (1), and due to Choquet [C] for (2),
and to Odell and Rosenthal [O-R] for (3).
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216 A. S. KECHRIS AND A. LOUVEAU

It is a standard fact that a decreasing sequence of continuous functions which
converges to a continuous function converges uniformly (Dini’s Theorem). Us-
ing Theorem 3 this can be generalized as follows: If (f,) is a bounded de-

creasing sequence of continuous functions, (f,) converges optimally. (To see

that this generalizes Dini’s Theorem notice that if f, — f optimally and f is
continuous, then f, — f uniformly.)

To prove this result notice thatif 2, < g, and g, | f, h, | f, then y(h) <
»(8). Alsoif 4, | f and (A ) 1sasubsequence of (h,) then Y((hy ) = y(h).
So assume f is bounded and S, L f. We will show that y( ) =y(f). By
Theorem 3 let g subordinated to f be such that y(g) = y(f). Then there is
a subsequence (f, ) of (f,) such that f, <g, . So 7(f) < () £ ¥(8) =

v(f), ie., f converges optimally.

Another application is the following—the first step in relating the ordinals
a(f) and B(f).
Corollary 4. Let 4 € AO =F NG, (ie., 1, is Baire class 1). Then a(l,) =
B(1,)=y(1,)=a(4, A) (where A= E\ A is the complement of A).
Proof. a(A,A) = a(l,,1/2) <a(l,) < B(1,) = y(1,) where the last equality
follows from Theorem 3. So it remains to show B(1,) < a(4, A) But clearly
forany ¢ with 0 <& < 1, and P closed in E P:,l,, —PNnANPNA and we
are done. O

We rIow turn to the relationship between « and y.

Lemma 5. Let f = ( f,) and g = (g,) be two sequences of functions, pointwise
converging to f and g respectively. Set f+8 = (f, + &) pen- I & <@ is
such that y(f) < o° and y(Z) < &° then y(f +3) < o°.
Proof. We first establish the following two facts:

(i) Let P be closed, ¢ > 0. Then

(*) Pg J+E < Pg/z Pe/2g
(i) Let P, Q be closed, ¢ > 0. Then
() (PnQ)Q;g Pl7UQ, 5.
Fact (i) is immediate: If x € P\ (P, /2 fUPE/2 z) there exists V' nbhd of x and

n, (we can take the same for both) such that for n, m > ny|f, — fml < egf2
on VNP and |g,—g,|<&/2 on VNP,so |f, +g,—(/,+8&,)]| <& on
VNP and x ¢ P Tz . Fact 2 is similar: If x € PUQ is not in P UQef,
there is a nbhd V' of x and an n, (we can take the same for both) such that
for m, n>ny|f, - f,l<eon VNP and |f,— f,|<é&on VNQ. Butthen
1, —f,l<eon VN(PUQ) and x ¢ (PUQ), 7

We now prove, by induction on ¢, that

4
2
(***) Ps JS+E CP 8/2 fUP£/2 &

which will finish the proof.
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BAIRE CLASS 1 FUNCTIONS 217

For £ =0, i.e., o =1 , this is just (x). It is immediate if ¢ is limit, as the
sequences are decreasing. So it remains to prove that (x*x) holds for &+ 1 if
it holds for &. For this, we prove for all » > 1 that

**2n @ n
(% % %%) P£f+gCP/2fUP8/2g

For this, let for s € 2k , k €N, P, be defined by

Ll)f Ll)f
P0=PE/2’7, P1=P£/2’§

<
and P, = (P )s/Zf’ P, = (P)(g”/z,§ for Ih(s) > 1. Applying (&° times)

(*+) and the inclusion

w®
PE,7+§ CPUP
one easily gets for all n > 1
P52 c | P c|UkP,: s € 2% and card({k: s(k) = 0}) > n}

s€2n

UU{PS: se2” and card({k: s(k) = 1}) > n}.

But clearly if s takes at least n values 0, P C P /2 f, and similarly with 1,

which gives (x#x#). And taking the intersection over n gives (x*x) for £+1.
This finishes the proof. O

Remark. The same argument gives the analogous result for f-g = ( St &) nen
in case f and g are bounded sequences, for if sup, (I[£,Il, Ilg,ll) = M, one
easily gets P, 7. C P, o FUP, PYET

Lemma 5 and Corollary 4 imply that in general, for unbounded Baire class
1 functions, the o« and y ranks are not comparable. This is based on the
following classical facts.

(1) If E is uncountable, there are Ag sets A with arbitrarily large small
Baire class (i.e., a(4,A) arbitrarily large ).

(2) If A4 is Ag in E, 1, is a difference of two usc functions. [To see this,
let K, be increasing closed sets with 4 = {J, K, , L, increasing closed sets
with A=J, L,, and set

0 onKOULO,
fo=4 -1 on(K UL -K,UL),
~-n on(K, UL — (K, UL, ))forn>1
and
0 onlr,,
fi=4 -1 on(K,UL)-L,,

-n on(K, UL )-(K

w_a UL, ) forn>2.
Then each f, isusc,and 1, = f, - f ]
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Proposition 6. Let E be uncountable. Then
(1) sup{y(f): f uscon E} = w,
() {a(fi+ ) alf) <2, a(fy) L2} =0,.
Proof. For semicontinuous f on E, a(f) < 2, so part (ii) follows immediately

from the preceding facts and Corollary 4.
If now {y(f): f usc on E} was bounded below w,, it would be bounded

by some wé, hence by Lemma 5 so would be {y(f, — f,): f;, f, uscon E},
which contains {y(1,): 4 € Ag} , contradicting again the facts above. This gives
(i). O

From now on, we restrict our attention to the space %, (E) of bounded Baire
class 1 functions on E.

Definition 7. Let £ be a countable ordinal. We define the set of (bounded)
functions of small Baire class & as

BHE)={f € B(E): B(f)(=r(f)) < '},

It is a Banach subalgebra of %, (E), by Lemma 5 and the remark following it,
and the immediate remark that if f — f uniformly, B(f) <sup, B(/f,)-

Theorem 8. Lét fe€B(E). Then fe%f(E) iff a(f) < Wt

This result says in effect that the classical equivalences between the various
possible descriptions of %, functions reflect on each %’f .

Proof. As a(f) < B(f), one implication is trivial. So we want to prove that if
a{f) < o* , then p(f) < o . But this is true if f =1, by Corollary 4, if f is
a linear combination of 1 ’s with a(1,) < ot by Lemma 35, and finally for all
S’s with a(f) < o* , using the following (essentially classical) result:

Proposition 9. Let f € %,(E), with o(f) < w*. Then f is a uniform limit
of linear combinations of functions 1, with o(1,) < °. More precisely, if
f € B(E) with o(f) < o* is positive, and N > 2, N € N is given, one
can find N — 2 sets A, ... ,Ay_, with a(l, ) < w*, such that the function

g=(IfI/N) i1, satisfes 0< g < f < g+2|f|/N.
Proof. The first assertion follows clearly from the second (which we will need
in this precise form later on). So let f > 0 with a(f) < «° and N > 2 be
given. By the assumption, there is foreach k’=1,...,N—-2 a Ag set 4, ,

with ol , ) = a(4, ,Ak) <o , hence < w* , as @° is limit, such that
k

{fz(lc+—zif)“m}§f1k§{f>%f”}.

Let g = (|If|I/N) Z,ivz_lz 1, . We claim g works: Clearly the sequence A, is

decreasing, so g is at most k|| f||/N off 4, . But f> k| f||/N on A, forall
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k,and f>0,s0 g < f.And f < (k+1)|fl|/N off 4, , whereas g > k|| f||/N
on 4, ,s0 f<g+2|fI/N. O
Remark. Theorem 8 is in some sense best possible: For E = [0, 1] it can be

shown that for any ¢ < w, there are functions in %’f“ with a(f) = w* +1

and B(f) = ot We gave such an example for £ = 0 in Proposition 2. An
example for arbitrary ¢ is as follows: Choose a decreasing sequence of closed
sets (Frz)n <wirt > With Fy = E and for each 7, F,7 # & and nowhere dense
in ﬂéq F., and let [ =3}, 27" 1, where A, is the set difference of the
sequence (F ., . 0)pcp> 1€ A, = UL{F 0= Fornige - 0 €ven, 6 < wé} , 8O
that 0 < f < 1. One easily checks that forall r, <r, in @ a(f,r,,r,) < o +1
whereas for ¢ = 27", B(f,e) = o n+1 , the sequence (Fn)lgngwg,n being
the sequence of derivatives. So f works.

Theorem 8 says that the small class hierarchy (%’f) is quite natural. The

E<w
level O consists exactly of the continuous functions. We will analyze 35’11 in the
next section. And we will give in §4 alternative approaches to the hierarchy
(ﬁf )¢<, Which give further indications of its naturalness.

3. THE CLASS %,‘1 AND DIFFERENCES OF BOUNDED
SEMICONTINUOUS FUNCTIONS

Let DSC be the set of differences of semicontinuous functions. We have seen
that this set contains all 1, 4 Ag in E, and by 2.9 we get that DSC is dense in
%,(E) , for the norm topology. However there exist functions in %, (E)\DSC,
by a result of D. Preiss (see [H-O-R]). Let now

DBSC = {f, - f,: /,, f, semicontinuous and bounded on E'}.

As any bounded sc function has a(f) < 2, hence y(f) < w by 2.8, we get
that DBSC C @ll (E). In fact one has the following result, which appears in
[H-O-R] (in slightly different terms).

Theorem 1. %ll (E) is the norm-closure of DBSC.

Proof. By 2.8, it is enough to show that any 1, in 9311 (E) is in fact in DBSC.
But such a 1, satisfies a(4,4) < w, hence for some n and decreasing closed
sets (Fq)05q52n+1

n
A=J(F,,-Fy,) and 1,= (Z 1‘sz) —~ (Z 1sz“>
p=0 p D

in DBSC. O

The functions in %l‘ (E) are sometimes called strict Baire class 1 functions,
and Bll (E) denoted %, P in [H-O-R] (a notation which can hardly extend in
the transfinite!). This is related to the notion of strict sum, a different approach
to the set DBSC: Say that f is the strict sum of a sequence f, of functions if
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f=>,,and ) |f,| is a bounded function on E. Itis not hard to check that
the set of strict sums of continuous functions on E is exactly DBSC: It clearly
contains the bounded positive Isc functions, which are strict sums of positive
continuous f’s, and is a vector space, so contains DBSC. On the other hand,
if f=3,/,,with ¥, |/,| bounded, then f=3f" -3/ ,and both sums
are bounded Isc functions.

In order to clarify the relationship between DBSC and %’; , we now introduce
two ranks, on DBSC and its complement, which might also be of independent
interest.

Let f be a bounded function on E . One defines the upper regularization of

f, [, oy

a

f=imnf{g:geC(E),g > f}
= inf{g: guscon F,g > f}.

The function f is usc on E, and one has
f(x) =inf {sup(f): V nbhd of x} .
v

[One can also visualize f by noting that the subgraph {(x,?): fx) >
is the closure of the subgraph of f.) We now associate with each bounded
function f on E a sequence ( fé) of functions as follows:

) =
f=7, L=f—-f+f,

and more generally, if fé is defined
’//\\

fé+1= -f+r

and for limit 4, f, is defined iff for all § <4 fé is defined and sup;_, ff is
bounded, and then we set

————
fi= supf{.
E<h

Proposition 2. Let [ be a bounded function on E . The following are equivalent:

(i) fe€ DBSC,
(ii) forall { < w,, f, is defined,
(iii) there exists a ¢ < w, such that fé is defined and j%H = f; and in this
case, if ¢ is least so that (iii) holds, the pair ([, Je—f) isthe least pair
of usc functions (u,v) with u> f and f=u—-v.

Proof. (i) = (ii) As f isin DBSC, oncan find #, v inuscwith f = u—v and
u > f (by adding a constant to any solution—this is where the boundedness
of the usc functions is used), so that v > 0. We now prove by induction on
¢ < w, that fé is defined, and u > fé
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This is true for ¢ = 1: f < and u isuscso f < u. It is trivial f‘()/rli&it
A if f <u for £ < A, then supcdj:, < u is bounded, hence f, = supédfé
is deﬁned and <u. And for £ +1

fisu=fi-f<u-f=

As v is usc, QSU,hence f?‘-\f+f§v+f:u and finally ﬁ:+l <u.

(iii) = (i) The sequence ( f¢) is clearly increasing, so that the closed subgraphs
form an increasing family of closed sets in E x R, which must stabilize at some
{<w.

(1i) => (iii) It remains to show that if Jery = f;, the function J. = [ is usc,
for then f is in DBSC and moreover the last assertion is a consequence of the
fact proved in (i) = (ii) above. But

— T
fe=f=fen =S = f-T+f-f

>fiT+f-f=f~T
and the proof is complete. 0O

Motivated by the preceding proposition, define
least { ( fé is defined and /éH =),

rp(f) = if such a & exists,
@, otherwise,

and )
least { < w, ( fé is undefined),

ryplf) = if such a ¢ exists,

w, otherwise.

By Proposition 2 r, and ryp are ranks on DBSC and its complement, respec-
tively. Note that r,,(f) can be, a priori, any ordinal > 1, whereas r, ,(f) is
always limit. We will show that r, and r,, are unbounded, on DBSC and
%’11 \ DBSC, respectively.

Lemma 3. Let { < w, be given. For each 1 < &< w° and ¢ > 0, there exists
a countable compact set K and a function f € DBSC(K), 0< f <1, such that

(i) rp(f) = @ and ||fll =1, () £l <e.
Proof. If (K )nGN and K_, are countable compact sets, we denote by

S((K,), K_,) the followmg countable compact set: View K_ as a subcompact
set of E = {0, 1} . It is nowhere dense in E, hence one easily builds a se-
quence (U,) of nonempty pairwise disjoint clopen sets in E \ K_
such that U, U, = U,U, UK_. Let L, C U, be a copy of K,, and set
S((K,), K.,)=K_UU,L,.

We prove Lemma 3 by induction on &.
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Case 1. £ =0 (so that condition (ii) is void). Let K = S(({x,}), {x}), and

0 ifx=x
Xx) = o
&) { 1 otherwise.
Then 0< f<1, f=1 and f— [ is usc, so that the conditions are fulfilled.
Case 2. & islimit. Let £ be strictly increasing with ¢ = sup, &, , and for each
n let (K,,f") satisfy (i) and (ii) for & +1, & = " and ¢ = 1/n. Let
K ={x,},and define K =S((K,), K_) and

/" on (the copy of) K
f:
0 onK_
As K, is clopen in K, one has forall 6 for which f, is defined, f, | K= (f")(,.
Now if 8 < @®, ||f7]| < 1/p for p > n, hence limsup,_, fe( ) =0, and

as f(x,) = 0, one easily gets by induction that for 6 < o* Jf is defined
and fy(x,) = 0. This shows in particular r,(f) > r,(f") for all n, hence
rp(f) 2 o . Now

'
on K ,
sup f, = Jus g
o<t 1 atx
as ||ft=1 on K, ,so f, isdefined and f . =sup,_, f,. Finally f,, - f

is usc, hence r,(f) = «* and Ifcll =1,1ie., (i) is satisfied.

To get (ii), let &' < «* and ¢ > 0 be given, and choose n big enough so

that & < o and & > 1/n. Then by the discussion above, the restriction of
f to the subcompact S((K )p>n , K_), which still satisfies (i), also satisfies
[ fpen | < 1/
Case 3. The successor case. Let ¢, be strictly increasing with sup¢, = wi,
and (K, f") satisfy, by the induction hypothesis, (i) and (ii) for o, ¢, and
¢ = 1/n. Define inductively (L,,g Y by L, = K, g' =", and L, =
S{K,),L ) and

n 14

p

gp“: f, onk ,
g oan.

Let finally K = S((L,), {x}) and

1 »
— onL |
f={Pg P

0 at x_

We now show that (K, f) satlsfy( i) for £+1 . For this, we show by induction
on p that (x) ry(g") = & -p and for k < plghesly, = k. For p =1,
gl =f ' and (%) is the inductive hypothesis on f ' Suppose we know (x) for
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g”. Aseach K, is clopen in L.,
p+l

8 Ix,= fG" , and as in case 2 one easily infers, as for 0 < w

for each 6 for which ggH is defined,
4

limsup gZ*'(y) = 0
y—oLs
V&L,
if it is defined, that it is defined and satisfies for 6 < o*

gﬂ+1 _ fgn on Kn 3
o g onlL,.
Now g5l <1 for 6 <, and ||fx]lx, =1. So
p+1 _ {fgé on Kn’
[
1 on Lp
(this is (¥) for k =1),
gp+l _ gp+1 _ fur;c _fn on Kn,
o 1-g° on L,.

As 0<1-gf <1,and ||fj; = f"llx, > 1—1/n, we get

—

———— n_n
p+l P+l _ Joo = onK,,
gl -t =
1 onL ,
14
_ '
n /4
1 i, nt_ ) S [T+ onK,,
g -g"m+g = )
1+g oan.

And finally, as 1+ g” > 1 > sup, sup, fo.,

1
sl { S onkK,,

Bwiv1 = l+gf onlL,.

It then immediately follows by induction that for all 8 > 1, g(f; :6 is defined

and
n
g S onK,,
@ +0 l+g onlL,

so that () is verified for p+ 1.
Let us now consider (K, f). Again for any 6 for which f, is defined one
has f, 1, = [ljgg so that for any k, if f ., is defined,

I/l = inf(1, %) by (+),
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hence limsup,_ f .. (¥) = 0. It easily follows by induction that f, is de-

fined for 6 < »**', and So(x) =0, and that

1,0
f51'={1_7gw5‘p onK[J’
wst
1 atx_,
is defined, with f .., — f usc, so that (i) is verified.

To get (ii), let &< o' and & > 0 be given, and choose n such that
e>1/n and & < @° - n. Then the restriction g of the preceding function f
to S ((Lp)p>n2 ,» {x.,}) still satisfies (i) and moreover

p
18,.nll = SUP [l 7 8oe.yll = sUD 2 = 1 <& by (+),
p2n? pzn?

and the proof is complete. 0O

Theorem 4. Let & > 1 be a countable ordinal, and E an uncountable compact
metrizable space.

(1) Thereis f€DBSC(E), 0< f< 1, with ry(f) =¢.

(ii) Thereis fe B (E)\DBSC, 0< f <1, with ry,(f) = &°

Proof. In both cases, it is enough to find the function f on some countable
compact K, for one can embed K in E, and the function on E obtained by
extending f by O off K clearly has the same properties.

(i) For £ = 1, f is given by Lemma 3. And if A is limit and (i) holds
for & < o , it also holds at o’ by using one of the functions of Lemma 3.
So assume (i) is known for 5 < w*, and let us prove it for ® < n < Wt
Again the case 7 = ot s given by Lemma 3. If now 5 = w* - n, + 6 with
l<n,<wand 0<6< wé, the proof is by induction on g -

As in the proof of Case 3 of Lemma 3, let (Kp , f?) satisfy Lemma 3 with

wé, ép and 1/p, where sup,, ép = wé, and for any countable K_ and g in

DBSC(K ) with ||grD(g)|| <l,let K=K(K_,g)= S((K,),K,,) and
ff onk ,
f=/(K,.8 = { 7
g onkK_;
then as in the proof of Case 3 above, one checks by induction that
P
. on K ,
(i) for0<wé, fy= Js ?
g OonkK_,
. 2. onkK_,
(ii) fwc = { o d
1 onK_,
P
on K ,
(iii) foein = { o p
o+ l1+g, onK_.
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So for ¢ = 0 one gets f € DBSC(K), r,(f) = «° and if g is not usc,

/ € DBSC(K) and ry(f) = o +ry(g), with |If, = 1+ g, (&l It

é'n0+0,f0rsome n, > 0 and 950)5,

1 1
f=f|Ky, 78| . K|K ,—-¢
*° ”%(g)” * ”gru(g)“

work for w° + o°

follows that if g works on K_ for w
then

‘ng+ 0= wi(n0 + 1) + 6 and the proof is complete.
(ii) Again let £, be strictly increasing with sup, ¢, = o* , and consider the
pairs (K, , f ") of Lemma 3 corresponding to &, ¢, and 1 /nz.

Let now K = S(K,,{x_}) and

f={nf" onk, ,

0 at x_ .

The function f is bounded (between 0 and 1), and as sup, f < n/ n? = l/n,
f is the uniform limit of the sequence

. { f on U K,,
g = p<n
0 elsewhere,

which are in DBSC. So f € fé’ll . Now as before f, exists for 0 < o° and
Jo(x,.) =0, because sup, fép < n/n2 =1/n for n > p. But

'
sup | su =sup|n-su =n
Knp( ppfé”) Knp< ppfé”)
and sup,_,. f, is unbounded, so f ¢ DBSC and r,,(f) = . O

Remark. We do not know if the «°’s are the only possible values of r,,,,.
ND

4. TWO FURTHER CHARACTERIZATIONS OF %’f

I. Pseudo-uniform limits. Recall that we defined in §1, for any sequence f of
real functions on E, an ordinal y(f), with the properties that r(f) < w, iff
the sequence / converges quasiuniformly to a function f, and p(f) = 1 iff
the convergence is uniform.

Here we consider the following intermediate notion.

Definition 1. A sequence f of real functions on E is pseudouniformly conver-
gentif y(f) < w, i.e., for each ¢ > 0, there exists a finite decreasing sequence
K,=E, K, ... ,Kp, K, =60 such that any point in K, \ K, | admits a
nbhd in K, on which the sequence is ¢-uniformly convergent.
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Define now inductively families @, of real functions on E by

@, =C(E),
D, = f: f is a pseudouniform limit of a bounded sequence
of functions in CDé},

and for limit A,
®, = { f: f is a uniform limit of a bounded sequence

of functions in Uéd (I)é} .

Theorem 2. (i) %, (E) is the least family of functions on E containing C(E)
and closed under pseudouniform limits of bounded sequences.

(ii) For each { < w,, L@E(E) =®,.
Proof. By the definition of the @’s, the closure of C(E) under pseudouniform
limits of bounded sequences is {J,_,, P, so (i) is a consequence of (ii).

We prove (ii) by induction on &. Case £ = 0 is trivial. For limit 4, it is
enough to prove that %f is the set of uniform limits of functions in {J ) %’f .
It certainly contains this set. Conversely if [ & gé’f , f can be approximated
uniformly by linear combinations of 1,’s in ggll . But then (as «{A4) is always
successor) such 1,’s (and their linear combinations) are in Uees gé’é and we
are done. So it remains to study the successor case, i.e. to prove that %’é“ i
the set of pseudouniform limits of functions in %’f .

We first show the following fact: Let f be a sequence in ﬂf with pointwise

limit f, and & > 0. Then for any closed P, P C Pe/3 7

To see this, note first that if V is open in P one has for all ordinals 8,
VﬂP C( ) .Solet xe P\P 8/3f, and let V beopenin P, xe€V, be

such that for some no, Vm n > nglf,(v) = f,(0)I < ¢/3 forall y € V. Then

in particular |f, (v) — f(y)| < ¢/3 for y € V. Then by induction, one easily
4

gets that for all 6 Vg,f C V8/3’f”0 and, as fn0 €&,

4 S s
VﬂP:"’fg Vf,fg Ve

e3hy = 20

. ¢ .
Le. x ¢ P:’f, proving the fact.

Suppose now f is a bounded sequence in gé’é , and pseudouniformly con-
verges to f. We want to show that B(f) < é“ . To see this, let ¢ > 0 be
given, and let K, = E, K, = Ee/3f’ for i < p, with E°*'- = &. Applying

e/3.f
gng i < p, and hence

E“' CK, for i<p+1 sothat B(f,e) <’ (p+1).

the fact above to each K,, i < p, we get (X)) el
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It remains to prove that each f € 35’5“

is in the set ® of pseudouniform
limits of functions from ﬂ?f . From Lemma 2.5, the set @ is a vector space.
We first prove the result for characteristic functions. If 1, € %’EH ,then A =

{F,—F,, :neven, n < w*-k} forsome k € N and some decreasmg sequence

(F ") n<wrk of closed sets. By considering separately the difference corresponding
to (Fn)wf,igﬂwf,(m) for i < k, and using that ® is closed under sums, it is

enough to show 1, € @, whenever 4 is as above with k=1. Let then ¢, be

strictly increasing with sup, ¢, = «*, and define A, U{F 1 n even,

ot
n < ¢,t. The functions 1, are in 9(5’15, so it is enough to check that 1,

pseudounlformly converges to l,. It clearly converges to it pointwise. Let
K= ﬂn <t - We claim that for e<l, e ly) © K , hence, as all functions
are0on K, y( .(1,)) < 2. To see this, let X gé K ,and V anbhdof x with
VNnK=@. By compactness 14 ﬂF = @ for some #. But then the sequence

(1,,),>, 1s constant on ¥V, hence x ¢ . (IM)

Let now f be any function in ﬁf+ . Using 2.9, we can write f =3 g,,
with ||g,|| < 27" for n > 1, and g, linear combinations of characteristic
functions in ﬂ?i *1' hence in @ by the above facts. So let gp — g, Dbseudo-
uniformly, with gn € ﬂ?i, and without loss of generality, ||g7|| < 27 " for
n>1, |lghll < llgll. Define now g” =3, _ g, . Then the sequence (g°) is
bounded, and each g’ € 9(5’1: . Clearly g” — f pointwise, so it remains to show
that it converges pseudouniformly. Note that for ¢, g > p>1, one has

lg"-g" 1< D g - g |+427°
n<p n<p
and moreover the sequence (3, <p gZ ) g pseudouniformly converges to

don <p 8- It immediately follows that (g7) gen also converges pseudouniformly.
0

II. Alternating series of usc functions. The above characterization was clearly
reminiscent of Lebesgue’s theorem on analytically representable functions,
which inductively analyzes Borel functions using pointwise convergence. The
next characterization is reminiscent of the Hausdorff-Kuratowski analysis of A
sets in terms of differences of closed sets.

First we define the notion of “sum” of an alternating series of usc functions
on E: Let & be a countable ordinal, and let ( fﬂ),7 ¢ be a sequence of positive
usc functions, indexed by &, and decreasing. The function Z" <6 (=" f,, is
defined, inductively on 8 < ¢, by

1) - peoii( 1)"f Dol yeo(— f + (- )ef(,,where of course

( 1)9_ 1 if @ is even,
'l -1 iffisodd,
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and
(i1) for limit A < ¢

S0, =supd ST(-1)"f Eeven &< A
n<i n<g
We say that f is the sum of the alternating series ( f )
>y~ )"f if for & a successor, f = Zn<i
quence ( f ) decreases to 0 and f = E” < -1)" f"
[As we may always extend a sequence ( f,,) n<c by the constant function O
as much as we want, without changing the value of ", a function f =
Z; <= 1)" | for ¢ limit and J,’s not tending to 0 is still a sum of an alternat-

ing series, but of length & + 1. This will be important in exact computations
later on.]

Note that the preceding is well defined, for one easily checks by induction
that 37 " <o g f is bounded by f;, so that the taking of suprema in the limit
case does not create difficulties. And of course if f = Zn (= 0K f", one has
for 6 even, 6’ odd <¢

0< 3 D", < f<3 D", < e

n<@ n<’

Theorem 3. A function [ on E is a bounded Baire class 1 function iff f is the
sum of a constant and an alternating series of positive usc functions on E .

Proof. (i) for direction <, it is enough to show that each sum En <o(— 5K f,7 is
Baire class 1, for ( fn) n<o & decreasing sequence of positive usc functions. This

is done by induction on 8. It is clear to # = 1, and obvious at successors. If
now A is limit,

nee > Written f =
) D1, for & a limit, the se-

f= Z (—1)"}21 = sup Z (_1)”fn: even <A
n<i n<g
is, by the induction hypothesis, a Baire class 2 function, with supergraph {(x,?):
f(x) <t} in Hg. But one immediately checks that

* n . * n . .

> (=1)'f, =inf (-1 fy:&o0dd, g <4 —égg(fé)

n<i n<g
and as infédfi is usc, the subgraph {(x,?): f(x) >t} is Hg too, hence f is
Baire class 1.

(ii) For direction =, let f be a bounded Baire class 1 function, which we

may assume is > 0, by adding a constant to it. We now canonically associate to
f a series of usc functions, as follows. Let g, = f, f, = &, , and by induction

841 :fi_gi_ - ff+l gf+l
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and for limit A
g, = inf 8: and f, =g,

& even
E<A
where & denotes the usc regularization of a {bounded) function #. To show
that the definition makes sense for all ordinals &, it is enough to check that all
gé’s are bounded, which is clear, as we take infima at limits. One immediately
checks also that the sequence ( fé) is decreasing, hence for some countable
ordinal £, one has féo = fé0 +1- We now show that one must have fi0 (and
hence géo) =0.

We first prove, by induction, that 8: is a Baire class 1 function for all £.
This is the hypothesis on f for & = 0, and is obvious at successors. Now if A
is limit

g, = inf 8 = inf (fé—géﬂ).

& even & even
E<A E<A

—~ —~ == T _ -
But note that for any ¢ g, — g: < g as g >0, hence g, — g < g, and

e —

g§+2=g§_(§g_igg_g¢)5g¢

5= (o0 - (s
E<h

This immediately implies, as in the proof of direction <, that g, is Baire
class 1.

So In order to prove that fé0 is 0, it is enough to show that if g > 0 isa

so that we get

Baire class 1 functionon E, and ¢ = g/—\g ,then g=0.

Suppose this is not true, and let ¢ > 0 be such that {x: g(x) > ¢} # ©.
Let K ={x: g(x)>¢€}. As K is a nonempty closed set in E, there exists an
open V in E with VNK # @ and osc(g,VnNK)<e. Let h=g—g. We
claim that # <é¢ on V. If x € V and g(x) < ¢, then certainly A(x) < ¢
as g >0,s0 h < 2. If now g(x) > ¢, one must have x € VN K, and
g(x)= gl;(x) ,as g is <¢ off K. But osc(g|,)(x) <¢& by the choice of V',
hence A(x) = gﬂ((x) - g(x) <& too.

So h<eon V;andas V isopenin E, h <& on ¥ . Now by hypothesis
h=g,hence 2<¢ on V, contradicting the fact that V' N{g > ¢} # &. This
shows g =0.

So fé (and g, )= 0. It remains to show that f= Z” <€0
this, it is enough to prove by induction that for all &, f = Y.
(‘“1) g{ .

It is clear for ¢ =0 (f = g;), and as ey = fé - 8, it is immediate at
SUCCESSOrS.

)"f To see
n<é 1~)ﬂfn+
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Finally if for all even & < A limit

£=Y=0" + g
n<¢
then
= sup Z f+ énf g = Z (—1)"f”+g;.
iéef/én n<q & even n<i

and we are done. O

Theorem 3 can be refined to give a characterization of %’f , $< W

Theorem 4. Let ¢ > 1 be a countable ordinal. For f € B, [ isin %’f iff

S is the sum of a constant and an alternating series of positive usc functions of

length < w° .

Proof. There is something strange in the proof. If f € @f , f >0, one may
think that the canonical series associated above is such that ¢, < w* (and
inf n<to f =0if ¢, = wé) but we do not know if this is true. Also, one may
think that if ¢ > 0 is given and the g, ’s are as above, then g, <¢ off E, g e
This is immediate for n = 1, and can be proved for n =2 (by analyzing the
proof above that f o = 0). However, it is false in general for n > 2. So our
proof will be quite different.

(1) Proof of direction <. We want to show that for all &€ > 1, if ( fn) p<et is
a sequence of usc functions with fn >0, f,7 decreasing and inf . f,7 =0, then
f= Z,’(—l)” fn isin %’f . This is done by induction on &. First we argue that
it is enough to prove, assuming the result is known for &, the following:
Claim. If ( f”) <ok is a decreasing sequence of usc functions with f,7 >0, then
[=E0 0" isin B

Assume this claim has been proved. Suppose f = Y —1)" fn with
f,7 > 0, decreasing, and 1nf"<w¢+1 f = 0. Define for each n€c w, n < o* f”" =
Somsy» and [T =0 (=D)"f". Then f =3, f", and |f - Tr " <

fwf,< Ny1y oesto 0 uniformly (as the f,, s are usc). By the claim, each f” is in

,7<w§+1

921“1 , and hence so is [, as desired. This gives the successor case. If now A
is limit, and the result is known for all £ < 4, let £, be strictly increasing with
A =sup¢,, and define [ =3, . (-1)"f, . Againas |f - f"| < £, [
converges uniformly to f, and by the clalm e hence f € %, and
we are done.

So it remains to prove the claim. The proof is based on the following easy
fact: Suppose f, g are functions on E, ¢, ¢ > 0 are given and V is an
open set in E on which |f — g| <¢'. Then for any 5 < W,

Entl?

E'I

e+2¢’

n
SOVCE! V.
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This is immediate to prove by induction on #, using the inequality, for x,
x'evV
1

1f(x) = £(xX)] < |g(x) — g(x")] + 2¢".

In particular, one gets

EPe8 C {x € E: there is no nbhd ¥V of x with ||f—g||V§£'}.

e+2¢’ . f

Using this fact, we prove the claim as follows. We assume direction < has
been proved for &, and let (f )n < D€ a decreasing sequence of posmve usc

functions with f = Z; <ot(— " f We want to prove that f e%‘f“ Con-

sider g = (inf <o f ). This is a usc function, and if (1, )., is some strictly

increasing sequence of even ordinals with sup#, = o* , g is the optimal limit
of the sequence ( fnk)’ as this sequence is decreasing, by the remarks follow-
ing Theorem 2.3. So if ¢ > 0 is given, we can find p € N and a sequence
K,=E2K 22 Kp ) Kp+1 = of compact sets such that for every point

x €K, /K, ,thereisanbhd V of x in K; and some k with ||f”k—g||V <eg/3.
Now notice that for any even 6 < af one has
[N S

n<@

and moreover, by the induction hypothesis, all the functions Zn <= —1)" f are
in 3? , so that f(¢/3, EKW "f) < " for all k. Applying then the fact
above p + 1 times to all f| K and the corresponding paris of nbhds V' and

functions Y ._ (—1)" fn’ one 1mmed1ately gets for all i<p+1 Ew Tc K;

'7<'7k
hence in particular Ew W)~ o ie. Ble, ) < @+ (p+1). This gives finally

BN <!, as des1red.

(ii) Proof of =. Suppose first f =1, € 3?5. Then A4 = {{F, — Fy,,: 0
even, 6 < 1, for some 7, < «° and a decreasing sequence (Fg)g<n, of closed

sets. The functions (I Fg)() <y, @T€ USC, and one immediately checks that 1, =
}:; - ”0(—1)" 15, - (The definition was chosen to get this automatically.)

Suppose now [ € B , and assume, without loss of generality, that f >
0. By 2.9, one can find for each N > 2 a sequence 1, , ... ,IAN_2 in @f

such that g = (||f]l/N) Th- 1 1, satisfies 0< g < f< g+ Zlfll. Note
5

that if 7, even less than > is such that «fl Ak) < 7y, and by the above
result 1, = }:;WN(—I)”IF”A., then g, = (|l fII/N) Z,I(V:_lz Lp is usc, the g,’s
are decreasing and g = 3, (~1)"g,. Moreover 0 < g; < [IfII(1 - 2/N).
Applying this result to f and N = 4, one gets f, and ( fﬂl Jy<n > M < o,
with 0< f; < f< fi+/1/2 and £, =¥, (-1)"f, with 0< fy <[I/1l/2.

Applying it to f — f; and N = 4, one gets f, and (f”z),mh, n, < o, with
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0SA+hH <SS S+L+I/1/4 and £, =5 (-1)'f with 0< f5 <
| fll/4 and continuing this way, one gets f, and ( f: Ineme s Me < «*, with

0< fi+hyt+fy S L < fitfyt+ L4 I1/2" and £, =%, (-1)"f; with
0< fy SIAI/2". Let 6 =%, m <o, 6,=%,, ., and for 6, <n<6,,
let f, = fr;—(), + 35 /3 . This sum is well defined, for the series is uniformly

converging, and fn is thus usc. Moreover ( fn) n<t is decreasing. And finally as

YN, =Y =0 =
G‘SVI<9;+1 n<m
one gets f = r ,(—1)"f,. Andas ¥, fy < 27Y|f] goes to 0 with k,
f= Z,,<9(~1)'7fn and we are done. O

5. OPTIMAL CONVERGENCE AND DERIVATIVES

In many cases, Baire class 1 functions occur in analysis through natural ap-
proximation processes by continuous functions. The rank of convergence y
introduced in §1 thus provides a quantitative measure on how the natural ap-
proximation process is the “best possible” one.

For example if f is usc, then f is the infimum of a decreasing sequence
of continuous functions, and as we have seen in §2 (after Theorem 2.3), for
bounded usc functions this is indeed optimal. Similarly if f is of bounded
variation on the circle T, T. Ramsamujh has verified that the Fourier series of
S has convergence rank < 2, so that if one assumes f(x) = (f(x=)+f(x+))/2
at each discontinuity point x of f, the convergence of the series is optimal.

We study here the more involved case of derivatives on [0,1]. Note that
by a result of Petruska and Laczkovich [P-L}], any Baire class 1 function on the
Cantor set can be extended to a derivative on F, so that the Baire class 1 ranks
are unbounded on the set & of derivatives on [0, 1].

Of course if f is a derivative and F is a primitive of f, a very natural
approximation of f is given, for a given sequence h = (h,) — 0, by the
sequence
F(x+h,) - F(x)

5 .

n
We will see below that these approximations may be very far from giving the

best approximation, i.e. optimally converge to the derivative f.
However, one has a positive result in this direction.

F(x) =

Theorem 1. Let [ be a bounded derivative on [0, 1], and F its primitive. There
exists a sequence of positive step functions h,(x) on [0, 1], uniformly converging
to 0, such that the differences

o, Flx +h,(x)) - F(x)

=00

optimally converge to f .
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[Here we always view f and F as defined on all of R, with f =0 outside
[0, 1], when the formulas involve points not in [0,1].]

Proof. 1t is a simple consequence of Theorem 2.3. Starting with h,=1/n,we
get a sequence ¢, of functions optimally converging to f, with

n n 1
- e )

for some 0 < Aﬁ(") <1, Zlﬁ:’ =1,and n < m(l") << m . And we may

assume mé”) < m{"*Y . For each x on [0, 1],
F(x+h)-F(x
wx(h) - e ) - Flx)
is continuous between a'" = 1 /m and b\ = I/mI hence has range some

interval [a\™,b{"]. The values l//x(l/ m\™) are in this interval for all i <k,
hence so must be ¢, (x). So for some 4 in (@™, ™

p,(x) =y () = TEX T

By continuity, each x € [0,1] is in a nbhd U, such that for some #/ €
(@, " and ye U,

F(y+h)-F(y) 1
A 9,0 <5
and by compactness we can find 0 = x(()") < xi”) < e < x;)':) =1 and
hi”) . h(") in [a"™,b"™] such that for y € [x, m l(f_)l]
Fy+h") - F(y) 1
;1(,,) —_¢n(y) <E‘
!
The function £, (x) defined by the h(") h(") clearly converges umformly

to 0 in n, and moreover as ||F - (onl] I/n, y((F, )) = y((p,)) and F
converges optimally to f. O

We do not know if the functions /,(x) can be chosen continuous in x . The
next result shows that constants do not work in general.

Theorem 2. Let & be a countable ordinal. There exists a bounded derivative f
on [0,1] with B(f) =2 (hence f € 95’,1) such that if F is a primitive of f
and (h,),.n is any sequence in (0,1) converging to 0, the sequence
F h)-F
i) = ) = FQ)

n

of differences satisfies y((F h“)) >¢
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Proof. The functions F (and f) are constructed by induction on ¢. We will
prove in fact the following: For any interval [a,b] in [0, 1] and any ¢&, there
exists a differentiable F = F[ 0] such that

(i) F>0, F=0 off [a,b], |F||<b—-a,
(i) F is differentiable and ||F'|| < C (some fixed constant),

(iii) F' is continuous off some closed subset 4 of [a,b], and is identically
Oon 4,

(iv) for all h >0, h, -0, bela, bll/z Fhn)
Note that (iii) ensures that (F') <2, and (iV) ensures V((Fh")) 2¢.

Casel. £=1. Byscaling, welet a=0, b=1. Let x, =1/2, x, =1-1/2"

so that x,, —x, =1/2""". Let
7= (m+2) o= (m+1)
=X _— z =X _—
Ym = %m ¥ 2 m=m
2—(m+1) 2—(m+2) 2—(m+1)
to =" vo=x
m m+1 m mt m+2 + m+1

and choose or [x, ,x, ] F to be continuously difféerentiable, 0 at x,, and
on [v,,x, ] with derivative 0 at x, , and equal to ¢, on [y, ,z,], with F !
bounded by some constant C (= 3 eg., as ¢,/(y, — x,,) < 3). Finally, let
F =0 outside the intervals [x, ,x, 1. Clearly F is differentiable off 1. But
if 1/2 < x <1, then for some m, X, <x<x,., and

‘F(x) ~F(1) , 1

x-1 ‘—2—('"+1)=m+1

goes to 0 as m — oo, and F is differentiable at 1, with F'(1) = 0. So (i), (ii)
and (iii) (with A4 = {1} ) are satisfied. To see (iv), let h, — 0, A, > 0, and let
V' be a nbhd of 1 and p € N. Choose 7, large enough so that x, € V' for

m>n,,and n,>p. As h, —0,let n, be such that h, <2~ 1] /(ng+1),
and let m > n; be such that
—(m+2) —(m+1)
Z__on <EP
m+2 m m+1

The point x, isin V', and Fhn (x,,) =1t,/h, =21, whereas (as F'(x,)=0)
one can find p > m with Fh"(xm) < 1/2, so that 1 € [O,I]Il/z’wn). This
proves Case 1.

Case 2. Let use prove now the successor case (the limit case being similar,

although a bit simpler). So let ¢ be given, and assume F[i 5] have been con-
structed, with properties (i)-(iv) for ¢. Again by scaling we work on {0, 1].

This content downloaded from 131.215.71.79 on Mon, 20 May 2013 12:26:01 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp
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Let F' be the function defined above (for & = 1), and let W, =X, — 107"
(so that w, >wv, ). Add to F! , for each m, the function F[fﬂm 1] = Fi
Fl Fr£n
tm | |

Wm Xm+1

This gives F = F ‘! We now check that it works. (i) is immediate, and
(ii) too, expect at 1. But as ||F,i|| < 107", one sees as before that F is
differentiable at 1 with F' = 0. (iii) Let 4, € [w,,,x,. ] be the closed set
on which (Ffl)' is 0 and off which it is continuous. Then A4 =1J,, 4, U {1} is
closed, (F é“)' is continuous off it, and 0 on it, so (iii) is checked. For (iv),
let again 4, >0, A, — 0 be given. By the inductive hypothesis, we know that
X, € [w, ’xm+l.ﬁ/2,((r,i,)hn) so that one also gets x, ., € [0, l]f/z,(phn) , and
as this last set is closed, 1 is in it too. But then the proof we gave before for
F,—which used only the x,’s—works as well to show that 1 € [0, 1]?721’( Fhn) -
0

Remarks. 1. A slight change in the previous constructions easily gives, for each
&, an F with the same properties and satisfying also, for any 4, — 0, k, — 0,
h,, k,>0,if

ko F(X+h,) -F(x-k,)

hn
F - hn + kn L y((F )) Z é~

[Replace the basis F ! on [x ,x. .,] by a function like:
m m+1

Vm
7
S\ T

and argue similarly].
2. For each differentiable function F, one can define a differentiability rank

|F|,, as in Kechris and Woodin [K-W]. It is easy to see that for each (Fnh (x),

with %, (x) step functions uniformly converging to 0, one has y((Fnh (x)) <

|F|,. We do not know if |F|, is the supremum of these y((Fnh (x))).
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