
A Classification of Concurrency Failures in Java Components

Brad Long� Paul Strooper

Software Verification Research Centre,
School of Information Technology and Elec. Eng.,

The University of Queensland,
Brisbane, Qld 4072, Australia.

email: fbrad, pstroopg@itee.uq.edu.au

Abstract

The Java programming language supports concurrency.
Concurrent programs are hard to test due to their inher-
ent non-determinism. This paper presents a classification
of concurrency failures that is based on a model of Java
concurrency. The model and failure classification is used to
justify coverage of synchronization primitives of concurrent
components. This is achieved by constructing concurrency
flow graphs for each method call. A producer-consumer
monitor is used to demonstrate how the approach can be
used to measure coverage of concurrency primitives and
thereby assist in determining test sequences for determin-
istic execution.

1 Introduction

A concurrent program specifies two or more processes
(or threads) that cooperate in performing a task [1]. Each
process is a sequential program that executes a sequence
of statements. The processes cooperate by communicating
using shared variables or message passing. Implementing
and testing concurrent programs is difficult due to the in-
herent non-determinism in these programs. That is, if we
run a concurrent program twice with the same input, it is
not guaranteed to return the same output both times.

By concentrating on components we do not need to be
concerned with the number of threads that are executing in
the entire system, because we assume the component can be
accessed by any number of threads at a time. That is, we test
a component under the assumption of multiple thread ac-
cess. Following Szyperski [26], we take a software compo-
nent to be a unit of composition with contractually specified

�also Australian Development Centre, Oracle Corporation, 300 Ann St,
Brisbane, Qld 4000, Australia.

interfaces and explicit context dependencies. Such a com-
ponent is likely to come to life through objects and therefore
would normally consist of one or more classes.

Unit testing is becoming an increasingly popular ap-
proach for assisting the development of high quality soft-
ware [4, 17]. Whilst unit testing tools exist for sequential
programs, there are currently no tools for the systematic unit
testing of concurrent software components.

Our first step for systematic testing is to develop a model
of Java concurrency. Petri-nets [23] are used to represent the
model in a graphical manner. The model is used to discuss
important synchronization points in concurrent Java compo-
nents. A classification of concurrency failures is presented
along with the model. From the classification and model,
synchronization flow graphs are created for each method in
the concurrent program. The synchronization flow graphs
may then be used to assist the construction of test sequences
that cover the arcs of the graphs. The test sequences can be
used to construct test drivers or as input to dynamic analysis
testing tools [19, 20].

We review related work in Section 2. In Section 3 we
provide an overview of Java concurrency constructs. The
model of Java concurrency is presented in Section 4. Sec-
tion 5 explains the classification of concurrency failures.
The application of the model to test case selection is pre-
sented in Section 6.

2 Related Work

Static analysis of concurrent programs involves the anal-
ysis of a program without requiring execution. Typically
this involves the generation and analysis of (partial) models
of the states and transitions of a program [18, 21, 22, 27].
The resulting graphs are then analyzed to generate suitable
test cases, to generate suitable synchronization sequences
for testing, or to verify properties of the program.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

A model is a simplified representation of the real world.
It includes only those aspects of the real-world system rel-
evant to the problem at hand. Models of software are of-
ten based on finite state machines or call graphs with well-
defined mathematical properties. This approach facilitates
formal analysis and mechanical checking of software sys-
tems, thus avoiding the tedium (and introduction of errors)
inherent in manual formal methods. Traditionally, a model
of the program is created manually, in the form of a mathe-
matical specification. More recently, models have been suc-
cessfully generated automatically from the program source
or object code. Approaches based on model checking in-
clude Bandera [14], JPF [15, 28], and Jlint [2].

Some tools combine static and dynamic analysis. For
example, JPF’s runtime analysis utilizes the LockTree and
Eraser [24] algorithms for detecting potential deadlocks and
race conditions. In [7], the static analysis phase collects
information to allow the more accurate dynamic phase to
execute efficiently. Other recent work [8] focusses on pa-
rameterized verification to handle infinite-state abstraction
models of concurrent Java programs.

Deterministic testing of concurrent programs [3, 5, 9, 10,
19, 20, 25] requires forced execution of the program accord-
ing to an input test sequence. This can be done by modify-
ing the implementation of the synchronization constructs,
controlling the run-time scheduler during execution, apply-
ing a source transformation strategy, or creating a test har-
ness to control synchronization events without any modifi-
cation to the software under test.

In this paper, we develop a generic model for a concur-
rent thread accessing an object lock. We then use the model
to classify failures in concurrent components. A graphi-
cal representation of a concurrent component is then con-
structed, and the graph is used to guide test sequence con-
struction to ensure coverage of concurrency primitives.

3 Overview of Concurrency in Java

Some basic Java concurrency constructs are reviewed in
this section before proceeding with the formal specification.
Thread creation, join, sleep, and interrupt are not
discussed since these are not typically found in concurrent
components themselves, but in the multithreaded programs
that use these components. The methods suspend, re-
sume and stop are also not discussed because they are
deprecated and their use is discouraged [16].

3.1 Mutual Exclusion and Object Locking

In the Java programming language [11, 12], mutual ex-
clusion is achieved by a thread locking an object. Two
threads cannot lock the same object at the same time, thus
providing mutual exclusion. A thread that cannot access a

synchronized block because the object is locked by another
thread is blocked. In Java there are two ways of locking an
object.

1. Explicitly call a synchronized block.

synchronized (anObject) {
...

}

The Java code above, locks the object anObject.
The lock is released when the executing code leaves
the synchronized block. If another thread is already
executing code within the synchronized block, the re-
questing thread will be blocked until the thread holding
the lock leaves the synchronized block.

2. Synchronize a method.

public synchronized void aMethod() {
...

}

The Java code above, which synchronizes a method,
is the same as locking the this object in a synchro-
nized block. The following code provides identical be-
haviour:

public void aMethod() {
synchronized (this) {

...
}

}

A thread can lock more than one object. For example, the
thread executing the following Java code locks the two ob-
jects object1 and object2. Both locks are held whilst
in the inner-most synchronized block. As each block is ex-
ited, the associated lock is released.

synchronized (object1) {
...
synchronized (object2) {

...
}

}

3.2 Waiting and Notification

Threads are suspended by calling the Java waitmethod.
This causes the lock on the object to be released, allow-
ing other threads to obtain a lock on the object. Suspended
threads remain dormant until woken. As an example, a par-
ticular implementation of the producer-consumer monitor
provides two methods, put and get. The put method

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

places an item into the buffer and the get method retrieves
an item from the buffer. A thread will be suspended via the
wait statement if it calls get whilst there are no items in
the buffer.

public synchronized Item get() {
while (buffer.size() == 0) {

wait();
}
...

}

A thread calling notify will cause the run-time sched-
uler, managed by the Java Virtual Machine (JVM), to arbi-
trarily select a waiting thread to be woken. The selected
thread will then attempt to regain the object lock for re-
entry to the synchronized block immediately after the call
to wait. For the producer-consumer monitor, the put call
places an item into the buffer and then notifies a waiting
thread. There is also a method notifyAll that wakes all
waiting threads on the object.

public synchronized void put(Item item) {
...
buffer.add(item);
notify();

}

4 A Model of Java Concurrency

Figure 1 models the states of a single thread with respect
to a synchronized object by using a petri-net diagram [23].
This representation has been chosen to highlight two issues:
1) the change in state of a thread when concurrent constructs
are encountered in a multithreaded program, and 2) the ef-
fect that availability of the object lock has on a thread’s
state. The diagram contains markers (shown as dots) and
two types of nodes: circles (called places) and bars (called
transitions). These places and transitions are connected
by directed arcs from places to transitions and from transi-
tions to places. A transition can fire if all incoming arcs
originate from places containing markers. When a transi-
tion fires, each outgoing arc deposits a marker in its desti-
nation place. It is not proposed that petri-nets are created for
specific applications. The petri-net representation is used to
model possible states and transitions of a thread at any point
in time.

Places A to D represent the current state of a thread.
Place E represents the availability of an object lock. More
specifically, the marker in place A represents a thread exe-
cuting outside a synchronized block. A marker in place B
represents a thread requesting entry to a critical section. A
marker in place C represents a thread executing in a critical
section. A marker in placeD represents a thread in thewait
state. The marker in place E means that an object lock is
available.

T4

T1 T2 T3

THREAD ENDS

A B C

E

D

T5

Figure 1. Petri-net model of concurrency

Transition T1: requesting an object lock

Transition T1 is fired by a thread entering a synchro-
nized block. A marker exists in place A, therefore transi-
tion T1 can fire causing the marker to move to B. Place B
represents a thread requesting an object lock.

Transition T2: locking an object

Transition T2 is fired by the JVM serving the requesting
thread an object lock. If an object lock is available, that is,
if a marker exists in place E, the marker can move to C.
Place C represents a thread executing in a critical section
with the object lock. If no lock is available, the thread is
blocked in B.

Transition T3: waiting on an object

Transition T3 represents a thread entering the wait state.
This occurs when the code calls the wait method, which
also releases the object lock, hence the arc to place E. From
C, a marker is moved to both D and E.

Transition T4: releasing an object lock

Transition T4 represents a thread leaving a synchronized
block. When this occurs, a marker is placed in both A and
E. This transition causes the lock on the object to be re-
leased.

Transition T5: thread notification

Transition T5 represents a waiting thread waking up.
When this occurs, the marker moves to B to reacquire the
object lock it was waiting on. The incoming dashed arc at

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

T5 represents another thread notifying the waiting thread.
This has the obvious implication that a thread in the wait
state cannot wake itself.

5 A Classification of Concurrency Failures

Following techniques of hazard/safety analysis, failure
conditions are identified for each of the transitions. This ap-
proach is taken for completeness, to ensure all failures are
identified and classified. Using a HAZOP style of analysis
[6], we analyze each transition for two deviations, 1) failure
to fire the transition, and 2) erroneous firing of the transi-
tion. The correct transition firings plus the two deviations
form a complete set of transition firings. Table 1 contains
the result of the analysis.

The columns of the table are as follows:

� Transition: the name of the transition under analysis
(see Figure 1).

� Failure: a categorization of the failure. Two classifica-
tions, failure to fire and erroneous firing, are used.

� Cause: a brief description of possible causes of the
failure.

� Conditions: the conditions under which the failure can
occur.

� Consequences: the consequences of the failure.

� Testing Notes: any notes relating to testing implica-
tions. Generally a method or approach for detecting
the failure is listed. Check call completion time refers
to a technique used in previous work [19, 20]. This
technique uses deterministic execution to allow a tester
to specify sequences of method calls. To guarantee the
order of execution, the method uses an abstract clock
to provide synchronization. This clock provides three
operations: await(t) delays the calling thread un-
til the clock reaches time t, tick advances the time
by one unit, waking up any processes that are await-
ing that time, and time returns the number of units of
time passed since the clock started. The time call al-
lows a tester to ensure each thread wakes up at a certain
time or between a range of times.

5.1 Transition T1 failures

5.1.1 Failure to fire T1 (FF-T1)

For this failure to occur, there must be shared resources that
are potentially accessed by multiple threads. Failing to fire

this transition means the thread does not enter a synchro-
nized block for mutually exclusive access to any shared re-
sources. Detecting this failure requires the ability to detect
multiple threads accessing a shared resource.

5.1.2 Erroneous firing of T1 (EF-T1)

This occurs when a thread enters a synchronized block
when it is not required to. This is not necessarily a serious
problem, since it does not cause a failure as such, it simply
introduces inefficiency into the component.

5.2 Transition T2 failures

5.2.1 Failure to fire T2 (FF-T2)

As mentioned in Table 1, this failure can occur in two ways.
One way is when the thread can never get hold of an object
lock because the lock is permanently held by another thread
(see failure FF-T4). This can occur if the thread holding
the lock is waiting for blocking input and no input is ever
received, or is deadlocked.

The other way this failure can occur is if the JVM is not
fair when handing out locks. If there is high contention and
there is always more than one thread requesting a lock, it is
possible that one thread is never selected to receive a lock.
This is very difficult to detect as it depends on timing of
thread requests. Since the Java virtual machine is not re-
quired to be fair, this could be a potential problem where
multiple waiting threads are involved. Further details of a
particular JVM implementation would be required to deter-
mine if the potential problem has been eliminated, for ex-
ample, if an implementation used a first-in first-out queue
for waiting threads.

5.2.2 Erroneous firing of T2 (EF-T2)

We assume the JVM is implemented correctly and therefore
do not analyze this failure any further.

5.3 Transition T3 failures

5.3.1 Failure to fire T3 (FF-T3)

To detect whether a thread fails to enter a waiting state,
threads can be forced to execute a sequence of calls that
require them to wait. A thread that fails to enter the waiting
state will complete before it should.

5.3.2 Erroneous firing of T3 (EF-T3)

To detect whether a thread erroneously enters a wait state,
a similar technique can be used for the failure to fire case.
That is, force threads to execute a sequence that is not ex-
pected to suspend threads. Then check the completion times

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Transition Failure Cause Conditions Consequences Testing Notes

T1 Failure to
fire T1

Thread does
not access a
synchronized
block when
required

Two or more threads access a
shared resource

Interference (also
known as a race
condition or data race)

Static analysis /
model checking
(often combined
with dynamic
analysis)

Erroneous
firing of
T1

Program logic
accesses criti-
cal section

No more than one thread ac-
cesses shared resources. The
thread is not required to wait or
notify other threads.

Unnecessary synchro-
nization

Static analysis /
model checking
(often combined
with dynamic
analysis)

T2 Failure to
fire T2

The object
lock to be ac-
quired has been
acquired by
another thread

Another thread has acquired
the lock being acquired by this
thread. This can occur in 2
ways: 1) one thread continu-
ously holds the lock, or 2) one
or more threads repeatedly ac-
quire the lock being requested
by this thread.

The thread is perma-
nently suspended

Static and dy-
namic analysis

Erroneous
firing of
T2

Not applicable

T3 Failure to
fire T3

No call to
wait is made

Thread is required to make a
call to wait

Program code may er-
roneously execute in a
critical section, or leave
critical section prema-
turely.

Check completion
time of call

Erroneous
firing of
T3

Program logic
makes an er-
roneous call to
wait

A call to wait is not desired A thread may suspend
indefinitely if no other
thread exists to notify
it. The object lock is re-
leased.

Check completion
time of call

T4 Failure to
fire T4

The thread
never releases
object lock.

Thread is either in endless
loop, waiting for blocking in-
put (which is never received),
or acquiring an additional lock
which is locked by another
thread

Thread never com-
pletes. Other threads
may be blocked if they
are waiting for the lock.

Check completion
time of call

The thread fires
T3, that is, it
waits instead

None Thread waits instead of
completing and leaving
the critical section.

Check completion
time of call

Erroneous
firing of
T4

Thread releases
the object lock
prematurely

None Thread exits and sub-
sequent statements
may access shared
resources.

Static analysis
and completion
time of call

T5 Failure to
fire T5

Thread is not
notified

No other thread calls notify
whilst this thread is in the wait

state.

Thread is permanently
suspended

Check completion
time of call

Erroneous
firing of
T5

Thread is no-
tified before it
should be

None Thread prematurely re-
enters the critical sec-
tion

Check completion
time of call

Table 1. Concurrency failure classification

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

of each call in the sequence to ensure that threads completed
at the correct time and were not erroneously suspended.

5.4 Transition T4 failures

5.4.1 Failure to fire T4 (FF-T4)

Failure to fire this transition means that a thread perma-
nently holds a lock (see FF-T2) or fires transition T3 and
enters the wait state instead. If transition T3 is fired instead
of T4, the thread erroneously enters the wait state (see EF-
T3 for more details).

5.4.2 Erroneous firing of T4 (EF-T4)

This failure occurs when the thread releases the object lock
prematurely which includes: 1) leaving a synchronized
block too early, 2) reassigning a variable that was holding
an object lock, and 3) firing T4 instead of T31.

5.5 Transition T5 failures

5.5.1 Failure to fire T5 (FF-T5)

This failure occurs when no thread calls notify whilst this
thread is in the wait state. This includes the case where
there is only one thread in the system and thus waits for-
ever. This also occurs when a notify is called rather than a
notifyAll, there is more than one thread continuously in the
wait state, and one particular thread is never selected for
notification. That is, selection of notified threads is not fair.
This failure can be detected by checking completion times
of component calls.

5.5.2 Erroneous firing of T5 (EF-T5)

This occurs when the thread prematurely re-enters the criti-
cal section. Detailed consequences are application specific.
This can be detected by checking completion times of com-
ponent calls made by the thread.

6 Applying the Model to Test Case Selection

Brinch Hansen [5] proposed an approach for testing
Concurrent Pascal monitors consisting of four steps:

1. For each monitor operation, the tester identifies a set
of preconditions that will cause each branch of the op-
eration to be executed at least once.

2. The tester constructs a sequence of monitor calls that
will exercise each operation under each of its precon-
ditions.

1The thread may execute and leave the critical section rather than sus-
pending on the wait queue.

3. The tester constructs a set of test processes2 that will
execute the monitor calls as defined in the previous
step.

4. The test program is executed and its output is com-
pared with the predicted output.

In [13] we extended the test selection criterion in the first
step to include loop coverage, consideration for the number
and type of processes suspended inside the monitor, and in-
teresting state and parameter values. Tool support for the
method was introduced in [19, 20]. Although the method
and tool enabled us to detect erroneous implementations of
monitors, it was not clear why loop coverage was chosen as
a criteria for selecting test cases. This section discusses a
systematic white-box approach for test case selection based
on our model and classification of concurrency failures. We
illustrate the approach with a producer-consumer monitor.

6.1 An example: producer-consumer monitor

The ProducerConsumer class shown in Figure 2 im-
plements an asymmetric Producer-Consumer monitor, the
Java equivalent of the Concurrent-Pascal program described
in [5]. The send method places a string of characters into
the buffer and the receive method retrieves the string
from the buffer, one character at a time.

The monitor state is maintained through three variables:
contents stores the string of characters, curPos repre-
sents the number of characters in contents that have yet
to be received, and totalLength represents the length
of contents. The synchronized keyword in the dec-
laration of the send and receive methods specifies that
these methods must be executed under mutual exclusion.
The wait operation is used to block a consumer thread
when there are no characters in the buffer, and a producer
thread when the buffer is nonempty. It suspends the thread
that executed the call and releases the synchronization lock
on the monitor. The notifyAll operation wakes up all
suspended threads, although only one thread at a time will
be allowed to access the monitor.

The model presented in Section 4 shows possible tran-
sitions made by threads in a multithreaded program. Since
each transition is caused by a concurrent statement or con-
struct, we propose that any concurrent construct used in a
component should be executed in an attempt to detect any
concurrency failures (as classified in Section 5). To achieve
coverage of all concurrent statements, a Concurrency Flow
Graph (CoFG) is constructed. Because we are focussing on
constructing graphs of a concurrent component and not en-
tire systems, constructions of CoFGs are relatively straight-
forward. The CoFG contains all statements that cause tran-

2These processes are scheduled by means of a clock used for testing
only.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

class ProducerConsumer {
String contents;
int totalLength, curPos = 0;

// receive a single character
public synchronized char receive() {

char y;
// wait if no character is available
while (curPos == 0) {

wait();
}
// retrieve character
y = contents.charAt(totalLength-curPos);
curPos = curPos - 1;
// notify blocked send/receive calls
notifyAll();
return y;

}
// send a string of characters
public synchronized void send(String x) {

// wait if there are more characters
while (curPos > 0) {

wait();
}
// store string
contents = x;
totalLength = x.length();
curPos = totalLength;
// notify blocked send/receive calls
notifyAll();

}
}

Figure 2. Producer-consumer monitor

sitions as described in our model. Each arc in the graph is
a unique, although possibly overlapping, code region. To
construct the CoFG for the producer-consumer monitor we
identify the code regions between all pairs of concurrent
statements in each method. The CoFG for the receive
method is constructed as follows (and is represented graph-
ically in Figure 3):

1. start! wait
This is the code region between the beginning of the
synchronized block3 to the wait statement. The code
region will be covered when the while statement of
the receive method (in Figure 2) evaluates to true.
This represents the following transition firings from
our model: T1, T2, T3.

2. wait! wait
This code region is from the one invocation of wait
to the next. It covers the code from the end of the wait
statement (the second half of the while loop) to the be-
ginning of the next invocation of the wait statement
(the first half of the while loop). The while condition

3In this example, the beginning of the synchronized block is also the
beginning of the method.

1

2

3

4

receive

5

1

2

3

4

send

5

Figure 3. CoFGs for producer-consumer

on iteration of the loop must evaluate to true. This
covers the transition firings T3, T5, T2, T3.

3. wait! notifyAll
This is the code region from the wait statement to the
notifyAll statement. The while condition on it-
eration of the loop must evaluate to false. Transitions
fired: T3, T4, T5.

4. start! notifyAll
This code region is from the beginning of the syn-
chronized block to the notifyAll statement. The
while condition must evaluate to false. Transitions
fired: T1, T2, T5.

5. notifyAll! end

The region is from notifyAll to the end of the syn-
chronized block. Transitions fired: T5, T4.

The CoFG for send is identical to that for receive in
this case (see Figure 3). Finally we can build test sequences
that exercise arcs of the CoFGs. This involves creating a
test driver that instantiates a number of threads which make
calls on the synchronized methods. The sequence of calls
should ensure coverage of the CoFGs. The test driver can
easily be created by using the ConAn concurrency testing
tool [19, 20].

7 Conclusion

The non-deterministic nature of concurrent programs
means that conventional testing methods are inadequate.
New techniques and tools need to be developed to allow
the verification and testing of such programs. In this pa-
per, a petri-net model of concurrency is presented and each
transition is analyzed. The generic model consists of a
thread interacting with an object lock. The transitions in
the model represent changes in the concurrent state of a

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

thread. From this model, a classification of concurrency
failures based on transition firings is proposed. The clas-
sification is used to justify the construction of concurrency
flow graphs (CoFGs) for each method in a concurrent com-
ponent. Complexity is significantly reduced by focussing
on concurrent components rather than entire systems. A
component is tested under the assumption of multiple thread
access. The producer-consumer monitor is used as an exam-
ple to demonstrate the creation of concurrency flow graphs.
The concurrency flow graphs can be used in the construc-
tion of test sequences for testing concurrent components to
ensure coverage of concurrency primitives.

The classification for concurrency failures provides us
with a motivation for a test case selection strategy using
concurrency flow graphs. It potentially removes the need
for white-box techniques based on previous work [19, 20].
In addition, the classification highlights the importance of
checking thread completion times since this can be used in
many cases to detect transition failures. By applying this
technique in combination with black-box testing, we be-
lieve a superior technique to previous work [19, 20] can be
devised. Future work will include 1) development of CoFGs
and test sequences using this technique on a range of con-
current components, 2) a comparison of this technique with
those used in earlier work, and 3) tool support for genera-
tion of CoFGs and coverage analysis during testing.

References

[1] G. Andrews. Concurrent Programming: Principles and Practice.
Addison Wesley, 1991.

[2] C. Artho and A. Biere. Applying static analysis to large-scale, multi-
threaded Java programs. In Proceedings of the 2001 Australian Soft-
ware Engineering Conf., pages 68–75. IEEE Comp Society, 2001.

[3] A. Bechini and K-C. Tai. Design of a toolset for dynamic analysis
of concurrent Java programs. In Proceedings of the 6th International
Workshop on Program Comprehension, pages 190–197, 1998.

[4] K. Beck. Extreme Programming Explained. Addison Wesley, 2000.

[5] P. Brinch Hansen. Reproducible testing of monitors. Software –
Practice and Experience, 8:721–729, 1978.

[6] D.J. Burns and R.M. Pitblado. A modified HAZOP methodology for
safety critical assessment. In F. Redmill and T. Anderson, editors, Di-
rections in Safety-critical Systems: Proceedings of the Safety-critical
Systems Symposium. Springer Verlag, 1993.

[7] J-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise datarace detection for mul-
tithreaded object-oriented programs. In Proceedings of the 2002
Conference on Programming Language Design and Implementation
(PLDI’02). ACM Press, 2002.

[8] G. Delzannon, J-F. Raskin, and L. Van Begin. Towards the automated
verification of multithreaded Java programs. In Proceedings of the
Int. Conf. on Tools and Algorithms for Construction and Analysis of
Systems (TACAS 2002), pages 173–187. Springer-Verlag, 2002.

[9] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithreaded
Java program test generation. IBM Systems Journal, 41(1):111–125,
2002.

[10] E. Farchi, M. Factor, and Y. Talmor. Testing for timing-dependent
and concurrency faults. In Proceedings of the 1998 International

Conference on Software Testing Analysis and Review. Software Qual-
ity Engineering, 1998.

[11] J. Gosling and K. Arnold. The Java Programming Language. Addi-
son Wesley, 2nd edition, 1998.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification. Addison Wesley, 2nd edition, 2000. Also online at
http://java.sun.com/docs/books/jls/index.html as at Sep 2002.

[13] C. Harvey and P. Strooper. Testing Java monitors through determin-
istic execution. In Proceedings of the 2001 Australian Software En-
gineering Conference, pages 61–67, 2001.

[14] J. Hatcliff and M. Dwyer. Using the Bandera tool set to model-check
properties of concurrent Java software. In Proc. 12th International
Conf. on Concurrency Theory, pages 39–58. Springer-Verlag, 2001.

[15] K. Havelund. Java PathFinder, a translator from Java to Promela. In
Proceedings of 5th and 6th SPIN Workshops. Springer-Verlag, 1999.

[16] Sun Microsystems, Inc. Why are Thread.stop, Thread.suspend,
Thread.resume and Runtime.runFinalizersOnExit deprecated?
Available online at http://java.sun.com/products/jdk/1.2/docs/guide/
misc/threadPrimitiveDeprecation.html.

[17] R. Jeffries. Extreme testing. Software Testing and Quality Engineer-
ing, pages 23–26, March 1999.

[18] T. Katayama, E. Itoh, and Z. Furukawa. Test-case generation for
concurrent programs with the testing criteria using interaction se-
quences. In Proceedings of the 2000 Asia-Pacific Software Engi-
neering Conference, pages 590–597. IEEE Computer Society, 2000.

[19] B. Long, D. Hoffman, and P. Strooper. A concurrency test tool for
Java monitors. In Proc. 16th International Conf. on Automated Soft-
ware Engineering, pages 421–425. IEEE Computer Society, 2001.

[20] B. Long, D. Hoffman, and P. Strooper. Tool support for testing Java
monitors. Technical Report 01-21, Software Verification Research
Centre, The University of Queensland, June 2001.

[21] D. Long and L.A. Clarke. Data flow analysis of concurrent sys-
tems that use the rendezvous model of synchronisation. In Proceed-
ings of the Symposium on Software Testing, Analysis and Verification
(TAV4), pages 21–35. ACM Press, 1991.

[22] G. Naumovich, G. Avrunin, and L. Clarke. Data flow analysis for
checking properties of concurrent Java programs. In Proceedings of
the 1999 International Conference on Software Engineering, pages
399–410. IEEE Computer Society, 1999.

[23] J.L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223–252,
1977.

[24] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems, 15(4):391–411, November
1997.

[25] S.D. Stoller. Testing concurrent Java programs using randomized
scheduling. In Klaus Havelund and Grigore Rosu, editors, Electronic
Notes in Theoretical Computer Science, volume 70. Elsevier Science
Publishers, 2002.

[26] C. Szyperski and C. Pfister. Special issues in object-oriented pro-
gramming - ECOOP 96 workshop reader. In M. Muhlhauser, editor,
Workshop on Component-Oriented Programming, Summary. dpunkt
Verlag, Heidelberg, 1997.

[27] R.N. Taylor, D.L. Levine, and C.D. Kelly. Structural testing of
concurrent programs. IEEE Transactions on Software Engineering,
18(3):206–215, 1992.

[28] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking pro-
grams. In Proc. 15th International Conf. on Automated Software
Engineering. IEEE Computer Society, 2000.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

