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A CLASSIFICATION OF HALF LIGHTLIKE SUBMANIFOLDS
OF A SEMI-RIEMANNIAN MANIFOLD WITH A
SEMI-SYMMETRIC NON-METRIC CONNECTION

DAE Ho JIN AND JAE WON LEE

ABSTRACT. In this paper, we study the geometry of half lightlike sub-
manifolds M of a semi-Riemannian manifold M with a semi-symmetric
non-metric connection subject to the conditions; (1) the characteristic
vector field of M is tangent to M, the screen distribution on M is totally
umbilical in M and the co-screen distribution on M is conformal Killing,
or (2) the screen distribution is integrable and the local lightlike second
fundamental form of M is parallel.

1. Introduction

In the classical theory of spacetime, while the rest spaces of timelike curves
are spacelike subspaces of the tangent spaces, the rest spaces of null curves
are lightlike subspaces of the tangent spaces [13]. To investigate this, Hawking
and Ellis introduced the notion of so-called screen spaces in Section 4.2 of their
book [9]. As for any semi-Riemannian manifold there is a natural existence
of lightlike subspaces, Duggal-Bejancu [6] published their work on the general
theory of degenerate (lightlike) submanifolds to fill a gap in the study of sub-
manifolds in 1996. Since then there has been very active study on lightlike
geometry of submanifolds. The geometry of lightlike submanifolds is used in
mathematical physics, in particular, in general relativity since lightlike subman-
ifolds produce models of different types of horizons (event horizons, Cauchy’s
horizons, Kruskal’s horizons). Lightlike hypersurfaces are also studied in the
theory of electromagnetism [6].

Ageshe and Chafle [1] introduced the notion of a semi-symmetric non-metric
connection on a Riemannian manifold. Although now we have lightlike version
of a large variety of Riemannian submanifolds, a general notion of lightlike
submanifolds of a semi-Riemannian manifold with a semi-symmetric non-metric
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connection has not been introduced as yet. Only there are some limited papers
on particular subcases recently studied by Yasar et al. [14] and Jin [10].

Motivated by the notion of a semi-symmetric non-metric connection on a
Riemannian manifold, the objective of this paper is to study the half lightlike
version of above classical results. We focus on the geometry of half lightlike
submanifolds M of a semi-Riemannian manifold M with a semi-symmetric non-
metric connection subject to the conditions; (1) the characteristic vector field
¢ of M is tangent to M, the screen distribution S(TM) is totally umbilical in
M the co-screen distribution S(T'M™) is conformal Killing, or (2) the screen
distribution S(T'M) is integrable and the local lightlike second fundamental
form B of M is parallel.

2. Semi-symmetric non-metric connection

Let (M ,§) be a semi-Riemannian manifold. A connection V on M is called a
semi-symmetric non-metric connection [1] if V and its torsion tensor T satisfy
(2'1) (ng)(Y, zZ) = —7T(Y)§(X, Z) —F(Z)g(X,Y),

(2.2) T(X,Y) = (V)X —n(X)Y

for any vector fields X, Y and Z on M , where 7 is a 1-form associated with
a non-zero vector field ¢ by n(X) = g(X, (). We say that ( is the character-
istic vector field of M. We shall assume ¢ to be unit spacelike without loss of
generality.

A submanifold (M, g) of a semi-Riemannian manifold M of codimension 2 is
called a half lightlike submanifold if the radical distribution Rad(TM)=TMnN
TM+ of M is a vector subbundle of the tangent bundle TM and the normal
bundle TM+ of rank 1. Then there exists complementary non-degenerate
distributions S(T'M) and S(T M=) of Rad(TM) in TM and T M+ respectively,
called the screen and co-screen distribution on M, such that

(2.3) TM = Rad(TM) ©orin S(TM), TM* = Rad(TM) ©opin, S(TM™L),

where the symbol @®,,+;, denotes the orthogonal direct sum. We denote such
a half lightlike submanifold by M = (M,g,S(TM)). Denote by F(M) the
algebra of smooth functions on M and by I'(E) the F(M) module of smooth
sections of a vector bundle E over M. Choose L € T'(S(TM*1)) as a unit
vector field with g(L, L) = e = +1. Consider the orthogonal complementary
distribution S(T'M)* to S(T'M) in TM. Certainly Rad(TM) and S(TM%1)
are subbundles of S(TM)+. As S(T M) is non-degenerate, we have

S(TM)* = S(TM1Y) ®open S(TML)L,

where S(T'M=)* is the orthogonal complementary to S(TM*) in S(TM)*+.
For any null section & of Rad(T M), there exists a uniquely defined lightlike
vector bundle ltr(TM) and a null vector field N of ltr(T'M) satisfying

(24) g(¢,N)=1, g(N,N)=g(N,X)=9g(N,L)=0, VX e T(S(TM)).
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We call N, ltr(TM) and tr(TM) = S(T M) @ open ltr(T M) the lightlike trans-
versal vector field, lightlike transversal vector bundle and transversal vector
bundle of M with respect to S(TM), respectively [5]. Therefore T'M is decom-
posed as
(2.5) TM =TM @ tr(TM) ={Rad(TM) ® tr(TM)} ®oren S(TM)
= {Rad(TM) ® ltr(TM)} ®orin S(TM) Bopen, S(TM™).

From the decomposition (2.5), the vector field ¢ is decomposed by
(2.6) (=w+p&+ AN +vL,
where w is a smooth vector field on S(T'M), and A, p and v are smooth functions
defined by A = 7(§), u = n(N) and v = en(L).

Let P be the projection morphism of TM on S(T'M). Then the local Gauss
and Weingartan formulas of M and S(T'M) are given by

(2.7) VxY = VxY+B(X,Y)N+D(X,Y)L,
(2.8) VxN = —A.X+7(X)N + p(X)L,

(2.9) VxL = —A,X+¢(X)N,

(2.10) VxPY = ViPY +C(X,PY),

(2.11) Vxé = —A:X —o(X)E, VX, Y € D(TM),

where V and V* are induced linear connections on TM and S(T M), respec-
tively, B and D are called the local lightlike and screen second fundamental
forms of M, respectively, C is called the local second fundamental form on
S(I'M). Ay, Af and A, are linear operators on 7'M and 7, p, ¢ and o are
1-forms on T M. Using (2.1), (2.2) and (2.7), we have

(2.12) (Vx9)(Y,Z) = B(X,Y)n(Z)+ B(X, Z)n(Y)
_F(Y)Q(Xa Z) - F(Z)Q(Xa Y),
(2.13) T(X,Y) = #(Y)X —n(X)Y, VX,Y, Ze(TM)

and B and D are symmetric on T'M, where T is the torsion tensor with respect
to the induced connection V and 7 is a 1-form on 7'M such that

(2.14) n(X)=g(X,N), VX € T(TM).
From the facts B(X,Y) = §(VxVY,€) and D(X,Y) = €j(VxY, L), we know

that B and D are independent of the choice of the screen distribution S(TM).
Using this equations and (2.1), we get

(2.15) B(X,8) =0, DX, ¢ =—-€e¢(X), VX e(TM).

The above second fundamental forms are related to their shape operators by
(2.16) g(A;X,)Y) = B(X,Y) - \g(X,Y), g(AfX,N) =0,

(2.17) g(A, X, Y) = D(X,Y) —vg(X,Y)} + (X)n(Y),

9(A, X, N) = e{p(X) —vn(X)},
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(2.18) g(A, X, PY) = C(X, PY) — ug(X, PY) — n(PY )5(X),
9(Ay X, N) = —pn(X), o(X) = 7(X) = An(X),
for all X,V € I'(T'M). From the equations of (2.16), we show that Af is a
T(S(TM))-valued self-adjoint shape operator related to B and satisfies
(2.19) AzE =0,

A vector field X on M is called a conformal Killing vector field if EX§ = —20g
for any smooth function &, where £ denotes the Lie derivative of M, i.e.,

(L 9)(Y,2) = X (G(YV,2)) - §([X, Y], 2) = §(Y,[X, Z)), VY,ZeT(TM).

In particular, if 6 = 0, then X is called a Killing vector field on M. A distri-
bution G on M is called a conformal Killing (or Killing) distribution on M if
each vector field belonging to G is a conformal Killing (or Killing) vector field.

Theorem 2.1. Let M be a half lightlike submanifold of a semi-Riemannian
manifold M admitting a semi-symmetric non-metric connection. Then the
following assertion are equivalent:

(1) B wanishes identically on M.

(2) Af satisfies A{X = —=APX for all X € T(T'M).
(3) Rad(TM) is a Killing distribution on M.
(4)

4) V is a semi-symmetric non-metric connection on M.

Proof. The equivalence of (1) and (2) follows from (2.16) and the fact that
S(TM) is non-degenerate. Next, if B = 0, from (2.12) and (2.13) we have

(Vxg)(Y, Z) = —n(Y)g(X, Z) — m(Z)g(X,Y),
T(X,Y)=n(Y)X —x(X)Y, VX,Y,ZecI(TM).

Thus V is a semi-symmetric non-metric connection on M. Conversely if V is
a semi-symmetric non-metric connection on M, from (2.12) we have

B(X,Y)(Z) + B(X,Z)n(Y) =0, VX,Y,Z¢cT(TM).

Replacing Y by £ to this result and using (2.15);, we have B = 0. Thus we
obtain the equivalence of (1) and (4). Finally, from (2.12) and (2.13) we obtain

(Lyg)Y,Z) = g(Vy X, Z) + g(Y,VzX) - 2n(X)g(Y, Z)
+ B(X,Y)n(Z)+ B(X,Z)n(Y), VX,Y,ZeT(TM).

Taking X = ¢ to this and using (2.11) and the first equation of (2.16), we have
(‘ng)(XaY):_B(XaY)a VXaYEF(TM)a

which proves the equivalence of (1) and (3). O
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Theorem 2.2 ([11]). Let M be a half lightlike submanifold of a semi-Rie-
mannian manifold M admitting a semi-symmetric non-metric connection. If
S(TM™) is conformal Killing, then there exists a smooth function & such that

(2.20) D(X,Y)=e5g(X,Y), VX,Y eT(TM).

In particular, if S(TM*) is a Killing distribution on ]Tj, then D = 0.

3. Induced Ricci curvature tensors

Denote by R R and R* the curvature tensors of the semi-symmetric non-
metric connection V on M the induced connection V on M and the induced

connection V* on S(T M), respectively. Using the Gauss-Weingarten equations
for M and S(T'M), we obtain the Gauss-Codazzi equations for M and S(TM):

(3.1) G(R(X,Y)Z, PW)
= g(R(X,Y)Z, PW) + B(X, Z)g(A,Y, PW) — B(Y, Z)g(A, X, PW)
+D(X, Z)g(A,Y, PW) - D(Y, Z)g(A, X, PW),
(32) G(R(X,Y)Z, &)
= (VxB)(Y, Z) = (VyB)(X, Z) + B(Y, Z){r(X) — n(X)}
= B(X, 2){r(Y) —7(Y)} + D(Y, 2)¢(X) — D(X, 2)¢(Y),
(3.3) G(R(X,Y)Z, N)
=g(R(X,Y)Z, N)+ p{B(Y, Z)n(X) — B(X, Z)n(Y)}
+e{D(X, Z)[p(Y) —vn(Y)] = DY, Z)[p(X) — vn(X)]},
(34) €g§(R(X,Y)Z, L)
= (VxD)(Y, Z) = (VyD)(X, Z) + B(Y, Z)p(X) — B(X, Z)p(Y)
— DY, Z)x(X) + D(X, Z)n(Y),
(35) G(R(X,Y)E, N)
= B(X,AY) - B(Y,AyX) = 2d7(X,Y) + p(X)o(Y) — p(Y)d(X)
=CY, A¢X) — O(X,AfY) — 2do(X,Y) + p(X)o(Y) — p(Y)o(X)
+ v{p(X)n(Y) — o(Y)n(X)},
(3.6) G(R(X,Y)PZ, PW)
= g(R*(X,Y)PZ, PW) + C(X, PZ)g(A{Y, PW)
—C(Y, PZ)g(A{X, PW),
(3.7) G(R(X,Y)PZ, N)
= (VxCO)(Y, PZ) — (VyC)(X, PZ) + C(X, PZ){c(Y) + n(Y)}
—C(Y, PZ){o(X) +n(X)}.
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Let Ric be the Ricci curvature tensor of M and let R(%:2) denote the induced
Ricci type tensor on M given respectively by
Ric(X,Y) = trace{Z — R(Z,X)Y}, VX,Y eT(TM),
RO2(X)Y) = trace{Z — R(Z,X)Y}, VX,Y e€(TM).

Consider a quasi-orthonormal frame field {§; W,} on M, where Rad(TM) =
Span{¢} and S(TM) = Span{W,} and let E = {&, N, L,W,} be the corre-
sponding frame field on M. Let diimM = m + 3. Using this quasi-orthonormal
frame field, we obtain

(3.8) Ric(X,Y) =" eag(R(Wa, X)Y, W,) + G(R(E, X)Y, N)

G(R(N,X)Y, &)+ eg(R(L,X)Y, L), VX, Y € T(TM),

390 ROY(X,Y) Zeag (Wa, X)Y, W,) + g(R(£, X)Y, N)

for all X,Y € I'(TM), where ¢, denotes the causal character of W,. Substi-
tuting (3.1) and (3.3) into (3.8) and using (2.16) and (2.17), we obtain

(310) RO(X,Y) = Ric(X,Y)+ B(X,Y)trA, + D(X,Y)trA,
—g(ANX, AZY) —eg(A, X,A,Y)— (A, X,Y)
—vg(A, X,Y) + p(X)o(Y) — vp(X)n(Y')
—G(R(&Y)X, N) = eg(R(L, X)Y, L).

This shows that R(® 2 is not symmetric. The tensor field R(%?) is called the
induced Ricci curvature tensor [8, 10] of M, denoted by Ric, if it is symmetric.
M is Ricci flat if its induced Ricci curvature tensor vanishes identically on M.

Theorem 3.1. Let M be a half lightlike submanifold of a semi-Riemannian

manifold M admitting a semi-symmetric non-metric connection. Then R(©?)

is symmetric if and only if the 1-form 7 is closed, i.e., dr =0, on T M.
Proof. From the first equation of (2.17) and the fact D is symmetric, we have
(3.11) g(A, X, Y) —g(X, A,Y) = o(X)n(Y) — ¢(Y)n(X), VX, Y € I(TM).
Using (3.5)1, (3.11) and the first Bianchi’s identity, from (3.10) we obtain
RO2(X,Y) - RO (v, X)
= g(AZX, AJY) — g(AZY, AJX)+Mg(X,AY) —g(A X, Y)}
+p(X)(Y) = p(YV)$(X) — G(R(X,Y)E, N)
=27(X,Y), VX, Y el (TM).

From which, we show that R(®-2) is symmetric if and only if dr = 0. [
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A semi-Riemannian manifold M of constant curvature c is called a semi-
Riemannian space form and denote it by M(c). In this case, the curvature
tensor R of M is given by
(3.12) E(X,Y)Z =c{g(V,2)X —g9(X,2)Y}, VXY Z¢e F(T]\N@.

In case of a semi-Riemannian space form M (¢), we have
(3.13)  ROD(X,)Y) =meg(X,Y) + B(X,Y)trA, + D(X,Y)trA,
—g(A X, AZY) —eg(A, X,A,Y)— (A, X)Y)
—vg(A, X, Y) + p(X)o(Y) — vp(X)n(Y).
4. Tangential characteristic vector field

In this section, we may assume that ¢ is tangent to M. Then we show that

A=g(¢(, &) =0,v=¢€g(¢, L) =0 and 7 = o by (2.18)s.

Proposition 4.1. Let M be a half lightlike submanifold of a semi-Riemannian
manifold M admitting a semi-symmetric non-metric connection. If ¢ is tangent
to M, then there exists a screen distribution S(TM) which contains .

Proof. If ¢ belongs to Rad(TM), then ¢ = ué and p # 0. It follows that

1=3(¢, ¢) = 1?g(&, &) = 0.
It is a contradiction. Thus ¢ does not belong to Rad(TM). Due to (2.3)1, this
result enables one to choose a screen distribution S(7°'M) which contains . We
call such a S(TM) the natural screen distribution of M. O

Note 1. Although S(T'M) is not unique, it is canonically isomorphic to the
factor vector bundle S(TM)* = TM/Rad(TM) considered by Kupeli [12].
Thus all S(T'M) are mutually isomorphic. For this reason, we consider only

half lightlike submanifolds M of a semi-Riemannian manifold M admitting a
semi-symmetric non-metric connection with a natural screen distribution.

Definition. We say that S(T'M) is totally umbilical [6] (in M) if, on any
coordinate neighborhood U C M, there is a smooth function v such that

(4.1) C(X,PY)=~g¢(X,Y), VX,Y eD(TM).
In case v = 0 on U, we say that S(T'M) is totally geodesic (in M).

Theorem 4.2. Let M be a half lightlike submanifold of a semi-Riemannian

manifold M admitting a semi-symmetric non-metric connection. If ¢ is tangent
to M and S(TM) is totally umbilical in M, then S(TM) is totally geodesic.

Proof. Applying Vx to §(A,Y,N) =0 and using (2.1), (2.6), (2.7), we have
9J(Vx (A Y),N) = m(A Y )n(X) +9(Ay X, A Y), VX, Y e I(T'M).
Substituting this equation into the last term of the following equation

0=9g(R(X,Y)N, N) = —g(Vx(AY),N) + g(Vy(4,X), N)
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due to (2.17)2, (2.18)2 and the fact p = v = 0, we have
(A, X)nY)=7n(A,Y)n(X), VXY eT(TM).
Replacing Y by ¢ to this equation and using (2.14), we have
(A X) =7(A,n(X), VX eT(TM).
As S(T'M) is totally umbilical in M, using (2.18); and (4.1) we have
T(AyX) = g(Ay X, () = ym(X) —n(X), m(A,§) = g(A¢, ¢) = —1.

From this results, we have y7(X) = 0 for any X € T'(TM). Replacing X by ¢
to this and using ¢({,¢) = 1, we get v = 0. Thus S(T'M) is totally geodesic. [

Theorem 4.3. Let M be a half lightlike submanifold of a semi-Riemannian
manifold M admitting a semi-symmetric non-metric connection. If S(TM™) is
a conformal Killing distribution on M, then S(TM™*) is a Killing distribution.

Proof. As S(TM+) is conformal Killing, by (2.15)5 and (2.20), we have ¢ = 0.
From the Weingarten equations R(X,Y)N and R(X,Y)L for M, we obtain

§(R(X,Y)N, L)
=e{D(Y,A,X)—-D(X,A,Y)+2dp(X,Y) + p(X)7(Y) — p(Y)7(X)}
=9(Vx(AY) = Vy (A, X) - A X, Y]+ () Ay X — (X)A,Y, N).
Using this, (2.17)2 and (2.18)2, we show that
(4.2) DY, A X)—-D(X,AY)+2dp(X,Y) + p(X)7(Y) — p(Y)7T(X)}
= G(Vx(4,Y) = Vy (4, X), N) — ep([X, Y]).
Applying Vy to J(A,Y,N) = ep(Y) and using (2.1), (2.7), (2.8) and (2.17)2,
for all X, Y € I(T'M), we have
FVx(4,Y),N) = eX(p(Y)) +m(A, Y)n(X) + g(A, Y, 4, X) — er(X)p(Y).
Substituting this into (4.2) and using (2.17); and (2.18)2, we have
(A, X)nY)=n(A,Y)n(X), VX, Y e (TM).
Replacing Y by € to this equation, we have
(A, X)=n(A,.¢{n(X), VX el(TM).
Taking X = £ and Y = ¢ to (2.17)1, we get (A, &) = —¢(¢) = 0. Replacing
Y by ¢ to (2.17); and using the above result, we have
D(X,¢) =m(A,X)=0, VX eT(TM).
Taking X =Y = ¢ to (2.20), we get § = 0 and S(T'M™) is Killing. O
Theorem 4.4. Let M be a half lightlike submanifold of a semi-Riemannian

space form M(c) admitting a semi-symmetric non-metric connection such that

the characteristic vector field ( of M s tangent to M. If S(TM) is totally
umbilical in M and S(TM™) is conformal Killing, then M is Ricci flat.
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Proof. As S(TM™) is conformal Killing, we get D = 0 by Theorem 4.3. Also
as S(T'M) is totally umbilical, C' = 0 by Theorem 4.2. Thus (3.7) becomes
G(R(X,Y)PZ,N)=0, VX,Y,ZecTD(TM).
Substituting this and (3.12) into (3.3) with y = v = 0 and using D = 0, we get
c{g(Y,PZ)n(X)—g(X,PZ)n(Y)} =0, VX,Y,ZeT(TM).

Taking X = PZ = ( and Y = £ to this result, we have ¢ = 0.
Using (2.17), (2.18) and the fact D = C = p=v =0, we have

(4.3) A X = —n(X)C, A, X =ep(X)E, VX eTD(TM).

From (3.5) and the facts A = v =0 and 7 = o, we obtain

B(X,A,Y) - B(Y, A, X) = C(Y,A;X) — C(X, A{Y), VX,Y €T(TM).
Using (2.16)1, (2.18); and the fact Az is self-adjoint, we have

T(A; XIn(Y) = m(AgY)n(X), VX, Y € T(TM).
Replacing Y by £ to this equation and using (2.16); and (2.19), we have
(4.4) B(X,¢) = (A X) =0, VX eT(TM).
Substituting (4.3) into (3.13) and using (4.4), we have
(4.5) ROD(XY) = B(X,Y)trA,, VX,Y eD(TM).
Thus we show that R(%?) is symmetric. Using (4.3), we have
trA, = ieag(ANWa, Wo)+g(A ¢, N)=0+0=0.

a=1

Substituting this result into (4.5), we have R(%2) = 0. Thus M is Ricci flat. [

Theorem 4.5. Let M be a half lightlike submanifold of a semi-Riemannian

space form M(c) admitting a semi-symmetric non-metric connection. If ¢ is
tangent to M, S(TM) is totally umbilical in M and S(TM*) is conformal
Killing, then the following are equivalent:

(1) M is flat, i.e., the curvature tensor R of M satisfies R = 0.
(2) The local lightlike second fundamental form B of M satisfies B = 0.
(3) The connection V of M is a semi-symmetric non-metric connection.

Proof. Using (2.12), (3.1)~(3.4), (4.3) and the fact ¢ = D = 0, we show that

R(X,Y)Z = R(X,Y)Z — B(X,Z)AY + B(Y,Z)A X
= {B(X, Z)n(Y) — B(Y, Z)n(X)}(, VX, Y, Z € (T M),

which implies the equivalence of (1) and (2). Next, the equivalence of (2) and
(3) follows from Theorem 1.1. Thus we have our assertions. O
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5. Integrable screen distributions

In general, the screen distribution S(T'M) is not necessarily integrable. The
following result gives equivalent conditions for the integrability of S(T'M):

Theorem 5.1. Let M be a half lightlike submanifold of a semi-Riemannian
manifold M admitting a semi-symmetric non-metric connection. Then the
following are equivalent:

(1) The screen distribution S(T M) is an integrable distribution.

(2) C is symmetric, i.e., C(X,Y)=C(Y,X) for all X, Y € T(S(TM)).

(3) The shape operator A, is a self-adjoint with respect to g, i.e.,

g(A X,Y) =g(X,A,Y), VX, Y eT(S(TM)).

Proof. First, note that a vector field X on M belongs to S(T'M) if and only if
we have n(X) = 0. Next, by using (2.10) and (2.13), we have

CX,)Y)-CY,X)=n(X,Y]), VX, Y eD(S(TM)),

which implies the equivalence of (1) and (2). Finally, the equivalence of (2)
and (3) follows from the first equation of (2.18). O

Note 2. In case S(T'M) is integrable, M is locally a product manifold C x M*
where C is a null curve and M* is a leaf of S(T'M) [6, 8].

Theorem 5.2. Let M be a half lightlike submanifold of a Lorentzian manifold
M admitting a semi-symmetric non-metric connection. If S(TM) is integrable
and the lightlike second fundamental form B of M is parallel, then M is locally
a product manifold C x M, x My, where C is a null curve, and M, and M, are
leaves of some integrable distributions of M.

Proof. Under the hypotheses, S(T'M) is a Riemannian vector bundle and M is
locally a product C x M* where C is a null curve and M™* is a leaf of S(T'M).
Applying Vx to B(Y,¢) = 0 and using (2.11), (2.15); and (2.16);, we have

(5.1) g(ATX, ATY) = Ag(A;X,Y), VX,Y e T(TM).

Since ¢ is an eigenvector field of A corresponding to the eigenvalue 0 due to
(2.19) and Af is an S(T'M)-valued real self-adjoint operator, A7 have m real
orthonormal eigenvector fields and is diagonalizable. Consider a frame field of
eigenvectors {§, Ex, ..., By} of Af such that {E1, ..., Ep,} is an orthonormal
frame field of S(T'M) and A;E; = A\ E; for each i. Put X =Y = E; in (5.1),
each eigenvalue \; is a solution of the equation

(5.2) 22 =Xz =0.

(5.2) has at most two distinct solutions 0 and A. Assume that there exists
pe{0,1,...,m}suchthat \y =--- =X, =0and A\py1 =--- = A\, = A, by
renumbering if necessary.
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In case p = 0 or p = m: As S(T'M) is integrable, we show that M =
Cx M*=CxM*x{x} for any x € M. In this case either M, = M* and
My = {z} or My = M* and M, = {z}. Thus this theorem is true.

In case 0 < p < m: Consider the distributions D,, Dy, D] and D3 on M;

D, = {X e (TM) | ALX = 0 and PX # 0}, D! = PD,,

o

Dy = {UeD(IM) | ALU = APU and PU #0}, Dj = PD,.

Clearly we show that D, N Dy = {0} and DN D5 = {0} as X # 0.

For any X € I'(D,) and U € I'(Dy), we get A;PX = A;X =0and A;PU =
AgU = APU. This imply PX € I'(D,) and PU € I'(Dy). Thus P maps I'(D,)
onto I'(D%) and I'(Dy) onto I'(D5). Since PX and PU are eigenvector fields
of the real self-adjoint operator A corresponding to the different eigenvalues
0 and A, respectively, we have g(PX, PU) = 0. From the facts g(X,U) =
g(PX,PU) = 0 and B(X,U) = g(A;X,U) + A\g(X,U) = Ag(X,U) = 0, we
show that D, L Dy and D, L, D, respectively.

Since {E;}i<i<p and {Eq}pri<a<m are vector fields of D and D3, respec-
tively, and D} and D3 are mutually orthogonal vector subbundles of S(T'M),
D; and Dj3 are non-degenerate distributions of rank p and rank (m — p), re-
spectively. Thus S(T'M) = D} ®ortn D5

From (5.1), we show that Af(Af — AP) = (A — AP)A; = 0. Let Y €
Im A, then there exists X € I'(T'M) such that ¥ = A7X. Then we have
(A =AP)Y =0and Y € I'(Dy). Thus Im A7 C I'(D,). Since the morphism
Af maps I'(T'M) onto I'(S(T'M)), we have Im Ay C I'(D5). By duality, we
also have Im(A7 — AP) C T'(Dy).

For any X, Y € I'(D,) and U,V € T'(D)), applying Vx to B(U,V) =
2Xg(U, V) and Vy to B(X,Y) = Ag(X,Y) and then, using (2.12), (2.16); and
the facts VB = 0 and D, L, Dy; D, L, Dy, we have (XA)g(U,V) = 0 and
(UNg(X,Y) =0, i.e., XA = 0 and UX = 0. This imply XA = 0 for all
X € (D, ®orth D). Thus A is a constant on S(T'M).

For any X, Y, Z € T'(D?), applying Vz to B(X,Y) = A\g(X,Y) and using
(2.12), (2.16); and VB = 0 and A is constant on S(T'M), we get Vg =0, i.e.,

(5.3) m(X)g(Y,Z)+n(Y)g(X,Z) = 0.
Using this and the fact D is non-degenerate, we have
(5.4) m(X)Y = —n(Y)X.

Taking the skew-symmetric part of (5.3) for X and Z, we get n(X)g(Y,Z) =
m(Z)g(X,Y), from which we have

(5.5) m(X)Y =nm(Y)X.

From (5.4) and (5.5), we have w(X) = 0 for all X € T'(Dg). By duality, we

have 7(U) =0 for all U € I'(D3). Thus 7 =0 and Vg =0 on S(T'M).
Forany X,Y € I'(D%) and U, V € T'(D3), applying Vx to B(Y,U) = 0 and

Vv to B(Y,U) = 0 and using (2.12), (2.16);, VB =0 and Vg =0 on S(TM),
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we have

From (5.6), since Dy, is non-degenerate and Im Az C I'(D3), we have AfVxY =
0. Thus VxY € T'(D,). By duality, we have Vy U € T'(D,). Thus we have

9g(VxY,U)=0,  g(VyUY)=0,

due to (5.7). This results imply that VY € I'(D3) for all X, Y € T'(D3)
and Vi,U € T'(D3) for all U, V € T'(D3). Thus D} and D5 are integrable and
auto-parallel distributions on S(T'M).

Since the leaf M* of S(T'M) is a Riemannian manifold and S(TM) =
D} @oren DS, where D; and D3 are auto-parallel distributions with respect
to the induced connection V* on S(T'M), by the decomposition theorem of de
Rham [4], we have M* = M, x My, where M, and M) are leaves of D3 and
D3 respectively. Thus we have our theorem. ([
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