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Abstract This paper presents a classification of for-
mulations for distributed system optimization based
on formulation structure. Two main classes are identi-
fied: nested formulations and alternating formulations.
Nested formulations are bilevel programming problems
where optimization subproblems are nested in the func-
tions of a coordinating master problem. Alternating
formulations iterate between solving a master problem
and disciplinary subproblems in a sequential scheme.
Methods included in the former class are collaborative
optimization and BLISS2000. The latter class includes
concurrent subspace optimization, analytical target cas-
cading, and augmented Lagrangian coordination. Al-
though the distinction between nested and alternating
formulations has not been made in earlier comparisons,
it plays a crucial role in the theoretical and computa-
tional properties of distributed optimization methods.
The most prominent general characteristics for each
class are discussed in more detail, providing valuable
insights for the theoretical analysis and further devel-
opment of distributed optimization methods.
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1 Introduction

Distributed optimization is a technique to partition
a single, typically large system optimization problem
into a number of smaller optimization subproblems. A
coordination algorithm is used to drive the subproblem
designs towards a solution that is optimal for the origi-
nal problem.

Distributed optimization approaches are attractive
for addressing the challenges that arise in the opti-
mal design of advanced engineering systems (see, e.g.,
Sobieszczanski-Sobieski and Haftka 1997). The main
motivation for the use of distributed optimization is
the organization of the design process itself. Since a
single designer is not able to oversee each relevant
aspect, the design process is commonly distributed over
a number of design teams. Each team is responsible
for a part of the system, and typically uses specialized
analysis and design tools to solve its design subprob-
lems. Distributed optimization methods apply natu-
rally to such organizations since they provide a degree
of decision autonomy to the different design teams
(Alexandrov 2005). Full disciplinary autonomy can
rarely be obtained completely. Instead, the disciplinary
design subproblems typically involve some quantities
from other disciplines related to the interdisciplinary
interaction.

Computational savings may be a second motivation
for distributed optimization. Although benefits for local
optimization are commonly perceived to be small if
present at all (see, e.g., Alexandrov and Lewis 1999),
global optimization may benefit substantially from dis-
tributed optimization. Computational costs for global
optimization algorithms often increase rapidly with
the number of design variables. Therefore, solving a
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number of smaller subproblems is expected to be
preferable over solving a single large problem if a good
degree of separability can be achieved, provided that
the coordination overhead introduced by distributed
optimization is (relatively) small (Haftka et al. 1992;
Haftka and Watson 2005). Additional benefits are ex-
pected when these subproblems can be solved in a
parallel computing environment.

Examples of advanced engineering systems can be
found in the aerospace and automotive industry, and
an emerging field is microelectromechanical systems
(MEMS). Typically, such systems are partitioned along
disciplinary lines, or along the lines of systems, subsys-
tems, and components. For instance, an aircraft may
be partitioned with respect to the various physics in-
volved (mechanics, aerodynamics, control, etc.), or with
respect to its structural components (fuselage, wing,
tail, panels, spars, ribs, etc.). The former aspect-based
partition is considered in the traditional multidiscipli-
nary design optimization (MDO) approaches, while the
second object-based partition is often found in multi-
level product design formulations. Throughout this ar-
ticle, the term discipline is used to refer to a single
decision-making element in a partition, which may be a
discipline in the classical MDO sense, or a component
in an object-based partition.

A large number of distributed optimization meth-
ods for engineering design has been proposed during
the past three decades. Typically, a central master
optimization problem is introduced to coordinate the
interactions between the disciplinary subproblems. In
the field of MDO, these methods are referred to as
multi-level methods. Its counterpart, single-level meth-
ods, have centralized decision-making and do not allow
design decisions to be made at the disciplinary level.
Due to their relative simplicity, single-level methods
are well understood; a review can be found in Cramer
et al. (1994). Multi-level methods—i.e. distributed op-
timization methods—offer greater freedom in defining
coordination approaches, and therefore this field is far
less transparent.

We will refer to the methods with subproblem
decision freedom as “distributed optimization meth-
ods” since the phrase “multi-level” in the linear and
nonlinear programming community strictly refers to
nested formulations, see Section 4.5. Similarly, “par-
allel optimization” may refer to both single-level
and multi-level methods. The interested reader is
referred to Lasdon (1970), Lootsma and Ragsdell
(1988), Bertsekas and Tsitsiklis (1989), Wagner and
Papalambros (1993), Wagner (1993), Censor and

Zenios (1997) for overviews of parallel optimization
methods from the nonlinear programming community.

This article presents a classification of distributed
optimization methods from the engineering literature,
based on the distinction between nested and alternating
formulations. Nested methods have a central coordi-
nation master problem in which the solution of all
disciplinary subproblems is required for an evalu-
ation of the master problem functions. Alternating
approaches iterate between solving a master coor-
dinating problem and the disciplinary subproblems.
Following Alexandrov and Lewis (1999), a further di-
vision within each class is made based on maintain-
ing feasibility with respect to design constraints and
consistency constraints. The main focus of this article
is to give an overview of the major concepts used in
distributed optimization approaches, and the role of the
coordination approach (nested vs. alternating). In our
discussion, we will therefore not focus on individual ap-
proaches from the literature, but on the most common
ingredients to these coordination methods. This focus
on general characteristics clearly reveals similarities
and differences between various existing methods.

The distinction between nested and alternating
methods has been mentioned before (see, e.g., Balling
2002), but its importance has not been emphasized
sufficiently. We put the distinction central in our discus-
sion since it has a large influence on important consid-
erations such as solution equivalence, well-posedness
of optimization problems, and convergence behavior.
These properties are crucial for analytical and practical
evaluation of coordination methods (Alexandrov and
Lewis 1999). However, a detailed theoretical or numer-
ical convergence analysis of existing methods is beyond
the scope of this paper.

This article is organized as follows. First, the clas-
sification criteria are discussed in more detail in
Section 2, and the general system optimization problem
is introduced in Section 3. The nested formulations are
treated in their general form in Section 4, together with
the categorization of several existing formulations in
this class. The section is concluded with a discussion
on the general properties and considerations of nested
formulations, and references to other fields in which
nested formulations have appeared. These references
are far from exhaustive and should not be seen as a
review, but are intended to allow researchers to connect
to decomposition theory from other fields. Alternating
methods are discussed from a similar perspective in
Section 5. Finally, we conclude with some summarizing
remarks.
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2 Classification

The classification of coordination methods presented in
this chapter is based on two characteristics:

1. Formulation structure (nested or alternating)
2. Constraint relaxation (none, design and/or

consistency)

The first characteristic relates to the structure of the
problem formulation that is either nested or alternat-
ing. In a nested formulation, evaluation of the master
problem objective and constraint functions requires the
optimization of all disciplinary subproblems. An alter-
nating formulation iterates between solving a master
problem and disciplinary subproblems in a sequential
scheme.

The second characteristic indicates which constraints
are relaxed during the coordination phase (Alexandrov
and Lewis 1999). Distributed optimization methods
typically relax certain constraints during coordination,
and only enforce feasibility with respect to these con-
straints at convergence. Constraints that are relaxed are
referred to as open, and constraints for which feasibility
is enforced at every iteration are called closed.

We differentiate between the relaxation of design
constraints and consistency constraints. Design con-
straints are constraints related to the design problem
of a discipline. Consistency constraints make sure that
variables that appear in more than one subproblem
take equal values. A relaxation of the consistency
constraints implies that the same variable may take
different values in different subproblems. Similarly, re-
laxation of the design constraints means that some of
these constraints can be violated at subproblem solu-
tions. The coordination algorithm is then responsible
for driving the violations of the relaxed constraints
to zero, thereby obtaining a consistent and feasible
design.

Whether constraints are open or closed can be
observed from the formulations of the disciplinary
subproblems in the following sections. When design
constraints are closed, they are included as explicit
constraints in the subproblems. Open design con-
straints are typically relaxed with a penalty function,
denoted by φ, and appear in the objectives of subprob-
lems. When the consistency constraints are closed, sub-
problems only have freedom in optimizing their local
variables while the variables of the other disciplines
are fixed. When the consistency constraints are re-
laxed (are open), each subproblem is given freedom to

deviate from the variable values used in other disci-
plines through the use of variable copies. A penalty
function is then added to a subproblem objective to
penalize large differences between the variable copies.

The classification presented in this article differs
from the earlier classifications presented by Balling and
Sobieszczanski-Sobieski (1996) and Alexandrov and
Lewis (1999). The main difference is that we differenti-
ate between formulation structure (nested vs alternat-
ing), whereas the aforementioned classifications do not.
In the notation of Balling and Sobieszczanski-Sobieski
(1996), nested formulations can be represented by
SO[O1‖ . . . ‖OM], where SO is the coordinating master
problem (system optimization problem), and O j is the
optimization subproblem for discipline j. In their nota-
tion, the symbol ‖ represents parallel execution, and []
represents nested execution. Alternating execution can
be represented by the ⇔ symbol introduced by Balling
(2002). For example, a sequence that iterates between
a system optimization followed by the parallel solution
of the disciplinary subproblems can be formulated as
SO ⇔ O1‖ . . . ‖OM.

Finally, we assume that the disciplinary subprob-
lems are responsible for satisfying their own analysis
equations.

It is possible to extend the proposed classification
by including a third characteristic based on the type
of information linking subproblems and master prob-
lems. One can think of optimal solutions (i.e. zeroth
order information), optimal solutions including sensi-
tivity information (i.e. local approximations), or more
global models of the subproblems solutions such as
response surfaces, neural networks, or Kriging models
(i.e. mid-range or global approximations). Instead of
including this characteristic as a discriminating factor,
we choose to view approximation concepts as possible
enhancements of the basic formulations that exchange
only optimal solutions.

3 System optimization problem statement

The general form of a system optimization problem is
given by

min
y,x1,...,xM

f (y, x1, . . . , xM)

s.t. g j(y, x1, . . . , xM) ≤ 0 j = 0, . . . , M

h j(y, x1, . . . , xM) = 0 j = 0, . . . , M (1)

where y is the vector of linking variables, and x j is
the vector of local variables associated with discipline
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j. The overall objective is denoted by f , constraints
g0 and h0 are system-level constraints, and g j and h j,
j = 1, . . . , M are local to subsystem j. M denotes the
number of subsystems, and we assume that a feasible
solution to (1) exists.

Many methods have been proposed for a subclass of
Problem (1) given by

min
y,x1,...,xM

f0(y, r1(y, x1), . . . , rM(y, xM))

s.t. g0(y) ≤ 0
h0(y) = 0
gc

0(y, r1(y, x1), . . . , rM(y, xM)) ≤ 0
hc

0(y, r1(y, x1), . . . , rM(y, xM)) = 0
g j(y, x j) ≤ 0 j = 1, . . . , M

h j(y, x j) = 0 j = 1, . . . , M (2)

where the system-level constraints g0 and h0 only de-
pend on the linking variables y. System-level objective
f0 and coupling constraints gc

0 and hc
0 may depend on

the linking variables y and a number of disciplinary
responses r j that depend only on the linking variables
y and the disciplinary variables x j of the associated dis-
cipline. The disciplinary responses typically represent
generalized properties of disciplines (e.g. total mass
or power consumption), and their number is therefore
assumed to be much smaller than the number of local
variables x j.

The above formulation can be reformulated to a
more convenient form by introducing auxiliary vari-
ables for the disciplinary responses, together with a
number of equality constraints relating these auxiliary
variables to the original functions. For each r j(y, x j),
introduce variables t j and equality constraints hr

j =
t j − r j(y, x j) = 0. With t = [t1, . . . , tM], Problem (2) can
then be written as

min
y,x1,...,xM,t

f0(y, t)

s.t. g0(y) ≤ 0
h0(y) = 0
gc

0(y, t) ≤ 0
hc

0(y, t) = 0
g j(y, x j) ≤ 0 j = 1, . . . , M

h j(y, x j) = 0 j = 1, . . . , M

hr
j = t j − r j(y, x j) = 0 j = 1, . . . , M (3)

If we now redefine the linking variables as y = [y, t],
the system-wide constraints g0(y) = [g0(y), gc

0(y, t)]
and h0(y) = [h0(y), hc

0(y, t))], and the local constraints

h j(y, x j) = [h j(y, x j), hr
0(y, x j, t j), then Problem (3) re-

duces to the convenient form

min
y,x1,...,xM

f0(y)

s.t. g0(y) ≤ 0
h0(y) = 0
g j(y, x j) ≤ 0 j = 1, . . . , M

h j(y, x j) = 0 j = 1, . . . , M (4)

Since this problem covers only a subclass of the prob-
lems of (1), formulations can also be classified accord-
ing to which type of problem they can be applied.
Although we do not explicitly include this in our clas-
sification, we will refer to these problem classes where
appropriate.

4 Nested formulations

Nested methods typically apply to problems of the
form (4), and reformulate it into a bilevel optimization
problem. This bilevel problem consists of a top-level
master problem in y, and M lower-level disciplinary
subproblems in x j that are solved for fixed y. Effec-
tively, the local variables x j are eliminated from the
top-level problem. Since fixing y in the subproblems
separates the local constraint sets, all lower-level prob-
lems can be solved in parallel. The bilevel formulation
is called nested since at each iteration of the master
problem, all lower-level disciplinary design problems
have to be solved.

4.1 Closed design, closed consistency

The first category in this class does not relax any of
the constraints in (4). The resulting bilevel optimization
problem is given by

min
y

f (y)

s.t. g0(y) ≤ 0
h0(y) = 0
y ∈ D j j = 1, . . . , M

where D j = {
y|∃x j s.t. g j(y, x j) ≤ 0, h j(y, x j) = 0

}
(5)

The master problem tries to find a y that minimizes
the system objective function subject to the system
constraints, while y must be in the sets D j, j = 1, . . . , M.
Set D j is defined as those values of y for which discipline
j can find a feasible solution in x j. Determining whether
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such a x j exists (i.e. executing the “where” statement),
requires the solution of a disciplinary optimization
problem that tries to find a x j that satisfies g j(y, x j) ≤ 0
and h j(y, x j) = 0.

The closed design/closed consistency classification
is reflected in the above formulation. All design con-
straints are included as explicit constraints in the sub-
problems, and therefore have to be satisfied for any
subproblem solution. Since the linking variable y set
by the master problem appears as a fixed parameter in
the subproblems, consistency between variable values
is enforced.

Benders’ decomposition method (Benders 1962) and
the method presented in Lootsma and Ragsdell (1988)
are examples of closed design and closed consistency
formulations. The authors are not aware of other, more
recent distributed optimization formulations in this cat-
egory. Likely reasons for the lack of formulations is the
difficulty associated with those values of y for which no
feasible subproblem solution exists.

4.2 Closed design, open consistency

To assure that subproblems always have a feasible
solution, consistency between disciplines can be relaxed
by defining the modified bilevel problem

min
y

f (y)

s.t. g0(y) ≤ 0
h0(y) = 0
c j(y − y∗

j(y)) = 0, j = 1, . . . , M

where y∗
j(y), x∗

j(y) = argmin
y j,x j

φ j(y − y j)

s.t. g j(y j, x j) ≤ 0
h j(y j, x j) = 0 (6)

In this formulation, local copies y j of the linking vari-
ables y are introduced at each disciplinary subproblem.
These copies are added to the set of lower-level vari-
ables to assure that subproblems always have a feasible
solution. The objective of the subproblems is then to
minimize the function φ j(y − y j) that penalizes incon-
sistencies between the master-level y and the lower-
level y j. Such inconsistencies arise for values of y for
which no feasible x j exists. At the master problem, con-
sistency constraints c j(y − y∗

j(y)) = 0 are included to
assure consistency between the linking variable copies
y∗

j computed at the subproblems and the original link-
ing variables y. Since these consistency constraints may
only be satisfied at convergence of the master problem,

the formulation is open with respect to the consistency
constraints. The formulation is closed with respect to
the design constraints since these have to be satisfied at
each subproblem.

Collaborative optimization (Braun 1996; Braun et al.
1997) is an example of the above formulation, and uses
c j = φ j = ‖(y − y∗

j)‖2
2. Another example is the penalty

decomposition formulation of DeMiguel and Murray
(2006) that uses a penalty approach to handle the con-
sistency constraints c j of the master problem. DeMiguel
and Nogales (2008) present an interior point variant
of this method that allows inexact solution of the
subproblems.

The BLISS2000 formulation of Sobieszczanski-
Sobieski et al. (2003) is partly closed and partly open
with respect to the interdisciplinary consistency con-
straints, since local copies are only introduced for a
subset of the linking variables y. In their formulation,
the set of linking variables y is divided into a set of
“global” variables z and a set of analysis input-output
variables yio. Local copies y j are only introduced for yio,
while global variables z are fixed at the subproblems.
BLISS2000 assumes that the freedom introduced by
the copies of yio is sufficient to guarantee that a feasi-
ble subproblem solution always exists; no system-level
constraints are included in the master problem for z.
Furthermore, the BLISS2000 formulation includes a set
of weights variables w in the master problem variables,
and takes c j = yio − y∗

j(yio, z, w), and φ j = wT(y j − yio).
The weights have a fixed value when solving the
subproblems.

4.3 Open design, closed consistency

An alternative approach for achieving subproblem fea-
sibility is to relax the design constraints, which gives

min
y

f (y)

s.t. g0(y) ≤ 0

h0(y) = 0

φ∗
j (y) ≤ 0, j = 1, . . . , M

where φ∗
j (y) = min

x j
{φ j(g j(y, x j), h j(y, x j))} (7)

In this formulation, the design constraints of the dis-
ciplinary subproblems are relaxed through a penalty
function φ j, where φ j is chosen such that φ j ≤ 0 implies
feasibility with respect to the local constraints g j and h j,
and φ j > 0 implies infeasibility. In the master problem,
constraints φ∗

j (y) ≤ 0 are introduced to assure subprob-
lem feasibility. Constraints g j and h j that do not depend
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on y need not be relaxed. Since the subproblems do not
have any freedom in changing the value of the linking
variables y, the formulation is closed with respect to
the consistency constraints. The design constraints are
not explicitly enforced but appear in the subproblem
objectives through the penalty function φ. Hence, the
design constraints may be violated for some values of y,
and are therefore open.

The quasiseparable decomposition (QSD) ap-
proach of Haftka and Watson (2005) follows the
above approach by taking φ j =max(g j(y, x j), |h j(y, x j)|).
The linear decomposition method (OLD) of
Sobieszczanski-Sobieski et al. (1985) uses φ j = ‖g+

j (y,

x j)‖2
2 + ‖h j(y, x j)‖2

2, with g+
j being the component-wise

maximum of g j and 0: g+
j := max(0, g j).

4.4 Open design, open consistency

The remaining approach in this class relaxes both disci-
plinary design constraints and interdisciplinary consis-
tency constraints

min
y

f (y)

s.t. g0(y) ≤ 0
h0(y) = 0
φ∗

j (y) ≤ 0, j = 1, . . . , M

where φ∗
j (y) = min

y j,x j
{φ j(y − y j, g j(y j, x j), h j(y j, x j))}

(8)

where φ j ≤ 0 if subproblem j satisfies its design con-
straints as well as its consistency constraints. Since the
subproblems have the freedom in the linking variables
y j and the design constraints are relaxed, the formula-
tion is open with respect to both the consistency and
the design constraints. Examples of this approach are
given by Balling and Sobieszczanski-Sobieski (1995)
and Balling and Sobieszczanski-Sobieski (1996) that
investigate the use of norms for φ j.

4.5 General characteristics of nested formulations

An advantage of nested formulations is that, under suit-
able assumptions, a local solution to the master prob-
lem can be proven to be a local solution to the original
Problem (4) without convexity assumptions. Examples
of analyses of solution equivalence are given by Haftka
and Watson (2005) and Haftka and Watson (2006) for
their QSD approach, and DeMiguel and Murray (2006)
for their penalty decomposition approaches.

Local convergence to these optimal solutions may
however be complicated by the nondifferentiability or
ill-posedness of the master problem constraints. The

main cause for nondifferentiability is the typically non-
smooth dependence of the subproblem solutions y∗

j or
φ∗

j on the master problem variables y due to constraint
activity changes at the disciplinary subproblems (see
Vanderplaats and Yoshida 1985; Lootsma and Ragsdell
1988). Since optimal solutions often lie on constraint
boundaries, these non-smooth transitions typically
occur at optimal solutions to the master problem. So-
lutions located at such a point of nondifferentiabil-
ity violate the regularity condition, and therefore the
Karush-Kuhn-Tucker (KKT) conditions for optimality
do not hold. In general, the KKT conditions do not
hold at master problem solutions if the master prob-
lem constraints depend linearly on optimal subprob-
lem solutions y∗

j or φ∗
j , or include them in l1 or l∞

(i.e. maximum) norms. Examples of methods in this
category are collaborative optimization (more specifi-
cally, the CO1 formulation that uses l1 norms, Braun
1996), quasiseparable decomposition (l∞, Haftka and
Watson 2005), and BLISS2000 (linear dependence on
y∗

j , Sobieszczanski-Sobieski et al. 2003).
Alternatively, any approach that uses l2 norms pro-

duces differentiable constraints, but a master problem
whose constraint gradients vanish at feasible designs.
Hence, the master problem is ill-posed and, again, the
KKT conditions do not hold at its solutions. Existing
methods in this category are collaborative optimiza-
tion (the CO2 formulation, Braun 1996), and optimiza-
tion by linear decomposition (Sobieszczanski-Sobieski
et al. 1985).

For an extensive treatment of the collaborative op-
timization formulation in this context, the reader is
referred to the studies of DeMiguel and Murray (2000),
Alexandrov and Lewis (2002), and Lin (2004). A dis-
cussion on the use of different norms in the master
problem constraints and their properties is given by
Balling and Sobieszczanski-Sobieski (1995).

The penalty decomposition approach of DeMiguel
and Murray (2006) is, to the best of our knowledge, the
only existing formulation that explicitly tackles the non-
differentiability and ill-posedness of the master prob-
lem. In their approach, the consistency constraints of
the master problem are relaxed with a penalty function,
and fast local convergence to master problem solutions
has been proven.

A second source of difficulties may occur when the
number of auxiliary equality constraints c introduced
at the master problem is larger than the number of
master problem variables. Especially algorithms that
rely on sequential approximation of the master prob-
lem constraints may fail to find a feasible solution to
the approximated problem since the number of equality
constraints is larger than the number of variables.



Methods for distributed system optimization 509

Convergence speed of all nested formulations de-
pends on two factors: the cost of solving the discipli-
nary subproblems, and the cost for restoring coupling
by solving the master problem. In general, distributed
optimization problems are intended for problems with
a narrow coupling bandwidth, i.e. the number of linking
variables y is small compared to the number of local
variables x j. For these problems, the cost of restoring
coupling is expected to be small, and the gains via
parallelization of subproblem solutions are expected to
pay off (see, e.g., Sobieszczanski-Sobieski and Haftka
1997).

The use of efficient gradient-based algorithms for
solving the master problem may be complicated by the
aforementioned complications associated with nondif-
ferentiability and ill-posedness of the master problem.
To overcome these difficulties, less efficient algorithms
that do not require (constraint) gradients have to be
used. These typically inefficient algorithms may require
many subproblem optimizations to obtain accurate
solutions.

To reduce the number of computationally inten-
sive subproblem optimizations, approximation con-
cepts have been introduced for various formulations.
The general idea is to have the master problem so-
lution algorithms operate on approximations of the
subproblem solutions, rather than explicitly solving
the subproblems each time their solution is required.
The search at the master problem is conducted at the
approximate level, which is expected to reduce the
number of detailed subproblem optimizations. Another
motivation of using approximations is that optimal dis-
ciplinary designs can be computed beforehand, after
which the approximations can be used in different
master problems without having to repeat the discipli-
nary optimizations, as demonstrated in Kaufman et al.
(1996) and Liu et al. (2004).

Two types of approximations have appeared in com-
bination with distributed optimization formulations:
single-point and multi-point approximations. Single-
point methods use post-optimal sensitivity information
to construct linear approximations of subproblem op-
timal solutions. It should be noted that the underlying
gradients may still be non-smooth, and local approxi-
mation techniques may experience difficulties accord-
ingly. Examples of approaches that use single-point
approximations are OLD (Sobieszczanski-Sobieski
et al. 1985) and the sequential linearization approach
of Vanderplaats et al. (1990).

Multi-point methods typically construct smooth ap-
proximations of optimal subproblem solutions by fitting
a model to solutions computed for a range of master
problem variable values. These models can for example

be regression models, neural networks, or Kriging mod-
els. The smoothness of these approximations allows
efficient gradient-based algorithms to be used for solv-
ing the master problem. However, the approximations
introduce inconsistencies between the actual subprob-
lem solutions and their models used by the master
problem that has to be controlled. What is more, con-
structing an accurate, high-dimensional approximation
to a subproblem optimal solution is highly non-trivial
for most engineering problems. Multi-point approxi-
mations have been proposed for CO by Sobieski and
Kroo (2000) and Zadeh et al. (2008), for BLISS2000 by
Sobieszczanski-Sobieski et al. (2003), and for QSD by
Haftka and Watson (2005) and Liu et al. (2004).

4.6 Nested formulations in other application fields

Nested formulations for distributed optimization have
appeared in other application fields. In general, nested
formulations are referred to as bilevel or multilevel
programming problems. In operations research (OR),
examples are problems dealing with toll setting and
congestion management in traffic networks, ticket pric-
ing and seat allocation in the airline industry, and game
theory. Other bilevel programming applications are
chemical or physical problems involving equilibria con-
ditions. Relatively recent examples of the use of bilevel
programming theory in distributed engineering design
are given by Lewis and Mistree (1998), Chanron et al.
(2005). Examples of overviews of bilevel programming
theory and methods from the nonlinear programming
community are given by Vicente and Calamai (1994),
Migdalas et al. (1997), Colson et al. (2007). In general,
bilevel programming problems arise from opposing ob-
jectives between the master problem (maximize profit,
often the objective of suppliers) and the subproblems
(minimize cost, local objective of consumers).

5 Alternating formulations

In this section, we turn our attention to the second class
of formulations: alternating methods. Where nested
formulations have subproblem optimizations within the
constraints of the master problem, alternating formula-
tions iterate between solving the solution master prob-
lem and the solution of the subproblems.

5.1 Closed design, closed consistency

This first alternating approach defines a master prob-
lem that solves Problem (1) for the linking variables
y, and M subproblems that each solve for one set of
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disciplinary variables x j. The master problem in y is
given by

min
y

f (y, x1, . . . , xM)

s.t. g j(y, x1, . . . , xM) ≤ 0 j = 0, . . . , M
h j(y, x1, . . . , xM) = 0 j = 0, . . . , M (9)

The remaining variables x1, . . . , xM are fixed during
optimization of the master problem. Since the objective
and constraint functions all depend on y, they have to
be included in the master problem.

Disciplinary subproblem j aims to find x j that min-
imizes f while satisfying all disciplinary constraints gi

and hi, i = 0, . . . , M and fixing y and the xi|i 	= j of the
remaining subproblems

min
x j

f (y, x1, . . . , xM)

s.t. gi(y, x1, . . . , xM) ≤ 0 i = 0, . . . , M
hi(y, x1, . . . , xM) = 0 i = 0, . . . , M (10)

Again, all functions that depend on x j and have to be
included in the subproblem.

The above formulation has closed design constraints,
since all design constraints are explicitly included in
the subproblems. Subproblems do not have freedom
to search in the space of the design variables of other
subproblems, and therefore the formulation is closed
with respect to the consistency constraints.

A drawback of the above formulation is that, al-
though subproblems are formulated in disciplinary sub-
sets of variables, the constraint models of every other
discipline have to be considered when solving the dis-
ciplinary subproblems. Hence, the above formulation
does not provide the degree of disciplinary auton-
omy desired for engineering design. A similar difficulty
occurs even for problems of the form (4) in which
constraints only depend on y and a single subset x j.
The disciplinary subproblems then only include their
disciplinary constraints. However, the master problem
still has to include all disciplinary constraints since they
all depend on y. This unattractive feature may explain
why multi-level formulations in this category are rare.

An additional difficulty of the above formulation
is the non-separability of the constraints sets; con-
straints of each subproblem may depend on variables
of other subproblems as well. Local convergence proofs
for alternating optimization approaches as found in
Bertsekas and Tsitsiklis (1989), Grippo and Sciandrone
(2000), and Bezdek and Hathaway (2002) assume that
the constraints of a subproblem are separable such
that they do not depend on the variables of other
subproblems. In other words, theoretical convergence

proofs require that subproblem constraint sets are sep-
arable with respect to the subproblems. Note that the
objective function need not be separable. The results of
Pan and Diaz (1990) confirm these findings by showing
that the above formulation gets stuck in non-optimal
points even for a two-dimensional linear programming
problem.

An approach that has been proven to be convergent
for convex problems is hierarchical overlapping coordi-
nation (HOC, Park et al. 2001). The HOC convergence
analysis assumes that (at least) two problem partitions
with disjoint linking variable sets y are available. In
other words, a linking variable in one partition cannot
be a linking variable in the other. This condition ap-
pears impractical in engineering design where a par-
tition is typically static, and linking variables emerge
naturally when partitioning the system.

5.2 Closed design, open consistency

Penalty relaxation of non-separable constraints is an
often used technique to arrive at subproblems with
separable constraints. Approaches that relax interdisci-
plinary consistency through penalty functions typically
apply to a subclass of Problem (1) in which the disci-
plinary constraints g j and h j, j = 1, . . . , M depend only
on the linking variables y, and the design variables x j

of one discipline, and system-level constraints g0 and
h0 depend only on the linking variables y. For these
problems, constraints are linked through the linking
variables y. These problems are similar to Problem (4),
but allow the objective function to also depend on the
local variables.

To remove the coupling of constraints, local copies
y j of the linking variables y are introduced at each sub-
problem. Non-separable consistency constraints c j =
y − y j = 0, j = 1, . . . , M are included to force the
copies to be equal to the originals. These consistency
constraints are subsequently relaxed using a penalty
function φ j resulting in a master problem given by

min
y

f (y, x1, . . . , xM) +
M∑

j=1

φ j(y − y j)

s.t. g0(y) ≤ 0
h0(y) = 0 (11)

and M disciplinary subproblems given by

min
y j,x j

f (y, x1, . . . , xM) + φ j(y − y j)

s.t. g j(y j, x j) ≤ 0
h j(y j, x j) = 0 (12)
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The above formulation is open with respect to the
consistency constraints since y and y j may take different
values during coordination. Disciplinary constraints g j

and h j are explicitly enforced, and the formulation is
therefore closed with respect to the design constraints.

An example of the above formulation is the
augmented Lagrangian decomposition method for
quasiseparable problems presented by the authors
(Tosserams et al. 2007). This formulation uses an
augmented Lagrangian penalty function for φ j, and
assumes a separable objective function that can be writ-
ten as f = ∑M

j=1 f j(y j, x j) such that each subproblem
minimizes its own component f j. Since the formulation
also assumes that g0 and h0 are not present, the master
problem reduces to the minimization of the convex
quadratic augmented Lagrangian penalty function to
which an analytical solution is available. Tosserams
et al. (2008b) show that a similar approach also applies
to problems with block-separable system constraints
g0 and h0; the master problem becomes a quadratic
programming problem.

Enhanced Collaborative Optimization (ECO, Roth
and Kroo 2008) is a formulation similar to the
augmented Lagrangian method for quasiseparable
problems of Tosserams et al. (2007), except that the
subproblem for discipline j includes linearized con-
straint models of the remaining disciplines i 	= j. Fur-
thermore, ECO uses a quadratic penalty function
for φ j.

The analytical target cascading (ATC) formulation
is another example in this category, but now formulated
for an arbitrary number of levels (Michelena et al. 1999;
Kim 2001; Kokkolaras et al. 2002; Kim et al. 2003;
Michelena et al. 2003). Various penalty functions φ j

have been proposed for ATC (see Michelena et al.
2003; Lassiter et al. 2005; Kim et al. 2006; Tosserams
et al. 2006), and a comparison can be found in Li et al.
(2008).

5.3 Open design, closed consistency

An alternative formulation with separable subproblem
constraint sets does not relax consistency, but relaxes
the design constraints. This formulation can be applied
to the general system optimization problem (1). The
master problem is given by

min
y

f (y, x1, . . . , xM)

+
M∑

j=0

φ j(g j(y, x1, . . . , xM), h j(y, x1, . . . , xM)) (13)

and the M disciplinary subproblems are given by

min
x j

f (y, x1, . . . , xM)

+
M∑

i=0

φi(gi(y, x1, . . . , xM), hi(y, x1, . . . , xM)) (14)

In this formulation, all design constraints may be vi-
olated, and are therefore open. Consistency is closed
since a subproblem does not have freedom to search in
the variable space of other subproblems.

An unattractive feature of the above formulation
is that any convergence proof requires that each sub-
problem has to include the constraint functions of all
other subproblems as well. This conflicts with the main
goal of distributed optimization methods that aim to
establish a degree of disciplinary autonomy between
the subproblems that does not require the inclusion
of models from other subproblems. Note that even if
we restrict ourselves to problems of the form (4), then
the master problem still includes the constraint models
of all subproblems. Each disciplinary subproblem how-
ever only includes its own constraint functions.

A popular approach to avoid including all constraint
models in each subproblem is to relax some constraints
completely. This way, some constraints can be re-
moved from the master problem or the subproblem.
For example, setting φ j = 0 for j = 1, . . . , M in master
problem (13) removes the penalties on subproblem
constraints from its formulation. Similarly, subprob-
lems (14) include only their disciplinary constraints g j

and h j by setting the penalties φi, i 	= j for the remaining
constraints set equal to zero. Moreover, the discipli-
nary constraints g j and h j are included as explicit con-
straints in subproblem j, thus without any relaxation.
This combination results in a mixed formulation with
subproblems that have some design constraints relaxed
(completely removed, actually), and some enforced
explicitly.

Multidisciplinary design optimization with indepen-
dent subspaces (MDOIS) of Shin and Park (2005) is an
example of the above mixed formulation. The master
problem in their formulation only performs a so-called
system analysis: it is responsible for finding the values
of the interdisciplinary coupling variables y such that
consistency between the analysis input and output vari-
ables of all disciplines is enforced. A master problem
that only performs a system analysis is obtained when
f does not depend on y and thus drops out of (9), g0 is
not present, and h0 only includes the interdisciplinary
analysis coupling constraints.
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Bilevel integrated system synthesis (BLISS,
Sobieszczanski-Sobieski et al. 2000) is another exam-
ple. Their approach assumes that the linking variables y
include a set of analysis input-output variables yio, and
a set of global design variables z. System constraints
g0 are not present, and the constraints h0 only include
interdisciplinary analysis coupling constraints, similar
to MDOIS. The master problem in y is split into two
separate problems. First, a system analysis problem
searches for values of yio that satisfy the system analysis
equations h0 = 0. Second, a system optimization
problem is defined in z to minimize the objective f
while fixing all local variables x j. No constraints are
included in this system optimization problem. Instead
of using the actual objective function f , BLISS includes
a linear approximation f = f̂ (z, x1, . . . , xM) of how
the objective f depends on the remaining variables
z, x1, . . . , xM in (13) and (14). The linear approximation
is constructed using the global sensitivity equations
(GSE, Sobieszczanski-Sobieski 1990), and post-optimal
sensitivities of disciplinary subproblem solutions
(Vanderplaats and Yoshida 1985).

A third example is the concurrent subspace op-
timization (CSSO) formulation of Sobieszczanski-
Sobieski (1988) that relaxes only a subset of design
constraints. The formulation combines design con-
straint relaxation at the system level with enforcing
(an approximation of) the design constraints at the
disciplinary level. Their approach also uses the master
problem for performing a system analysis to determine
the values of the linking variables y, similar to MDOIS
and BLISS. Subproblem j however does not relax the
design constraints gi and hi of other subproblems i 	=
j. Since inclusion of detailed models of all disciplines
in a subproblem is undesirable, CSSO includes linear
approximations of a cumulative constraint violation
measure for subproblems i 	= j in the formulation of
subproblem j instead. A variant of CSSO that does not
use a system analysis master problem but considers only
disciplinary subproblems has appeared in Shankar et al.
(1993). Another modification to CSSO can be found in
Bloebaum (1992).

5.4 Open design, open consistency

The final category relaxes both design and consistency
constraints. Similar to the closed design, open consis-
tency formulation, copies y j of the linking variables
are introduced at each subproblem. Interdisciplinary
consistency constraints c j = y − y j are relaxed using a
penalty function φ j. The design constraints g j and h j

are relaxed with a penalty function θ j. The resulting
problem formulation is given by a master problem in y

min
y

f (y, x1, . . . , xM) +
M∑

j=1

φ j(y − y j)

+ θ0(g0(y, x1, . . . , xM), h0(y, x1, . . . , xM)) (15)

and the M disciplinary subproblems are given by

min
y j,x j

f (y, x1, . . . , xM) + φ j(y − y j)

+ θ0(g0(y, x1, . . . , xM), h0(y, x1, . . . , xM))

+
M∑

i=1

θi(gi(y j, x1, . . . , xM), hi(y j, x1, . . . , xM)) (16)

The formulation is open both for the design constraints
and the consistency constraints since all constraints are
relaxed, and each subproblem includes a separate copy
y j for the linking variables.

For the general problem of (1), the above formula-
tion does not provide disciplinary autonomy since the
local constraints g j and h j appear in all subproblems.
For partially separable problems of the form (4) how-
ever, the formulation does yield a degree of design
autonomy at the master problem and subproblems.
For these problems, the penalty θ j of subproblem j
does not appear in any other subproblem. Although
such an approach resembles the open design, closed
consistency formulation of Section 5.3, the open design,
open consistency master problem does not include the
constraint functions of the disciplinary subproblems.
The formulation of Blouin et al. (2005) for such par-
tially separable problems uses the explicit relaxation of
design constraints to improve the convexity properties
of the subproblems. Their formulation uses an ordinary
Lagrangian function for φ j to formulate subproblems
that can be solved independently. To improve con-
vergence characteristics for non-convex problems, an
augmented Lagrangian penalty is used for θ j to relax
the design constraints.

Another example of the above formulation is the
augmented Lagrangian coordination method presented
by Tosserams et al. (2008a), which relaxes only a subset
of the design constraints. Their formulation applies to
problems that have system-level constraints g0 and h0

that may depend on all design variables, and discipli-
nary constraints g j and h j, j = 1, . . . , M that depend
on the linking variables y j and one set of local vari-
ables x j. Consistency constraints c j are relaxed using an
augmented Lagrangian penalty function. The system-
level design constraints g0 and h0 are relaxed using an
augmented Lagrangian penalty as well, resulting in an
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approach that is open with respect to constraints g0 and
h0, and closed with respect to g j and h j, j = 1, . . . , M.

5.5 General characteristics of alternating formulations

The main advantage of alternating formulation is
that the associated optimization problems are typically
smooth and well-posed. Where nested formulations
explicitly include the optimal value functions in the
constraints, alternating formulations include the opti-
mal solutions as fixed parameters in the subproblems.
Hence, the smoothness properties of subproblems
are similar to those of the original non-decomposed
problem. Unlike many nested methods, alternating
functions do not introduce any additional sources of
nonsmoothness.

The major drawback of alternating methods is that
proving convergence to a local system solution requires
stringent assumptions on the problem properties. Exist-
ing convergence proofs for alternating formulations are
typically limited to continuous problems with a smooth
objective, and convex constraint sets that are separable
with respect to the disciplines (see, e.g., Michelena et al.
2003; Tosserams et al. 2008a; Li et al. 2008). Although
separability can often be achieved by requiring that
problems are of the form (4), many practical problems
have non-convex constraint sets by nature.

These strict assumptions are also observed from
the nonlinear programming literature. In this field,
the alternating nature of the optimization process
is also referred to as block coordinate descent
(Bertsekas 2003), alternating minimization (Grippo
and Sciandrone 2000; Bezdek and Hathaway 2002),
or block-nonlinear Gauss-Seidel or Jacobi methods
(Bertsekas and Tsitsiklis 1989). Most of these meth-
ods solve subproblems sequentially in a Gauss-Seidel
type scheme that updates the optimal solutions as soon
as they become available. The block-nonlinear Jacobi
implementation solves all subproblems in parallel after
which all optimal solutions are exchanged. Schemes

that combine sequential and parallel solutions of sub-
problems are also possible. Figure 1 illustrates these
three approaches. The assumptions for local conver-
gence of parallel schemes are typically more strict than
those for sequential schemes (Bertsekas and Tsitsiklis
1989), but in both cases problems are required to have
convex and separable constraint sets.

Notable exceptions to the strict requirements are the
formulation for non-convex problems with separable
constraint sets proposed by Blouin et al. (2005), and
the parallel variable distribution techniques (PVD) for
non-separable convex, and separable non-convex prob-
lems proposed in, e.g., Ferris and Mangasarian (1994),
Sagastizábal and Solodov (2002). The method of Blouin
et al. (2005) uses the separable Lagrangian function to
relax the consistency constraints, and therewith arrives
at uncoupled subproblems that can be solved in paral-
lel. The disciplinary constraints are then relaxed with
an augmented Lagrangian penalty to close the duality
gap that may exist for non-convex problems. Since
no iterations of the Gauss-Seidel or Jacobi type are
required, this approach does not require the convexity
assumptions of traditional alternating schemes from the
nonlinear programming literature. An external mecha-
nism is however necessary to select the penalty parame-
ters of the relaxation functions.

The key ingredient of parallel variable distribution
(PVD) methods is that each of the subproblems is
given freedom to change the variables of the remaining
subproblems along a certain direction (e.g., a feasi-
ble descent or Newton direction), thereby effectively
relaxing the consistency between subproblems. After
the parallel solution of all subproblems, consistency
is restored in a so-called synchronization phase which
requires the integration of all constraint models. Note
that if the PVD directions are set equal to the all-zero
vector, the problems (9) and (10) are obtained, and the
synchronization step can be omitted. For this all-zero
direction however, convergence can only be guaranteed
when constraint sets are convex and separable with

Fig. 1 Alternating optimization schemes: parallel Jacobi that exchanges subproblem solutions at the end of an iteration (left),
sequential Gauss-Seidel that exchanges solutions as soon as they become available (center), and hybrid (right)
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respect to the subproblems (Sagastizábal and Solodov
2002), which corroborates the stringent assumptions for
convergence given earlier in this section.

Computational efficiency of alternating methods is
determined by the convergence speed of the alternating
minimization schemes (typically in an inner loop), to-
gether with the efficiency of any penalty update scheme
performed in an additional outer loop. For the inner
loop, a sequential scheme is usually more efficient
that a parallel scheme since subproblem solutions are
exchanged as soon as they become available. Further-
more, sequential schemes are known to be more sta-
ble than parallel approaches (Bertsekas and Tsitsiklis
1989). An advantage that can improve the efficiency of
parallel schemes is that subproblems can be solved in
parallel.

Similar to nested formulations, approximation con-
cepts can be used to speed up the inner loop. A first
option is to include gradient information on how the
optimal design of one subproblem depends on the
design of the other subproblems. With this additional
information, a Newton-like fixed point algorithm can
be formulated. Gradient information may be obtained
through techniques such as post-optimal sensitivities,
the global sensitivity equations, or from the itera-
tion history. In the context of multidisciplinary de-
sign optimization, gradient information has been used
for reducing the cost of performing a system analy-
sis (see, e.g., Haftka et al. 1992). A potential dif-
ficulty for a Newton-like approach for alternating
formulations is that subproblem solution gradients can
be discontinuous due to constraint activity changes
and multi-modality. Methods that incorporate gradient
information include MDOIS (Shin and Park 2005),
BLISS (Sobieszczanski-Sobieski et al. 2000), and CSSO
(Sobieszczanski-Sobieski 1988).

A second approach is to construct multi-point ap-
proximations using techniques such as linear regres-
sion, neural networks, or Kriging. The two drawbacks
mentioned at the end of Section 4.5 for the nested ap-
proaches also hold for alternating formulations. First,
multi-point approximations may introduce inconsis-
tencies between the actual subproblem solutions and
their models used by the master problem that has to
be controlled. Second, constructing an accurate, high-
dimensional approximation to a subproblem optimal
solution is non-trivial for many engineering problems.
Example of the use of multi-point approximations
in alternating methods are given by Kodiyalam and
Sobieszczanski-Sobieski (2000) for the BLISS method,
and for CSSO by Renaud and Gabrielle (1994).

The second factor in efficiency are the outer loop
updates required for the penalty relaxation approach.

Although exact penalty methods that do not require
updating exist (see, e.g., Bertsekas 2003), they are
typically non-smooth, which violates the smoothness
assumptions for the alternating inner loop, or require
specific gradient information that is difficult to compute
for distributed engineering problems. Efficiency im-
provements may be gained by using penalty approaches
that allow the inner loop to be terminated early, as
found in e.g. Bertsekas and Tsitsiklis (1989), Bertsekas
(2003). Examples of their application in alternating
formulations can be found in Tosserams et al. (2006),
Li et al. (2008) for ATC, and in Tosserams et al. (2007,
2008a) for augmented Lagrangian coordination.

5.6 Alternating formulations in other application fields

Alternating formulations are commonplace techniques
in optimization, and example applications can be
found in pattern recognition problems (Bezdek and
Hathaway 2002), power unit commitment problems
(Beltran and Heredia 2002), and multi-stage stochas-
tic programming (Ruszczynski 1995). The theoreti-
cal properties of alternating optimization methods are
well understood, and analyses from the nonlinear pro-
gramming community can be found in (Bertsekas and
Tsitsiklis 1989), Bezdek and Hathaway (2002), Grippo
and Sciandrone (2000), and Bertsekas (2003). The pro-
gressive hedging algorithm of Mulvey and Vladimirou
(1991) is an approach similar to the closed design,
open consistency alternating formulation presented by
Tosserams et al. (2007), and an overview of decomposi-
tion methods using alternating optimization in convex
stochastic programming can be found in Ruszczynski
(1997). In general, alternating methods are employed
when the individual subproblems are much easier to
solve than the integrated problem that considers all
variables simultaneously, a motivation that we recog-
nize from the engineering literature.

6 Summarizing remarks

A classification based on formulation structure of dis-
tributed optimization formulations for engineering de-
sign is presented. Two classes are identified: nested
formulations and alternating formulations. Nested for-
mulations are bilevel programming problems where
subproblem solutions are nested in the functions of a
coordinating master problem. Alternating formulations
iterate between solving a master problem and disci-
plinary subproblems in a Gauss-Seidel or Jacobi type
scheme. A subdivision in each class is made based on
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Table 1 Classification of several existing coordination methods

Constraint relaxation Formulation structure
Design Consistency Nested Alternating

Closed Closed Benders’ decomposition (Benders 1962) Hierarchical overlapping coordination (Park et al. 2001)
Lootsma and Ragsdell (1988)

Closed Open Collaborative optimization (Braun et al. 1997) Analytical target cascading (Kim 2001)
BLISS2000 (Sobieszczanski-Sobieski et al. 2003) Augmented Lagrangian decomposition

(Tosserams et al. 2007)
Enhanced collaborative optimization

(Roth and Kroo 2008)
Open Closed Optimization by linear decomposition CSSO (Sobieszczanski-Sobieski 1988)

(Sobieszczanski-Sobieski et al. 1985) BLISS (Sobieszczanski-Sobieski et al. 2000)
Quasiseparable decomposition MDOIS (Shin and Park 2005)

(Haftka and Watson 2005)
Open Open Balling and Sobieszczanski-Sobieski (1995) Blouin et al. (2005)

Balling and Sobieszczanski-Sobieski (1996) Augmented Lagrangian coordination
(Tosserams et al. 2008a)

the relaxation of disciplinary constraints and consis-
tency constraints. Many existing distributed optimiza-
tion formulations for engineering design are classified
according to the criteria, a summary of which is given
in Table 1.

For each formulation structure, common character-
istics are identified that play a key role in the conver-
gence properties. For example, the KKT conditions do
not hold at master problem solutions for many nested
formulations. Consequently, gradient-based algorithms
may experience difficulties when solving these master
problems. For alternating formulations, existing local
convergence proofs are available, but require strict
assumptions such as convexity and separability of sub-
problem constraint sets. These common characteristics
can be used as a starting point for the detailed theoret-
ical analysis of existing formulations, or as inspiration
for developing new ones.

The classification assumes that optimization sub-
problems are solved to sufficient accuracy. Recent
efforts have also considered inexact subproblem so-
lutions. For example, DeMiguel and Nogales (2008)
perform only a single Newton step at each subproblem,
and Sagastizábal and Solodov (2002) solve quadratic
approximations to the subproblems. Although these
methods are developed from a nested or alternating
formulation as a starting point, their implementations
may become very alike, or even identical.

Our classification focusses on the common theoret-
ical properties of formulations. In practice, computa-
tional efficiency and robustness are other important
factors in determining the applicability of a formulation
(Alexandrov and Lewis 1999). The classification may
be used as a starting point for a numerical comparison
study of the various formulations. For (discussions on)

numerical comparisons, the reader is referred to Balling
and Sobieszczanski-Sobieski (1995, 1996), Balling and
Wilkinson (1997), Alexandrov and Lewis (1999), Perez
et al. (2004), Yi et al. (2008), and the references therein.
Since specifying various problem decompositions for
a number of coordination approaches is tedious and
error prone, a flexible and user-friendly approach is
desired for specification of problem partitions, and
implementation of coordination methods. The works
of Alexandrov and Lewis (2004a, b), Etman et al.
(2005), Tedford and Martins (2006), de Wit and van
Keulen (2008) are efforts in this direction.
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