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We consider the near-horizon geometries of extremal, rotating black hole solutions

of the vacuum Einstein equations, including a negative cosmological constant, in

four and five dimensions. We assume the existence of one rotational symmetry in

four dimensions �4D�, two commuting rotational symmetries in five dimensions

�5D�, and in both cases nontoroidal horizon topology. In 4D we determine the most

general near-horizon geometry of such a black hole and prove it is the same as the

near-horizon limit of the extremal Kerr-AdS4 black hole. In 5D, without a cosmo-

logical constant, we determine all possible near-horizon geometries of such black

holes. We prove that the only possibilities are one family with a topologically S1

�S2 horizon and two distinct families with topologically S3 horizons. The S1

�S2 family contains the near-horizon limit of the boosted extremal Kerr string and

the extremal vacuum black ring. The first topologically spherical case is identical to

the near-horizon limit of two different black hole solutions: the extremal Myers–

Perry black hole and the slowly rotating extremal Kaluza–Klein �KK� black hole.

The second topologically spherical case contains the near-horizon limit of the fast

rotating extremal KK black hole. Finally, in 5D with a negative cosmological

constant, we reduce the problem to solving a sixth-order nonlinear ordinary differ-

ential equation of one function. This allows us to recover the near-horizon limit of

the known, topologically S3, extremal rotating AdS5 black hole. Further, we con-

struct an approximate solution corresponding to the near-horizon geometry of a

small, extremal AdS5 black ring. © 2009 American Institute of Physics.

�DOI: 10.1063/1.3190480�

I. INTRODUCTION

Asymptotically flat and anti-de Sitter �AdS� black hole solutions in four and five dimensions

are of interest in the context of string theory and AdS/CFT, respectively, as they provide an

effective description of the strong coupling dynamics in certain sectors of the dual conformal field

theories. Focusing on supersymmetric states often allows one to evade the problem of performing

computations at strong coupling, as such states tend to be protected. This provides the opportunity

to reproduce the Hawking–Bekenstein entropy of the black hole in question from a microstate

counting in the weakly coupled field theory.

In recent years, great progress has been made in the construction of supersymmetric black

holes both in ungauged supergravity
1–9

and gauged supergravity,
10–16

largely due to systematic

classification techniques available for BPS solutions.
1,11,17

. As is well known, supersymmetric

black holes are necessarily extremal. Curiously, recent work on the attractor mechanism �see Ref.

18 for a comprehensive review� has revealed that, in fact, it may be extremality rather than

a�
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supersymmetry which is responsible for the success of the entropy counting of black holes in flat

space.
19,20

In the case of extremal but nonsupersymmetric black holes, the attractor mechanism

was established upon the assumption that the near-horizon geometry of an extremal black hole

must have an SO�2,1� symmetry.
21

This assertion was proven in four and five dimensions in Ref.

22, in a large class of theories, under the assumption that the black hole is axisymmetric in 4D and

has two commuting rotational Killing vector fields in 5D �see also Ref. 23 for generalizations for

D�5�.24
Indeed, there has been recent success in counting the microstates of extremal, nonsuper-

symmetric black holes in four and five dimensions.
25–29

The classification problem of stationary black holes in higher dimensions is also of intrinsic

interest.
30

From this point of view supersymmetry is merely a technical tool allowing one to study

the classification problem in a more constrained setting. Similarly, extremality may also be used as

a simplifying assumption. This is because any extremal black hole admits a near-horizon limit, a

geometry in its own right which solves the same field equations.
2,22

The advantage of this is that

determining and thus classifying near-horizon geometries is a technically simpler problem: it

becomes a D−2 dimensional problem of Riemannian geometry on a compact space �i.e., spatial

sections of the horizon�. Given a classification of near-horizon geometries in some theory, one can

deduce certain information about what black hole solutions are allowed. In particular, it can allow

one to rule out the existence of extremal black holes with a certain horizon topology. Furthermore,

this analysis determines not only the possible horizon topologies but also determines their geom-

etry explicitly. The one disadvantage of this method is that the existence of a near-horizon geom-

etry does not guarantee the existence of an extremal black hole solution with that near-horizon

geometry.

Previously, certain classifications of near-horizon geometries have been achieved in a variety

of ungauged supergravities,
2,31–33

where the combined use of supersymmetry and the near-horizon

limit is particularly fruitful. The main success of this is it allowed the proof of a uniqueness

theorem for asymptotically flat, topologically spherical, superysymmetric black holes in five di-

mensional ungauged supergravity: the only solution turns out to be BMPV.
2,31

In the gauged case

the near-horizon equations are more complicated and a classification of near-horizon geometries

was achieved using an extra assumption: the black hole admits two commuting rotational

symmetries.
15,16

This ruled out the existence of supersymmetric AdS5 black rings with these

symmetries.

In this work, we consider the classification of near-horizon geometries in a setting without

supersymmetry in four and five dimensions. For simplicity we will consider near-horizon geom-

etries of extremal black hole solutions to Einstein’s vacuum equations and allow for a negative

cosmological constant. As a result, we can consider asymptotically flat �and Kaluza–Klein �KK� in

5D� and AdS black holes, respectively.
34

In the pure vacuum in 5D there are a number of known

examples of extremal black holes and their associated near-horizon geometries: the extremal

boosted Kerr string, the extremal Myers–Perry black hole,
35

the extremal black ring,
36

and two

different extremal limits of the KK black hole
37,38 �often termed “slow” and “fast” rotating�.39

In

contrast, in the presence of a negative cosmological constant only one example is known: the

extremal limit of the topologically spherical, rotating AdS5 black hole found in Ref. 40. Indeed, an

interesting open question concerns the existence of asymptotically AdS5 black rings. No such

solutions are currently known. Furthermore, the systematic solution generating techniques avail-

able for vacuum gravity,
41,42

are not available in the presence of a cosmological constant. Thus it

appears that a near-horizon analysis is one of the few systematic techniques available to obtain

information on the existence of AdS5 black rings �at least in the extremal sector�.
We use the assumption of axisymmetry in 4D and two commuting rotational symmetries in

5D, which means the near-horizon geometry is cohomogeneity-1 in both cases; therefore every-

thing reduces to ordinary differential equations �ODEs�. Our analysis will employ both local and

global considerations �i.e., compactness of spatial sections of the horizon�. The global arguments

allow one to avoid solving the differential equations generally, thus simplifying the problem. The

main results of this paper may now be stated.

Theorem 1: Consider a four-dimensional nonstatic and axisymmetric near-horizon geometry,
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with a compact horizon section of nontoroidal topology, satisfying R��=�g�� for ��0. If �
=0 then is must be the near-horizon limit of the extremal Kerr black hole. If ��0 it must be the

near-horizon limit of the extremal Kerr-AdS4 black hole.

Remarks:

• For �=0 the same result has been proven in Ref. 43, and again in the context of isolated

horizons in Ref. 44. Their analysis included a Maxwell field �in which case the result is the

near-horizon geometry of extremal Kerr–Newman�.45

• Static near-horizon geometries of this form have been considered in Ref. 47. For �=0 it was

shown that the near-horizon geometry is a direct product of two-dimensional �2D�
Minkowski space and a flat T2. However, in the context of black holes this may be excluded

by the horizon topology theorems.
48,49

For ��0 it was shown that it is a direct product of

AdS2 and a compact Einstein space of negative curvature: this is incompatible with our

assumption of axisymmetry.

• Topological censorship
49

implies that for asymptotically flat and globally AdS4 black holes

the horizon section cannot have toroidal topology. Thus our result implies that the near-

horizon geometry of any asymptotically flat �or globally AdS4�, Ricci flat �or negative cur-

vature Einstein space�, stationary and axisymmetric extremal black hole is given by the

near-horizon limit of Kerr �or Kerr-AdS4�.
• Note that for four dimensional nonextremal rotating black holes, axisymmetry has been

proven to be a consequence of stationarity �even in AdS �Ref. 54��. Therefore, it is reasonable

to expect the same to occur for extremal black holes and thus their near-horizon limits.
50

Theorem 2: Consider a five-dimensional nonstatic near-horizon geometry, with a compact

horizon section H of nontoroidal topology, and a U�1�2 isometry group with spacelike orbits,

satisfying R��=0. Then it must be contained in one of the following three families: a three

parameter family with H=S1�S2, given by Eq. �3�; a two parameter family with H=S3 �case A�
given by �4� and �5�; a three parameter family with H=S3 �case B� given by �6�. See the main

results section II B for more details and explicit metrics.

Remarks:

• Static vacuum near-horizon geometries were considered in Ref. 47. It was shown that they

must be the direct product of 2D Minkowski space and a flat compact three-dimensional

space. However, in the context of black holes, these may be ruled out by the black hole

horizon topology theorem.
52,53

• S1�S2 case: In a region of parameter space it is isometric to the near-horizon limit of

extremal boosted Kerr string. Further, for a particular value of the boost parameter �i.e., such

that the string is tensionless�, it is isometric to the near-horizon limit of the asymptotically flat

extremal vacuum black ring.
22

• S3 case A: This is isometric to the near-horizon limit of two different black holes: extremal

Myers–Perry �which must have two nonzero angular momenta Ji� and the slow rotating

extremal KK black hole �G4J�PQ�. In a special case �corresponding to J1=�J2 and J=0,

respectively�, the rotational symmetry group enhances to SU�2��U�1� �or SO�3��U�1��
and the near-horizon geometry is a homogeneous space.

• S3 case B: In a region of parameter space, it is isometric to the near-horizon limit of the fast

rotating extremal KK black hole �G4J�PQ�. This solution always has total rotational sym-

metry group U�1�2 �i.e., it never gets enhanced as in case A�.
• Any extremal vacuum black hole in 5D with R�U�1�2 isometry group and compact horizon

sections of nontoroidal topology must have a near-horizon geometry contained in one of the

three families above. Note that toroidal horizon topology is not allowed by the black hole

topology theorems of Refs. 52 and 53.

• We should emphasize that our results do not rule out horizon sections with Lens space

topology. In fact, under the assumptions of Theorem 2, all near-horizon geometries with H

=L�p,q� can be deduced from the S3 cases by identifying points related by a particular �dis-

crete� subgroup of the U�1�2 isometry group.
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• For a nonextremal rotating black hole in 5D, it has been proven that stationarity implies the

existence of one rotational symmetry.
54,57

Therefore one expects extremal black holes to also

have one rotational symmetry. We have assumed two rotational symmetries, a property sat-

isfied by all known black hole solutions in 5D, although there is no general argument for this.

We have not been able to determine all possible near-horizon geometries with two rotational

symmetries and compact horizons in 5D with a negative cosmological constant. We have reduced

the problem to solving one sixth-order ODE of one function. The only family of solutions to this

ODE we know of corresponds to the two-parameter family of near-horizon geometries of the

extremal rotating AdS5 black holes of Ref. 40. If a vacuum extremal AdS black ring with two

rotational symmetries does indeed exist, it must correspond to a solution to our ODE. An AdS

black ring would possess a number of length scales: R1 the radius of the S1 of the horizon, R2 the

radius of the S2 of the horizon, and � the AdS length scale. A small AdS black ring would be one

such that R1	� and R2	�. In this regime the black ring would not “see” the effects of the AdS

boundary conditions and one would expect it to be well approximated by an asymptotically flat

black ring. Therefore, by perturbing about the solution corresponding to the near horizon of the

asymptotically flat black ring, one should be able to construct a first-order correction �valid for

small Ri /�� representing the near-horizon of a small extremal AdS ring. We have performed this

calculation and find that there exist regular perturbations which preserve the S1�S2 topology of

the horizon. It is tempting to conclude that this provides some evidence for the existence of, at

least a small, extremal vacuum black ring in AdS5.

The organization of this paper is as follows. In Sec. II we present a self-contained summary of

our main results. Section III provides a review of general features of near-horizon geometries with

rotational symmetries, and we present the field equations to be analyzed. Section IV deals with the

four dimensional case, including a negative cosmological constant. In Section V we consider five

dimensional near-horizon geometries: first we examine the general case �including a negative

cosmological constant�, then turn to a classification of all solutions in the pure vacuum case, and

finally we investigate the existence of solutions describing the near-horizon limit of an extremal

black ring in AdS5. Section VI concludes with a discussion of our results. The details of various

technical results used throughout the paper are given in the appendices.

II. SUMMARY OF MAIN RESULTS

In this section we will state more explicitly the main results of this paper. This section is

intended to be a self-contained summary without derivations; these are provided in the rest of the

paper.

A. Vacuum near-horizon geometries in D=4 including a negative cosmological
constant

Consider a 4D stationary, axisymmetric extremal black hole, with a compact horizon section

of nontoroidal topology, satisfying R��=�g�� with ��0. We have proven that its near-horizon

limit must be given by

ds2 = 
����− C2r2dv
2 + 2dvdr� +


���

Q���
d�2 +

Q���


���
�dx + rdv�2, �1�

where


 = �−1 +
��2

4
, Q = −

��

12
�4 − �C2 + 2��−1��2 + 4�−3�C2� + �� , �2�

and C�0, ��0 are constants. Q must have four distinct real roots. The coordinate ranges are

given by �1����2, where �2 is the smallest positive root of Q and �2=−�1 and x�x+2
k,

where k=
��2� / �C2�2�. This is actually a one-parameter family of solutions due to a scaling

symmetry of the solution which allows one to set C2 or � to any desired value. It has isometry
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group SO�2,1��U�1� with the orbits given by circle bundles over AdS2 and its cohomogeneity-1.

The horizon is at r=0 and spatial sections of this are S2 endowed with a cohomogeneity-1 metric.

This near-horizon geometry is isometric to that of extremal Kerr ��=0� or extremal Kerr-AdS4

���0�.
A consequence of the above result is that any stationary axisymmetric extremal black hole

solution �with S2 horizon sections� satisfying R��=�g�� for ��0 must have a near-horizon

geometry given by that of extremal Kerr ��=0� and Kerr-AdS4 ���0�.

B. Vacuum near-horizon geometries in D=5

Consider a 5D Ricci flat extremal black hole with R�U�1�2 symmetry �i.e., stationary plus

two rotational symmetries� and assume spatial sections of the horizon are not toroidal. We have

proven that its near-horizon geometry must be contained in one of three families.

S1�S2 horizon: The near-horizon geometry in this case can be written as

ds2 = C2a2�1 + �2��− C2r2dv
2 + 2dvdr�

+
a2�1 + �2�

1 − �2
d�2 +

4a2�1 − �2�

�1 + �2�
�d� + �dx2 + C2rdv�2 +

1

4C4a2
�dx2�2, �3�

where −1���1, ���+2
, and x2�x2+L. The solution is parametrized by the constants

�C ,a ,� ,L� where C ,a ,L�0, however, due to a scaling symmetry one of C ,� ,L may be set to

any convenient value. It is therefore a three-parameter family of solutions. The isometry group of

this geometry is SO�2,1��U�1�2. The orbits of SO�2,1� are circle bundles over AdS2 and the

geometry is cohomogeneity-1. The horizon is at r=0 and spatial sections of this are S1�S2

endowed with a cohomogeneity-1 metric. In fact, the C2����1 / �4a3� case is identical to the

near-horizon limit of the boosted extremal Kerr string with boost parameter � and Kerr parameter

a, see Ref. 22. This can be seen by defining tanh �=4a3C2� and setting C2=1 / �2a2 cosh ��
�which we are free to do due to the scaling symmetry mentioned�. Further, if one chooses the

boost, such that sinh2 �=1, it is isometric to the near-horizon limit of the extremal vacuum black

ring, see Ref. 22.

S3 horizon (case A): The main assumption of our analysis is the existence of a U�1�2 rotational

symmetry. As is typical of rotating solutions in 5D, in this class there is a special case in which the

rotational symmetry group enhances to SU�2��U�1�. It is convenient to write this special case in

a separate coordinate system.

The more symmetric case can be written as

ds2 = 
�− C2r2dv
2 + 2dvdr� +

2


C2
�d� + cos �d� + C2rdv�2 +




C2
�d�2 + sin2 �d�2� , �4�

where 0���4
, 0���2
, 0���
 are the usual Euler angles on S3. The solution is param-

etrized by the constants �C2 ,
�; however, due to a scaling symmetry it is a one-parameter family.

This solution has an isometry group SO�2,1��SU�2��U�1�. The orbits of SO�2,1� are circle

bundles over AdS2 and the geometry is a homogeneous space. The horizon is at r=0 and spatial

sections of this are S3 endowed with a homogeneous metric. It turns out that this case is isometric

to both the near-horizon limit of the J1=J2 extremal Myers–Perry black hole and the near-horizon

limit of the J=0 extremal KK black hole.

The generic case is more complicated. It can be written as

ds2 = ��− C2r2dv
2 + 2dvdr�

+
�d�2

Q���
+ �C2� −

c2

�
��dx1 + rdv +

	− c2c1dx2

C�C2�2 − c2�
�2

+
Q����dx2�2

�C2�2 − c2�
, �5�

where Q���=−C2�2+c1�+c2 and �1����2, where �1 ,�2 are the roots of Q and 0��1��2.
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The parameters must satisfy c1�0, c2�0, and c1
2+4C2c2�0. There is a scaling symmetry so it is

really just a two-parameter family of metrics. The coordinates �i adapted to the U�1�2 rotational

symmetry are defined by � /��i=−di��1 /C�i�	−c2 /c1�� /�x1�−� /�x2�, where di are chosen so that

the periods of �i are 2
. This near-horizon geometry has an isometry group SO�2,1��U�1�2

whose generic orbits are T2 bundles over AdS2 and therefore it is cohomogeneity-1 �the orbits of

SO�2,1�, in general, are line bundles over AdS2�. Spatial sections of the horizon r=0 are given by

S3 endowed with a cohomogeneity-1 metric. It turns out this case is isometric to the near-horizon

limit of two different black holes: the extremal J1�J2 Myers–Perry and the extremal 0�G4J

�PQ KK black hole.

In summary, this class of S3 topology horizons is isometric to the near-horizon limit of either

�i� extremal Myers–Perry or �ii� slowly rotating KK black hole.

S3 horizon (case B): In this case the near-horizon geometry is of the form

ds2 = �a2�
2 + a0��− C2r2dv

2 + 2dvdr�

+
�a2�

2 + a0�d�2

Q���
+

2P���

a2�
2 + a0


dx1 + rdv −
�a2�

�P���
dx2�2

+
Q���

2P���
�dx2�2, �6�

where

Q = − C2�2 + c1� + c2, P = ��2 + �� + � , �7�

with

� = − a2�C2a0 + a2c2�, � = 2c1a0a2, � = a0�C2a0 + a2c2� , �8�

and

� �	�a0C2 − a2c2��c1
2a0a2 + �C2a0 + a2c2�2�

2
. �9�

The constants �a0 ,a2 ,c1 ,c2 ,C2� must satisfy C2a0−a2c2�0, c1
2a0a2+ �C2a0+a2c2�2�0, and c1

2

+4C2c2�0.
55

The latter condition ensures that Q has two distinct real roots �1��2 and the

coordinate � must belong to the interval �1����2. This metric possesses two independent

scaling symmetries and thus is really just a three-parameter family. It has an isometry group

SO�2,1��U�1�2 whose generic orbits are T2 bundles over AdS2, and therefore it is

cohomogeneity-1 �the orbits of SO�2,1� are generically line bundles over AdS2�. The horizon is at

r=0 and spatial sections of this are S3 endowed with a cohomogeneity-1 metric. Using one of the

scaling symmetries, one can always set c1
2+4C2c2=4C4: then, the region of parameter space

defined by a2�0 and 4a2C−2+2C−4�C2a0−a2c2�� �c1
2a0a2+ �C2a0+a2c2�2� / �C6a2� can be shown

to be identical to the near-horizon geometry of the fast rotating extremal KK black hole �i.e.,

G4J�PQ�.

C. Vacuum near-horizon geometries in D=5 with a negative cosmological constant

Consider a 5D near-horizon geometry with two commuting spacelike Killing vectors which

satisfies R��=�g��. We have shown that the problem is equivalent to solving the two coupled

ODEs,

d2Q

d�2
+ 2C2 + 6�
 = 0,

d

d�
�Q3




d3


d�3� − 10�Q2
d2


d�2
= 0 �10�

for the pair of functions �
��� ,Q����, where C�0 is a constant and 
�0. Observe that elimi-

nating 
 gives a sixth-order nonlinear ODE. The near-horizon geometry is given in coordinates

�v ,r ,� ,x1 ,x2� by
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ds2 = 
�− C2r2dv
2 + 2dvdr� +


d�2

Q
+ �11�dx1 + ����dx2�2 +

Q


�11

�dx2�2, �11�

with

�11 = 

d

d�
�Q
̇



� + 2C2
 + 2�
2 �12�

and ���12 /�11 is determined up to quadratures by either �80� and �82�. Note that � /�v, � /�x1,

and � /�x2 are all Killing so the metric depends on the single coordinate �. The horizon is at r

=0.

The most general polynomial solution to the pair of ODEs is


 = a0 + a1�, Q = − �a1�
3 − �C2 + 3�a0��2 + c1� + c2. �13�

The resulting near-horizon geometry is a straightforward generalization of the Ricci flat near-

horizon geometry with S3 horizon �case A� in Sec. II B. It turns out this case �once compactness

of the horizon is imposed� is exactly the near-horizon geometry of the most general known

extremal rotating AdS5 black hole,
40

which has horizon topology S3.

We have not been able to find all solutions to the pair of ODEs, which prevents us from

providing a classification of near-horizon geometries in this case. It would be interesting to find a

solution with horizon topology S1�S2, thus providing a candidate for the near-horizon geometry

of an extremal AdS black ring. By linearizing the ODEs about the solution corresponding to the

asymptotically flat black ring, we have constructed an approximate solution corresponding to the

near-horizon limit of a “small” AdS black ring, see Sec. V D.

III. VACUUM NEAR-HORIZON EQUATIONS

Consider a stationary extremal black hole. In a neighborhood of the horizon we can introduce

Gaussian null coordinates �v ,r ,xa�, where V=� /�v is a Killing field, the horizon is at r=0, and xa

are coordinates on a D−2-dimensional spatial section of the horizon. We will refer to this

D−2-dimensional manifold as H, which we assume is orientable, compact, and without a bound-

ary. One can take the near-horizon limit of the metric by sending v→v /�, r→�r, and �→0, see

Refs. 2 and 22. This gives

ds2 = r2F�x�dv
2 + 2dvdr + 2rha�x�dvdxa + �ab�x�dxadxb, �14�

where F ,ha ,�ab are a function, one-form, and Riemannian metric on H which we will refer to as

the near-horizon data.

In this paper we will consider the problem of determining all vacuum near-horizon geometries

allowing for a negative cosmological constant, i.e., metrics of the form �14� satisfying R��

=�g�� with ��0. It can be shown that these space-time Einstein equations for the metric �14� are

equivalent to the following set of equations on H:
56

Rab =
1

2hahb − ��a�h�b� + ��ab, �15�

F =
1

2haha −
1

2�aha + � , �16�

where Rab and �a are the Ricci tensor and metric connection of the horizon metric �ab. For later

convenience it is worth noting that using �15� and �16�, the contracted Bianchi identity for Rab is

equivalent to the following equation:

�aF = Fha + 2hb��a�h�b� − �b��a�h�b�. �17�

In this paper we will be concerned with solving Eqs. �15� and �16�. Although we have not been

able to solve them, in general, we will show how one can determine all solutions with a compact
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H under extra assumptions regarding rotational symmetries and horizon topology.

First, however, we will note a number of general implications of the above equations for �
=0. Observe that



H

R = 

H

F = 

H

haha

2
� 0 �18�

with equality if and only if ha�0. In the case ha�0 it follows that F�0 and �ab is Ricci flat: the

near-horizon geometry is then simply a direct product of R1,1 and a Ricci flat metric on H. In four

and five dimensions this implies a flat metric on H. In 4D this implies H=T2, whereas in 5D there

are more possibilities �which include H=T3�.58
Also note that in 4D we see that the Euler number

��H��0 and thus the only possible horizon topologies are S2 and T2 �the latter of which occurs

only when the near-horizon geometry is a direct product of R1,1 and flat T2�. Observe that for r

�0 the Killing vector V=� /�v cannot be timelike everywhere, i.e., F�x��0 for all x is not

allowed.

A. Cohomogeneity-1 near-horizon geometries

We will now restrict consideration to near-horizon geometries of stationary extremal black

holes which are axisymmetric in D=4 and which admit two commuting rotational Killing vector

fields in D=5. That is, black holes with an isometry group R�U�1�D−3 in D=4,5 whose generic

orbits are D−2 dimensional. Denote the generators of the U�1�D−3 isometry by mi and introduce

coordinates adapted to these so that mi=� /��i with �i��i+2
. The near-horizon geometry

inherits the U�1�D−3 isometry group, which implies that the full near-horizon geometry is

cohomogeneity-1 �see Ref. 22�. Therefore, the near-horizon data �F ,ha ,�ab� defined on H are all

invariant under mi.

The existence of the U�1�D−3 isometry group restricts the horizon topology as follows. First

note that the U�1�D−3 isometry defines an effective group action on H, although we do not assume

it acts freely.
59

Thus spatial sections of the horizon H are D−2-dimensional closed �compact with

no boundary� and orientable manifolds with a U�1�D−3 effective action. For D=4 the only possible

closed, oriented two manifolds admitting an effective U�1� action are S2 and T2. In D=5 the only

possible closed oriented three manifolds which admit an effective U�1�2 action are T3, S1�S2, and

S3 �as well as the Lens spaces L�p ,q� which occur as its quotients by discrete isometry subgroups�,
see, e.g., Ref. 60 and references therein. Note that only in the TD−2 case is the action free—in the

other cases there are fixed points. In fact, there are global parts of our analysis which do not apply

to the TD−2 case, and therefore we assume nontoroidal topology in D=4,5 henceforth. This does

not represent much of a restriction though, as in view of the black hole topology theorems,
52,49,53

one is mainly interested in S2 topology in D=4 and S3 ,S1�S2 in D=5. Let us now introduce some

globally defined quantities which are central to our analysis.

Define the 1-form �=−im1
¯ imD−3

�D−2, where �D−2 is the volume form associated with the

metric �ab on H. Since the mi are Killing fields it follows that d�=0. Therefore, if H1�H�=0 there

exists a globally defined function �, such that �=d�. For H=S2 ,S3 �and Lens spaces� this is the

case.
61

For H=S1�S2 we can argue that the 1-form � is a 1-form on the quotient space H /S1

=S2 as follows. Since � ·mi=0, we simply need to show that some combination of the Killing

fields mi are a vector field on the S1. But this must be the case, as otherwise restricting to S2 one

would have a metric on S2 with U�1�2 isometry which is impossible. Hence as claimed, we have

shown that even in the S1�S2 case the closed 1-form � must be globally exact �as it is also a

closed 1-form on the S2�. To summarize, we have shown that for the cases of interest H

=S2 ,S3 ,S1�S2, one may define a globally defined function � as above; notice that � is invariant

under the U�1�2 isometries since mi ·d�=0 and also that d�=0 at the fixed points of the rotational

Killing fields.

In fact, the fixed points of the rotational Killing fields may be used to distinguish these

topologies.
62

For S2 ,S1�S2 there is a unique Killing field which has fixed points, and further it

only has two fixed points �the poles of the S2�. For S3 again there are only two points where one
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�or a combination� of the Killing fields vanishes, however, it is a different Killing field which

vanishes at each of these points. From the definition of � we deduce that d�=0 only at fixed

points of the mi; it follows that for the topologies under consideration d� vanishes only at these

two points.

The 1-form ha on H, which is part of the near-horizon data, can be decomposed globally using

the Hodge decomposition theorem as follows:

h = � + d� , �19�

where � is a coclosed 1-form
66 �i.e., �a�

a=0� and � is a function on H. Since Lmi
h=0 it follows

that Lmi
�=0 and Lmi

d�=0 separately. This follows from uniqueness of the Hodge decomposition

together with the facts that Lmi
� is coclosed �using the properties that � is coclosed and mi are

Killing fields� and also that Lmi
d�=d�mi ·d�� is exact. This also shows that mi ·d�=ci, where ci are

constants. However, since � is a function on H it must be periodic in �i where mi=� /��i—this

implies that ci=0 and hence mi ·d�=0. We find it convenient to introduce the invariant function


=e−� which satisfies 
�0 on all H.

We now introduce local coordinates �� ,xi� on a horizon section which are adapted to the

U�1�D−3 isometry,

�abdxadxb = d�2 + �ij���dxidx j , �20�

where � /�xi are Killing fields and i=1, . . . ,D−3. Observe that in D=4, it is necessarily the case

that m1�� /�x1, whereas in D=5 the � /�xi can be linear combinations of the mi and thus need not

have closed orbits. In these coordinates all scalar invariants only depend on �, so, for example,


=
��� and �=����. Now consider the coclosed 1-form � above. The fact that it is invariant

under the mi means �=�����d�+�i���dxi. Then, �a�
a= �1 /	���d /d���	����=0, where �

=det �ij, can be solved to get ��=c /	�, where c is a constant. This constant is related to an

invariant as follows: consider the scalar i�� �m1∧ ¯ ∧mD−3�=cJ, where � is the Hodge dual with

respect to the horizon metric �ab
67

and J is the Jacobian of the coordinate transformation �i

→xi �which is a nonzero constant�. Therefore, if one of the rotational Killing fields on the horizon

vanishes somewhere, we must have c=0 and hence ���0. This is indeed the case for all the

topologies we are interested in �in fact, c�0 only in the TD−2 case�. Thus, exploiting the global

representation for the one-form h derived above �19�, in the coordinates �� ,xi� we have

h = 
−1ki���dxi −

�



d� , �21�

where, in general, we write f�=df /d�, and we have defined the functions ki���=
�i. Notice that

the functions ki�
h · �� /�xi� are, in fact, globally defined.

It is then convenient to introduce a new radial coordinate �for the full near-horizon geometry�
by r→
���r and define the function A�
2F−kiki, where ki��ijk j. One of the main results found

in Ref. 22 is that the vanishing of the �i and �v components of the Ricci tensor of the full

near-horizon geometry in these new �v ,r ,� , i� coordinates implies that ki are constants and that

A=A0
 for some constant A0. Then the near-horizon geometry written in the new r coordinate

simplifies to

ds2 = 
����A0r2dv
2 + 2dvdr� + d�2 + �ij����dxi + kirdv��dx j + k jrdv� . �22�

This form of the near-horizon geometry makes an SO�2,1� isometry group manifest.
22

We will

take this result as the starting point of our analysis and find all vacuum geometries of this form

with compact H. For completeness though, we will first show how this result is derived from the

Einstein equations written in terms of the near-horizon data �F ,ha ,�ab� defined purely on H, i.e.,

Eqs. �15� and �16�. First observe that the �i component of �15� is R�i=−
1

2

−1�ij�k

j�� and since

R�i=0 for a metric of the form �20� this implies ki are constants. Now, the � component of �17� is

F�=−�
� /
�F+
−1ki�
−1ki��, which when written in terms of the function A defined above is
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equivalent to A�+ �
� /
�A+ �ki��ki=0. From this and the constancy of ki, it follows that A=A0

for some constant A0 and the result is established.

68

Note that we will be only interested in nonstatic
69

near-horizon geometries, as the static case

has been analyzed previously
47

where it was found that the only solution is a direct product of R1,1

and a flat compact space for �=0 or a direct product of AdS2 and a negative curvature compact

Einstein space for ��0. If all the constants ki=0 then the above near-horizon geometry is static.
22

Therefore, we will assume that at least one of the constants ki�0 in this paper.
70

Let us now consider the near-horizon equation �16�. Observe that F= �A0
+kiki� /
2, and

therefore �16� becomes

A0 +
kiki

2

−

1

2
�2
 = �
 . �23�

Integrating �23� over H shows that

A0 =
1

vol�H�



H

�−
kiki

2

+ �
�� 0, �24�

with equality if and only if �=0 and ki=0. Therefore, for nonstatic near-horizon geometries A0

�0, and we will often set A0=−C2 for some C�0.

Now let us turn to the equation for the Ricci tensor of the horizon �15�. The nonzero compo-

nents of the Ricci tensor of the horizon metric �20� are given by

Rij = −
1

2
�ij� −

��

4�
�ij� +

1

2
�ik� �

kl�lj� = −
1

2
�2�ij +

1

2
�ik� �

kl�lj� , �25�

R�� = −
1

2 �log ��� −
1

4�
lj� jk� �

km�ml� , �26�

and note that for a function f���

�2f � f� +
��

2�
f�, �27�

where ��det �ij. Evaluating the right hand side of �15� gives

R�� =

�



−

1

2


�
2


2
+ � , �28�

Rij =
1

2

−2kik j +

1

2
�ij�

�



+ ��ij . �29�

Now, observe that �25� implies

Rij�
ij = −

1

2 �log ��� −
1

4 �log ���2, �30�

which using �29� implies

�log ��� +

�



�log ��� + 
−2k2 +

1

2
�log ���2 + 2�D − 3�� = 0. �31�

By contracting �25� with kik j and using �29�, one gets

�k2�� +

�



�k2�� − ki��

ijk j� +
1

2
�log ����k2�� + 2�k2 + 
−2�k2�2 = 0. �32�
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To integrate the above equations it proves useful to use the globally defined function �
introduced at the beginning of this section as a coordinate instead of �. Note that in � coordinates,

it is given by ��=	det �ij. Observe that the volume form of H is then given simply by �D−3

=d�∧dx1
∧ ¯ ∧dxD−3 �choosing an orientation�. Recall that � is a globally defined function and

d� is nonzero everywhere except where �ij degenerates. Indeed, � cannot be constant as otherwise

��=0 and thus det �ij =0 everywhere. Therefore, it is legitimate to use � as a coordinate every-

where except at these degeneration points �which occur at fixed points of mi�. Therefore, any

expression we derive in this coordinate will be valid globally provided we can show that is also

smooth where d�=0.

We will now derive some general results valid in both D=4,5. Substituting into Eq. �23�
implies

kiki

2
2
=

���

2
��
+

C2



+

�

2

+ � , �33�

and Eq. �31� gives

�� +

���



+ ��� kiki

2
2
+ �D − 3��� = 0. �34�

Eliminating kiki between these two equations leads to

�� +
3
�

2

�� + �C2



+

�

2

+ �D − 2����� = 0. �35�

This equation may actually be solved by noting the identity

�� +
3
�

2

�� + �C2



+

�

2

+ �D − 2����� � ��
 1

2


d2Q

d�2
+

C2



+ �D − 2��� , �36�

where we have defined Q������
2
. Therefore, we deduce that

Q̈ + 2C2 + 2�D − 2��
 = 0, �37�

where, in general, we denote df /d�= ḟ . Observe that by working in the � coordinate, the d�2 part

of the metric is given by

d�2 =



Q
d�2. �38�

Substituting ��
2=Q /
 back into �33� gives

kiki = 

d

d�
�Q
̇



� + 2C2
 + 2�
2. �39�

Since we are assuming the constants ki�0, we can always choose the coordinates xi such that

ki� /�xi=� /�x1. This implies kiki=�11, and therefore we have determined this component of the

metric in terms of the functions Q and 
. In D=4, together with �38�, this determines the whole

metric on H in terms of the two functions Q and 
.

Before closing this section let us derive a useful result based on global considerations. First

notice that the norm of the one form d� is given by
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�d��2 =
Q



, �40�

which implies Q�0. Now since � is a globally defined function on a closed manifold H, it must

have a distinct minimum �say �1� and maximum �say �2� so �1����2 and �1��2 �note that �
cannot be a constant�. Therefore d� must vanish at these two distinct points on H, and as argued

earlier there are, in fact, only two points where d�=0 �they correspond to the fixed points of mi�.
This implies that the function Q�0 with equality if and only if �=�1 or �=�2. We deduce that

any function we construct from �-derivatives of globally defined functions can only fail to be

defined at the points �=�1 ,�2. Our subsequent analysis will be mostly local �integration of ODEs

with respect to ��, although there are steps where we need to use the fact that certain functions are

globally defined. In the appendices we introduce a �globally defined� vector field which allows us

to prove that these functions are globally defined.

IV. Four Dimensions

In 4D the metric on the horizon is particularly simple,

�abdxadxb = d�2 + ����dx2, �41�

where we write x1=x and note that �11=� in this case. Equation �39� therefore gives an expression

for � which, noting that �=��
2=Q /
, can be written as

Q = Q̇
̇
 − 
̇2Q + Q

̈ + 2C2
2 + 2�
3. �42�

Now differentiate �42� with respect to �. This gives an expression involving Q̈ which can be

eliminated using �37�, leaving

Q̇ = Q

d3


d�3
+ 
̈�2Q̇
 − Q
̇� + 2C2

̇ + 2�
2
̇ . �43�

Now combine this with �42� in such a way to eliminate the C2 and � terms to eventually get

Q
d3


d�3
+ �Q̇ −


Q



��2
̈ −


̇2



−

1



� = 0. �44�

Now define

P � 2
̈ −

̇2



−

1



�45�

and note the identity

2
d3


d�3
�

̇P



+ Ṗ . �46�

Eliminate the third-order derivative terms between �44� and �46� to get

Ṗ = � 
̇



−
2Q̇

Q
�P , �47�

which integrates to
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Q2
P



= � , �48�

where � is some constant.

As discussed earlier, based on global analysis Q must vanish at two distinct points which from

�48� would seem to say one must have �=0. Indeed, in the appendices we prove that Q2P is a

globally defined function which vanishes at the zeros of Q, and therefore one must have �=0 for

a compact H. From �48� we see that therefore we must have P=0, and this equation can be solved

by noting the identity

P
̇



�

d

d�
� 
̇2 + 1



� , �49�

which implies


̇2 + 1 = �
 , �50�

where ��0 is a constant. There are two solutions to this equation: either


 = �−1 +
��� − �0�2

4
, �51�

where �0 is a constant, or simply 
=�−1. This latter solution implies that 
 and Q are both

constants—this is incompatible with having a compact H, and therefore we discount it. Therefore


 must be given by �51�, and since by definition, � is only defined up to an additive constant,

without loss of generality we will set �0=0. We can now integrate easily for Q using �37� to find,

Q = −
��

12
�4 − �C2 + 2��−1��2 + c1� + c2. �52�

Now plugging back into Eq. �42� implies

c2 = 4�−3�C2� + �� . �53�

The rest of the near-horizon equations are now satisfied without further constraint.

To summarize, so far we have shown that the near-horizon geometry is given by

ds2 = 
�− C2r2dv
2 + 2dvdr� +




Q
d�2 +

Q



�dx + rdv�2, �54�

where


 = �−1 +
��2

4
, Q = −

��

12
�4 − �C2 + 2��−1��2 + c1� + 4�−3�C2� + �� , �55�

and C�0, ��0, and c1 are constants. Observe that the near-horizon geometry has the following

scaling freedom:

C2
→ KC2, �→ K−1�, c1 → K2c1, �→ K�, x → K−1x, v → K−1

v �56�

for constant K�0, which allows one to fix one of the parameters �or a combination of them� to

any desired value.

Although we have used some global information in our derivation, we need to complete the

global analysis of this solution to determine the most general regular near-horizon geometry with

compact horizon sections.
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A. Global analysis

Consider the metric on H,

�abdxadxb =



Q
d�2 +

Q



dx2. �57�

As discussed earlier, compactness of H requires �1����2 and Q�0 with equality occurring at

�1 ,�2 only. It follows that Q̇��1��0 and Q̇��2��0. The Killing vector � /�x must vanish at the

endpoints. The horizon metric therefore is nondegenerate everywhere except at �=�1 ,�2, where,

in general, one has conical singularities. Simultaneous removal of the conical singularities at �1

and �2 is equivalent to

Q̇��1�


��1�
= −

Q̇��2�


��2�
. �58�

If this condition is satisfied we have a regular metric with � /�x vanishing at the endpoints �
=�1 ,�2 and therefore H has S2 topology as expected.

Let us first consider �=0 so Q���=−C2�2+c1�+c2=C2��−�1���2−��. It follows that

Q̇��1�=−Q̇��2�, and therefore using the condition for the absence of conical singularities �58�, we

have 
��1�=
��2�. Since the roots must be distinct, using the form of 
 we see that �1=−�2

�0. This implies c1=0 and from the expression for c2 we get �1=−2�−1 so Q=C2�4�−2−�2�.
Define a new coordinate �=C2x, a parameter a=1 /C	�, and rescale �→2� /�. The horizon

metric then becomes

�abdxadxb = a2�1 + �2

1 − �2�d�2 + 4a2�1 − �2

1 + �2�d�2 �59�

and regularity implies � to be 2
 periodic. This is an inhomogeneous metric on S2 with � /��
vanishing at �=�1. The full near-horizon geometry, upon rescaling v→�v /2, is now given by

ds2 =
1 + �2

2

−

r2

2a2
dv

2 + 2dvdr� + a2�1 + �2

1 − �2�d�2 + 4a2�1 − �2

1 + �2��d� +
r

2a2
dv�2

. �60�

This coincides exactly with the near-horizon geometry of extremal Kerr as given in Ref. 22 upon

the change in variables �=cos �. This proves the following.

The only 4D Ricci flat axisymmetric near-horizon geometry with a nontoroidal horizon section

is that of the extremal Kerr black hole.

Now consider the ��0 case and set �=−3g2. We have argued that Q must have distinct roots

�1��2 and be positive in the interval in between these roots. Therefore, since Q is a quartic with

a positive �4 coefficient, it must have four real roots and further they must be all distinct �for

compactness�, such that �0��1��2��3. Therefore

Q =
�g2

4
�� − �0��� − �1��� − �2��� − �3� , �61�

and due to the absence of a cubic term in Q we must have

�1 + �2 + �3 + �0 = 0. �62�

The condition for the absence of conical singularities �58� becomes
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��2 − �0���3 − �2�

��1 − �0���3 − �1�
=

��2�


��1�
. �63�

Now, we prove that this implies 
��1�=
��2�. To do so, first assume 
��2��
��1�. This implies

that the left hand side of �63� is greater than 1 and in turn this implies, using �62�, that �2+�1

�0 and thus �2
2��1

2. It follows that 
��2��
��1� in contradiction to our assumption. Similarly

assuming 
��2��
��1� implies �1+�2�0 and hence �2
2��1

2 providing another contradiction.

We conclude that 
��1�=
��2� and hence �2=−�1�0. From �62� it follows that �3=−�0 and

therefore Q is an even function of �, i.e., c1=0.

Now we will show that the
71

c1=0 solution is the near-horizon limit of Kerr-AdS4. Comparing

coefficients of Q gives

�2
2 + �3

2 =
4C2

g2�
−

24

�2
, �64�

�2
2�3

2 =
16C2

g2�3
−

48

�4
. �65�

These two equations are equivalent to

���2�2���3�2 − 4���2�2 − 4���3�2 = 48, �66�

���2�2���3�2 − 2���2�2 − 2���3�2 =
8C2�

g2
. �67�

Now define two positive constants a, r+ by

a �
�2

g�3

, r+ �
2

g��3

�68�

and so it follows ag�1. Note that the parameters a and r+ are actually invariant under the scale

transformation �56�. Using these definitions to eliminate �2, �3 from �66� implies g2r+
2�1 and

a2 =
r+

2�1 + 3g2r+
2�

1 − g2r+
2

. �69�

Next, eliminate �2, �3 in �67� and then use the expression for a �69� to get

�C2 =
1 + 6g2r+

2 − 3g4r+
4

r+
2�1 − g2r+

2�
=

1 + a2g2 + 6g2r+
2

r+
2

. �70�

Next use the scale invariance �56� of the near-horizon geometry to set

C2 =
1 + a2g2 + 6g2r+

2

��r+
2 + a2�

�71�

where we define ��1−a2g2. Using this choice of C2 �70� implies

� =
��r+

2 + a2�

r+
2

. �72�

Plugging this into the definition of r+ gives
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�3 =
2r+

g��r+
2 + a2�

, �73�

and then from the definition of a, it follows that

�2 =
2r+a

��r+
2 + a2�

. �74�

Finally change coordinates from �� ,x� to �� ,�� defined by

� =
2ar+x

�r+
2 + a2�2

, cos � =
�

�2

�75�

so 0���
 provides a unique parametrization of the interval. This gives

Q =
4r+

2a2 sin2 ���

�3�r+
2 + a2�3

, 
 =
�+

2

��r+
2 + a2�

, �76�

where ��=1−a2g2 cos2 � and �+
2 =r+

2 +a2 cos2 �. It follows that


d�2

Q
+

Q



dx2 =

�+
2d�2

��
+

sin2 ����r+
2 + a2�2

�+
2�2

d�2, �77�

and it is easy to see that the absence of conical singularities implies ���+2
. Inspecting the

appendices we see that this is exactly the horizon geometry of Kerr-AdS4 and the rest of the

near-horizon data 
, k� also agrees. Therefore we have proved the following.

The only 4D axisymmetric near-horizon geometry with a nontoroidal horizon section which

satisfies R��=�g��, with ��0, is the near-horizon limit of Kerr-AdS4.

This completes the proof of Theorem 1 stated in Sec. I.

V. Five Dimensions

A. Near-horizon equations

In 5D it is useful to rewrite the horizon metric as

�abdxadxb = d�2 + �11����dx1 + ����dx2�2 +
����

�11���
�dx2�2, �78�

where we define ������12 /�11 and recall �=det �ij. We have already determined kiki=�11 in

terms of 
, Q �39�. Since we also know �=��
2=Q /
 we need to determine only one other

component of �ij, say �12 or equivalently �.

Consider �32�, which since we have chosen k=� /�x1 is equivalent to the R11 equation. To

simplify this equation we will need the identity

ki��
ijk j� �

��11� �2

�11

+
�11

3

�

��12

�11

���2

, �79�

substitute for �=��
2=Q /
, convert all � derivatives to � derivatives, and note the fact ��

= �d /d���Q /2
�. The result is that �32� becomes

�11
2 �̇2 =

1




d

d�
�Q�̇11

�11

� + 2� +
�11


2
. �80�

Now consider the �� component of �15� which is given by equating �26� and �28�. To evaluate

�26� it proves useful to note the identity
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�lj� jk� �
km�ml� �

��11� �2

�11
2

+ ��11�

�11

−
��

�
�2

+
2�11

2

�

��12

�11

���2

=
Q��̇11�

2


�11
2

+
Q



� �̇11

�11

−



Q

d

d�
�Q



��2

+ 2�11
2 �̇2, �81�

wherein the second line we have converted to � derivatives. The other term in �26� is given by

log ��, which using �=��
2 contains a ��, and we eliminate this using �35�. After some calculation

the �� equation simplifies to

�11
2 �̇2 =

2C2



+ 4� −

Q
̈


2
+

Q̇
̇


2
−

Q�̇11
2


�11
2

+
�̇11

�11

d

d�
�Q



� . �82�

Equating �80� and �82�, using �39� to write the �11 /
2 term in �80�, leads to

d

d�
�
�̇11� + �2
̈ −


̇2



��11 = 0. �83�

Differentiating �39� with respect to � gives

�̇11 = Q
d3


d�3
+ �2
̈ −


̇2



��Q̇ −

Q
̇



� − 2�

̇ , �84�

where �37� has been used to eliminate Q̈. Substituting �84� and �39� into �83�, again using �37� to

eliminate Q̈, leads to the remarkably simple equation,

Q
d4


d�4
+ �3Q̇ −


̇Q



�d3


d�3
− 10�

̈ = 0, �85�

which can be written more compactly as

d

d�
�Q3




d3


d�3� − 10�Q2
̈ = 0. �86�

We must now examine the remaining components of the near-horizon equations, i.e., the x1x2

components of �15�. One can check that the 12 component of �25� is

R12 = −
�11� �

2
− �11� �� −

�11��

2
+
�11����

4�
+
�11

3 ���
2

2�
+
�11�

2�

2�11

−
�11� ���

4�

= −
Q�̈11�

2

−

d

d�
�Q



� �̇11�

2
+
�11

3 ��̇2

2
−

Q�̇11�̇



−

Q�11�̈

2

+

Q�̇11
2 �

2
�11

, �87�

and �29� requires that

R12 =
�11

2 �

2
2
+

Q
̇

2
2
��̇�11 + ��̇11� + ��11� . �88�

Eliminating the �̇2 term in �87� using �80� leads to many cancellations and the x1x2 component of

�15� becomes simply

�11�̈ + 2�̇11�̇ +

̇



�11�̇ = 0, �89�

which integrates to
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�̇ =
k

�11
2 


, �90�

where k is a constant. In fact, �90� is automatically satisfied as a consequence of the other

components of the near-horizon equations. Indeed, using �82� and �39� one can check that

�d /d����11
4 
2�̇2�=0 as a consequence of �37� and �86�.

In fact, the above equations exhibit certain scaling symmetries which translate to scaling

symmetries of the full near-horizon geometry. It is important to keep track of these when it comes

to counting the parameters of a solution. The two ODEs �37� and �86� possess the following two

symmetries:

S1: Q → K3Q, 
→ K
, C2
→ KC2, �→ K� , �91�

S2: Q → L2Q, �→ L� �92�

for constant K�0 and constant L �of either sign�. It follows that

S1: �11 → K2�11, x1
→ K−1x1, v → K−1

v , �93�

S2: �12 → L�12, x2
→ L−1x2 �94�

provide scaling symmetries of the full near-horizon geometry. Observe that these scalings can be

combined, e.g., S2
−1

S1 �with K=L� generates the near-horizon symmetry Q→KQ, 
→K
, C2

→KC2, x1→K−1x2, x2→Kx2, v→K−1
v.

Summary: We have shown that the functions 
��� and Q��� satisfy the coupled ODEs �37�
and �86�. Further, given a solution to these ODEs �
��� ,Q����, a near-horizon geometry satisfying

the vacuum Einstein equations R��=�g�� can be constructed as follows. Firstly �11 is determined

from �39�; next �=�12 /�11 can be got up to quadratures from either �80� or �82�; finally note �38�
gives ���. This determines the horizon metric �78� in the coordinates �� ,x1 ,x2�. Recalling that we

chose a gauge where ki=�1
i , one can write down the full near-horizon geometry from �22�.

B. A class of near-horizon geometries with S3 horizons

Observe that one set of solutions to �86� is given by


 = a1� + a0, �95�

where a1, a0 are constants. Then, �37� implies

Q = − �a1�
3 − �C2 + 3�a0��2 + c1� + c2, �96�

where c1, c2 are integration constants. The analysis naturally splits into two, depending on whether

a1 vanishes or not.
72

1. Homogeneous horizon

First, suppose a1=0 and so 
 is a constant. Then, the equation for kiki �39� gives

�11 = 2C2
 + 2
2� , �97�

which is a constant and thus C2+�
�0. Equation �80� gives

�̇2 =
�C2 + 2�
�

2
3�C2 + �
�2
, �98�

which is also a constant and implies C2+2�
�0. Therefore
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� = � � �C2 + 2�
�

2
3�C2 + �
�2�1/2

� + c3, �99�

where c3 is an integration constant. We may set c3=0 using the coordinate freedom of the x1

→x1+const x2 which we will now assume we have done. Note that Q=−�C2+3�
��2+c1�+c2,

and since � is only defined up to an additive constant, without loss of generality we may translate

� in order to set c1=0. This implies Q=c2− �C2+3�
��2. Recall that in order to have a compact

horizon one needs �1����2 with Q�0 in this interval and vanishing only at the endpoints. It

is easy to see this implies C2+3�
�0 �which is automatic when �=0�. It now follows that c2

�0 and �2=−�1=	c2�C2+3�
�−1. We now define new coordinates �� ,� ,�� as follows:

cos � =
�

�2

, � = � x2	 c2�C2 + 3�
�

2
3�C2 + �
�
, � = x1�C2 + 3�
�	 C2 + �


C2 + 2�

�100�

so that 0���
 parametrizes the interval �1����2 uniquely and Q=c2 sin2 �. The near-

horizon data are then given by

�abdxadxb =
2
�C2 + 2�
�

�C2 + 3�
�2
�d� + cos �d��2 +




C2 + 3�

�d�2 + sin2 �d�2� , �101�

k� = �C2 + 3�
�	 C2 + �


C2 + 2�

, �102�

with 
 a constant. It is clear that regularity of the metric on H implies the usual restrictions 0

���4
 and 0���2
 resulting in a homogeneous metric on S3 written in Euler angles. This

near-horizon geometry has the scaling symmetry,

C2
→ KC2, 
→ K
, v → K−1

v , �103�

where K�0 is a constant. This allows one to fix one �or a combination� of the parameters �C2 ,
�
of the above solution, and therefore it is a one-parameter family. In fact, as we show in the

appendices that it is isometric to the near-horizon limit of the extremal self-dual rotating AdS5

black hole
40 �i.e., with J1=J2�. In the case �=0 it turns out �as we also show in the Appendices�

that it is also isometric to the near-horizon limit of the J=0 extremal KK black hole.
37

2. Inhomogeneous horizon

Now, suppose a1�0. We are free to perform a translation in � to set a0=0, which without loss

of generality we will do. The equation for kiki �39� gives

�11 = a1�C2� −
c2

�
� . �104�

We can now solve for � using �82�. After some calculation, Eq. �82� gives

�̇2 =
4�2c2��a1c2 − c1C2�

a1
3�C2�2 − c2�4

, �105�

and therefore the parameters must satisfy the inequality

c2��a1c2 − c1C2� � 0. �106�

Integrating one gets
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� = �
	a1

−3c2��a1c2 − c1C2�

C2�C2�2 − c2�
+ c3, �107�

where c3 is a constant. Collecting the above results the horizon metric is

�abdxadxb =
a1�d�2

Q���
+ a1�C2� −

c2

�
��dx1 +

	a1
−3c2��a1c2 − c1C2�

C2�C2�2 − c2�
dx2�2

+
Q����dx2�2

a1
2�C2�2 − c2�

,

�108�

where by shifting x1→x1+const x2, we have eliminated the constant c3, used the freedom x2

→�x2 to arrange ��0, and

Q = − �a1�
3 − C2�2 + c1� + c2. �109�

This near-horizon metric has two independent scaling symmetries �corresponding to S1 and S2�,

C2
→ KC2, c1 → K2c1, c2 → K3c2, �→ K�, x1

→ K−1x1, v → K−1
v , �110�

where K�0 is constant, and

a1 → L−1a1, c1 → Lc1, c2 → L2c2, �→ L�, x2
→ L−1x2, �111�

where L is constant �which can be either sign�. These allow one to fix two �or two combinations�
of the parameters �C2 ,a1 ,c1 ,c2� and thus this solution is a two-parameter family.

3. Global analysis of inhomogeneous horizon

We now turn to a global analysis of the a1�0 solution just derived. First we will use the

second scaling symmetry �111� to fix a1=1 and thus 
=�. Since 
�0 we see that ��0. Now,

observe that since �11�0 �with equality only possible at isolated points�, we must have �1
2

�c2C−2. In fact, it is easy to show that the case
73 �1

2=c2C−2 �so c2�0� is incompatible with

Q̇��1��0 and �1��2. Therefore, we must have �1
2�c2C−2, which implies we have �11�0

everywhere, and therefore the 2-metric �ij degenerates only at the zeros of Q���. From the form

of the metric on the horizon it follows that the Killing vectors,

mi = di� �

�x2
− ���i�

�

�x1� �112�

for constants di and i=1,2 vanish at the degeneration points �=�i. Further, since ���1�
����2� it follows that m1�m2. Regularity of the metric on the horizon requires the orbits of mi

to close in such a way there are no conical singularities at the points where they vanish. We choose

the constants di such that in terms of adapted coordinates defined by mi=� /��i, the periodicity of

the orbits is given by �i��i+2
. The coordinate transformation between �x1 ,x2� and ��1 ,�2� is

given by

x1 = − ����1�d1�1 + ���2�d2�2�, x2 = d1�1 + d2�2. �113�

To ensure the absence of the conical singularities at �=�1 and �=�2, one must take

di
2 =

4�i�C
2�i

2 − c2�

Q̇��i�
2

, �114�

which therefore determines the di up to a sign. The solution is now globally regular, with m1

vanishing at �=�1 and m2 vanishing at �=�2. Hence the horizon H has S3 topology �or that of a

Lens space�.
Now we will show that this near-horizon geometry is, in fact, isometric to the near-horizon

limit of known black holes. In the �=0 case we will show that it is isometric to the near-horizon
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limits of two different known extremal black holes: the Myers–Perry �J1�J2� and the slowly

rotating KK black hole �0�G4J�PQ�. In the ��0 case we will show that it is isometric to the

near-horizon limit of the known extremal rotating AdS5 black hole
40 �J1�J2�. We provide the

near-horizon limits of all these black holes in the appendices.

�=0 case: In this case some of the above formulas simplify. In particular, using Q��i�=0 one

gets C2�i
2−c2=c1�i. Therefore, since above we argued that C2�i

2−c2�0, it follows that c1�0.

Then we see that �106� implies c2�0. Further, the fact that Q must have two positive roots

requires c2�0 and c1
2+4C2c2�0. Using these results one gets

di
2 =

4c1�i
2

c1
2 + 4C2c2

, ���i� =
	− c2c1

c1C�i

. �115�

In fact, from the results of Ref. 22, it is straightforward to show that this near-horizon

geometry is isometric to the near-horizon limit of the 5D extremal Myers–Perry solution. To see

this, first using the scaling freedom �110� to set C2=c1 �this can be done as C2 and c1 transform

differently� and hence c1+4c2�0. Next define two positive constants a�b�0 by

a �
1

	c1

+
	c1 + 4c2

c1

, b �
1

	c1

−
	c1 + 4c2

c1

, �116�

from which it follows that

C2 = c1 =
4

�a + b�2
, c2 = −

4ab

�a + b�4
, �1 =

b

a + b
, �2 =

a

a + b
. �117�

The coordinate change defined by

cos2 � =
� − �1

�2 − �1

, x1 =
	ab�a + b�2

2�a − b�
�� − ��, x2 =

�a + b�

�a − b�
�b� − a�� , �118�

where 0���
 /2 and �=�1 and �=�2, shows that our near-horizon geometry is identical to that

of extremal Myers–Perry as given in the appendices in �� ,� ,�� coordinates and �a ,b� parameters

�which is also the same form as in Ref. 22�.
Now we will show how our near-horizon geometry is also isometric to the near-horizon

geometry of the slowly rotating extremal KK black hole. Define the following positive parameters:

p �
1

C2
	c1�1 −

c2

C2�, q2 �
c1

c2
2�1 −

c2

C2�,  2 � 1 +
4C2c2

c1
2

, �119�

so  �1. It follows that

C2 =
2�p + q�

�pq�3/2�1 −  2�1/2
, c1 =

2C2

	1 −  2
	p

q
, c2 = −

C2p

q
, �120�

and

�1 =	 p

q�1 −  2�
�1 −  �, �2 =	 p

q�1 −  2�
�1 +  � . �121�

Writing the near-horizon geometry in coordinates �� ,y ,�� defined by
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cos � =
2� − �1 − �2

�2 − �1

, x1 = −
	1 −  2

C2 
�, x2 =

2

C2q
	 �p + q�

p�1 −  2�
��
 

+	p + q

p3
y� ,

�122�

where 0���
, shows that it is identical to the near-horizon limit of the slowly rotating extremal

KK black hole given in the appendices in �� ,y ,�� coordinates and �p ,q , � parameters.

��0 case: Set �=−4g2. It is convenient to work with the roots �1 ,�2 ,�3 of Q as parameters

as well as the original parameters C2 ,c1 ,c2. These are related by

C2 = 4g2��1 + �2 + �3�, c1 = 4g2��1�2 + �1�3 + �2�3�, c2 = − 4g2�1�2�3, �123�

so Q=4g2��−�1���−�2���−�3� where �3��2. Define the quantity W= ��1�2+�1�3

+�2�3� /�1�2 which is invariant under the scaling freedom �110�. Use the scaling freedom �110� to

set �3 /�1�2=W; this can be done as the left hand side transforms homogeneously and the right

hand side is invariant. This implies �1+�2�1 and

�3 =
�1�2

1 − �1 − �2

. �124�

Now define the positive constants a ,b ,r+ by

1

1 + g2r+
2

= �1 + �2,
r+

2

r+
2 + a2

= �1,
r+

2

r+
2 + b2

= �2, �125�

so a�b �as �1��2�. This implies that

�3 =
r+

2�1 + g2r+
2�

g2�r+
2 + a2��r+

2 + b2�
�126�

and

C2 =
4r+

2�1 + a2g2 + b2g2 + 3g2r+
2�

�r+
2 + a2��r+

2 + b2�
. �127�

Now define a new variable � by

cos2 � =
� − �1

�2 − �1

, �128�

so 0���
 /2 uniquely parametrizes the interval �1����2. This implies


 = � =
r+

2�+
2

�r+
2 + a2��r+

2 + b2�
, Q =

4r+
6�a2 − b2�2sin2 �cos2 ���

�r+
2 + a2�3�r+

2 + b2�3
, �129�

where we have defined

�+
2 = r+

2 + a2 cos2 � + b2 sin2 �, �� = 1 − a2g2 cos2 � − b2g2 sin2 � . �130�

It follows that


d�2

Q
=
�+

2d�2

��
, �131�

which proves that the �� component of our horizon metric coincides with the �� component of

the known extremal rotating AdS5 black hole of Ref. 40 �see the appendices�. It remains to check
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the xix j components of the horizon metric. To do this we need the constants di ,���i� appearing in

the coordinate transformation �113� which work out to be

d1 = −
r+

2 + b2

�b�a2 − b2�
	�1 + b2g2 + 2g2r+

2��2r+
2 + a2 + b2� , �132�

d2 =
r+

2 + a2

�a�a2 − b2�
	�1 + a2g2 + 2g2r+

2��2r+
2 + a2 + b2� , �133�

���1� =	 �r+
2 + b2��r+

2 + a2�3�1 + a2g2 + 2g2r+
2��1 + g2r+

2�

4r+
4�1 + b2g2 + 2g2r+

2��2r+
2 + a2 + b2��1 + a2g2 + b2g2 + 3g2r+

2�2
, �134�

���2� =	 �r+
2 + a2��r+

2 + b2�3�1 + b2g2 + 2g2r+
2��1 + g2r+

2�

4r+
4�1 + a2g2 + 2g2r+

2��2r+
2 + a2 + b2��1 + a2g2 + b2g2 + 3g2r+

2�2
, �135�

where we have defined �a=1−g2a2, �b=1−g2b2, and without loss of generality we have chosen

a particular sign for each of the di �note d1�0 and d2�0�. Using the transformation �113� one can

now compute the �i� j components of the horizon metric. We have checked that ��i�j
is identical

to the a ,b=� ,� components of the horizon metric of the rotating AdS5 black hole solutions of

Ref. 40 �see the appendices� upon identifying �1=� and �2=�. Therefore, we have verified that

the horizon metric of our solutions coincides exactly with that of the known extremal rotating

AdS5 black hole. Finally, let us turn to the remaining near-horizon data, the vector ki�i=� /�x1.

Using the coordinate change �113�,

�

�x1
=

1

d1����2� − ���1��

�

��1

+
1

d1����1� − ���2��

�

��1

�136�

=
2br+

�b�r+
2 + b2�2

�

��1

+
2ar+

�a�r+
2 + a2�2

�

��1

, �137�

where the first equality follows from the coordinate change �113� and the second upon using our

expressions for di ,���i�. Therefore, the ki agree with those of the extremal rotating AdS5 black

hole upon the same identification �1=� and �2=�. Therefore, to summarize, we have proved that

�ab ,ki ,C2 ,
 all coincide with those of the most general known extremal rotating AdS5 black

hole
40 �as given in the appendices�, thus proving equivalence of the near-horizon geometries.

C. All Ricci flat solutions with compact horizons

In the �=0 can we can actually determine all possible near-horizon geometries with compact

horizons as we will now show. Equation �86� integrates to

Q3
d3


d�3
= �
 , �138�

where � is a constant. In the appendices we prove that the left hand side is a globally defined

function which vanishes at the zeros of Q. Therefore evaluating at one of the zeros of Q implies

that �=0. It follows that

d3


d�3
= 0, �139�

and therefore

082502-23 Vacuum near-horizon geometries J. Math. Phys. 50, 082502 �2009�

Downloaded 19 Jul 2013 to 129.215.104.50. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions




 = a2�
2 + a1� + a0, �140�

where ai are integration constants. Also, Eq. �37� determines Q,

Q = − C2�2 + c1� + c2, �141�

where c1 ,c2 are constants. The analysis now splits into two cases: either a2=0 or a2�0. We have

already analyzed the former case in Sec. IV where it was shown that the resulting near-horizon

geometry is identical to the near-horizon limit of extremal Myers–Perry, or equivalently the near-

horizon limit of the slowly rotating extremal KK black hole.

We now analyze the a2�0 case. Since � is only defined up to an additive constant, we can

always shift � to set a1=0, and thus without loss of generality we take


 = a2�
2 + a0. �142�

Substituting into the equation for kiki �39� gives

�11 =
2P���



, �143�

where we have defined

P��� � ��2 + �� + � �144�

and

� = − C2a0a2 − c2a2
2, � = 2a0a2c1, � = C2a0

2 + a2a0c2, �145�

which satisfy �a2+�a0=0 and the discriminant of the quadratic P is

D � �2 − 4�� = 4a0a2�c1
2a0a2 + �C2a0 + a2c2�2� . �146�

Now, plugging into �80� gives

�̇2 =
�a0C2 − a2c2��c1

2a0a2 + �C2a0 + a2c2�2�
2

2P���4
. �147�

Notice that this implies that the constants satisfy

�a0C2 − a2c2��c1
2a0a2 + �C2a0 + a2c2�2� � 0. �148�

The analysis thus splits into a number of subcases. In the appendices we show that �c1
2a0a2

+ �C2a1+a2c2�2�=0 does not lead to a compact horizon and therefore we exclude this. It follows

that there are two possibilities: �i� a0C2−a2c2=0 or �ii� a0C2−a2c2�0.

1. Inhomogeneous S1
ÃS2 horizon

We now consider case �i� and eliminate a0 using a0=a2c2C−2. Observe that �147� implies � is

a constant. Also note that in this case the quadratic P����Q���; in particular,

�11 =
4c2a2

2Q���

C2

. �149�

The horizon metric reads
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�abdxadxb =
a2�c2C−2 + �2�

Q���
d�2 +

4c2a2

C2�c2C−2 + �2�
Q����dx1 + �dx2�2 +

C2

4c2a2
2
�dx2�2,

�150�

with 
=a2�c2C−2+�2�. This metric is nondegenerate everywhere except at the end points �=�1

and �=�2 where Q=0. At these points � /�x1 vanishes and the metric as conical singularities, in

general. The simultaneous removal of these conical singularities leads to a regular metric on S1

�S2. The condition for this is easily shown to be

Q̇��1�


��1�
= −

Q̇��2�


��2�
, �151�

which noting Q̇��i�=!C2��1−�2� implies 
��1�=
��2�. It follows that �2=−�1, and hence c1

=0 and c2�0. Since 
�0, now it follows that a2�0. Now, rescaling �→	c2C−1� and x2

→Cc2
−1/2x2 and defining a new coordinate and parameter by

� = C2x1, a �
	a2c2

C2
, �152�

one finds

�abdxadxb =
a2�1 + �2�

1 − �2
d�2 +

4a2�1 − �2�

�1 + �2�
�d� + �dx2�2 +

1

4C4a4
�dx2�2, �153�

where 
=C2a2�1+�2� and we have defined a new constant ���C3c2
−1/2. The Killing vector k

=� /�x1=C2� /�� vanishes at �=�1; the absence of conical singularities at these points implies

���+2
, and therefore � /�� generates a rotational symmetry. Finally, we use the shift freedom

�→�+const x2 in order to ensure � /�x2 corresponds to the other rotational symmetry generator,

so x2�x2+L. We have thus derived a near-horizon geometry whose horizon topology is S1�S2. It

is parametrized by �a ,C ,� ,L�, although there is a scaling symmetry,

C2
→ KC2, �→ K−1�, L → KL, x2

→ Kx2, �154�

which allows one to fix a combination of �C ,� ,L� �note that a is invariant� and hence it is a

three-parameter family.

In fact, in a particular region of the parameter space, the above near-horizon geometry is

isometric to that of the extremal boosted Kerr string. This region is given by C2����1 / �4a3�
�which is invariant under the scaling symmetry above�. In this region define a boost parameter �
�invariant under the scaling symmetry� by tanh ��4a3C2�. Then use the scaling freedom to set

C2=1 / �2a2 cosh ��, and thus one can solve for �= �sinh �� / �2a�. Changing coordinates to �
=cos �, with 0���
, we see that this near-horizon geometry is identical to that of the extremal

boosted Kerr string as given in Ref. 22. Note that the special case sinh2 �=1 corresponds to the

near-horizon geometry of the asymptotically flat extremal vacuum black ring
36

as first observed in

Ref. 22. It is curious that the boosted Kerr string “misses” the region of parameter space given by

C2����1 / �4a3�.

2. Inhomogeneous S3 horizon

We now analyze case �ii�, i.e., a0�a2c2C−2. It proves convenient to split the analysis into two

cases depending on whether �=0 or not. First consider ��0. Integrating �147� gives

� = � 
−
�a2�

�P���
+ c3� , �155�

where for convenience we have defined a constant ��0 by
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� �	�a0C2 − a2c2��c1
2a0a2 + �C2a0 + a2c2�2�

2
, �156�

and c3 is an integration constant. The remaining equations are satisfied without further constraint.

We will use the shift freedom x1→x1+const x2 to set c3=0 and x2→�x2 to pick a sign for �.

The horizon metric is

�abdxadxb =

d�2

Q���
+

2P���




dx1 −

�a2�

�P���
dx2�2

+
Q���

2P���
�dx2�2. �157�

The following identity is easily verified,

P��� � �C2a0 − a2c2�
��� + 2a0a2Q��� , �158�

which implies P��i�= �C2a0−a2c2�
��i�. For a positive definite metric we must have P��i��0,

which implies a0�a2c2C−2 and thus P��i��0. Observe that from �148� it follows that �c1
2a0a2

+ �C2a1+a2c2�2��0. There are now two cases to consider: either the discriminant D�0 or D

�0. Using �146� we see that D�0 is then equivalent to a0a2�0 and D�0 is equivalent to

a0a2�0. Therefore, in the case D�0, Eq. �158� implies P����0 for �1����2. On the other

hand, if D�0, in which case P has no real roots, then it must be the case that P����0 for all �
�so ��0�. Therefore, we see that in both cases P�0 for �1����2, and therefore the metric on

the horizon is nondegenerate everywhere except at the endpoints �1 ,�2 where Q vanishes. The

Killing vectors,

mi = di� �

�x2
− ���i�

�

�x1� , �159�

for constant di vanish at the endpoints �=�i, where the metric has conical singularities, in general.

Using Q��i�=0 it can be shown that ���1�����2� and therefore m1�m2. Thus, removing the

conical singularities �which corresponds to a particular choice of di� gives a metric which S3

topology. The values of di work out to be

di
2 =

8P��i�
��i�

Q̇��i�
2

=
8�C2a0 − a2c2�
��i�

2

C4��1 − �2�2
. �160�

Now let us consider the �=0 case. In the appendices we show that this arises as a limit of the

��0 case. In fact, in the appendix we give expressions valid for ��0 which maybe be viewed as

complementary to the ��0 case, since one cannot have both �=�=0 �as then P�0�.
The near-horizon metric has the following scaling symmetries �corresponding to S2

−1
S1 and

S2�:

C2
→ KC2, a0 → Ka0, a2 → Ka2, c1 → Kc2, c2 → Kc2

x1
→ K−1x1, x2

→ Kx2, v → K−1
v , �161�

where K�0, and

a2 → L−2a2, c1 → Lc1, c2 → L2c2, �→ L�, x2
→ L−1x2, �162�

where L is a constant �of either sign�. These may be used to fix two �or two combinations� of the

parameters �a0 ,a2 ,c1 ,c2 ,C2�. Therefore, this is a three- parameter family of solutions.

We will now show that in a particular region of parameter space the a2�0 solution is iso-

metric to the near-horizon geometry of the fast rotating extremal KK black hole �i.e., G4J�PQ�.
Observe that X��c1

2+4C2c2� /4C4 is invariant under the first symmetry �161� and scales as X
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→L2X under the second symmetry �162�. Therefore, use the second symmetry to set X=1. Note

that since the condition X=1 is invariant under the first symmetry, we are still free to use �161�.
Define a positive constants p ,Z by

p2 �
c1

2a0a2 + �C2a0 + a2c2�2

C6a2

, Z �
4a2

C2
+

2

C4
�C2a0 − a2c2� . �163�

Note that p and Z are invariant under �161�. There are now two possibilities: either Z / p2�1 or

Z / p2�1. The former region of parameter space gives the fast KK black hole as we now show. Use

the first symmetry �161� to set

C2a0 − a2c2 =
C2

2a2

�1 −
Z

p2� , �164�

which is possible as the left hand side transforms homogeneously �i.e., as K2�, but the right hand

side is invariant, and also for our solution C2a0−a2c2�0. We also define positive constants a ,q by

a2 �
a2

C2
, q �

1

pC2a2

, �165�

which can be inverted to give

C2 =
1

a	pq
, a2 =

a

	pq
. �166�

Now, using �164� it follows that

C2a0 − a2c2 =
p2 − 4a2

2a2p�p + q�
, �167�

and thus p2−4a2�0. Note that using X=1, �163� can be written as p2�4a0 /C2+ �1 /C6a2��C2a0

−a2c2�2; this, together with �167�, can then be used to solve for a0 to give

a0 =
1

a	pq
� p2

4
−

q2�p2 − 4a2�2

16a2�p + q�2 � . �168�

Then �167� can be used to solve for c2 giving

c2 =
1

a	pq
−

p2�p2 − 4a2��q2 − 4a2�

16a5	pq�p + q�2
. �169�

Finally use X=1 to solve for c1
2,

c1
2 =

p�p2 − 4a2��q2 − 4a2�

4a6q�p + q�2
, �170�

which implies q2�4a2. Thus c1 is determined up to a sign. To fix the sign recall that when we

used the second symmetry to set X=1 we did not specify the sign of L; therefore, we can use this

sign freedom to ensure c1�0. Using the scaling symmetries, we have therefore shown how to go

between the two sets of parameters �C2 ,a0 ,a2 ,c1 ,c2� and p ,q ,a in the region defined by a2�0

and Z�p2.

Now, define a new coordinate by

cos � =
2� − �1 − �2

�2 − �1

= � −
c1

2C2
. �171�

so 0���
 uniquely parametrizes the interval �1����2. This implies
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Q��� = C2 sin2 �, 
 = C2Hp, �172�

where Hp is defined in �D13� from which it follows


d�2

Q���
= Hpd�2. �173�

This proves that the �� component of our near-horizon geometry written in the � coordinate

introduced agrees with the �� component of the near-horizon limit of the fast rotating extremal

KK black hole as given in the appendices. In order to verify the rest of the horizon metric we need

to evaluate the constants di and ei�−di���i� appearing in the coordinate transformation defined

by �159� and mi=� /��i. One finds
74

di = �i	q�p2 − 4a2�

p + q

��i�, ei = −

�ia�i

�q
, �174�

where


��1� =
p

2a	pq�p + q�
��pq + 4a2� − 	�p2 − 4a2��q2 − 4a2�� ,


��2� =
p

2a	pq�p + q�
��pq + 4a2� + 	�p2 − 4a2��q2 − 4a2�� , �175�

and we will chose the signs by �1=+1 and �2=−1. In fact, the KK black hole is usually written in

“Euler-type” coordinates which are related to the �i by �=�1+�2 and y=2P��2−�1�, where P

�	p�p2−4a2� /4�p+q�. It is thus convenient to change coordinates directly from xi to �y ,��
which is performed by

x1 =
1

2
�e1 + e2�� +

1

4P
�e2 − e1�y, x2 =

1

2
�d1 + d2�� + �d2 − d1�

y

4P
. �176�

We have checked that for our near-horizon geometry �ij written in �y ,�� coordinates coincides

with the �y ,�� components of the horizon metric of the fast rotating KK black hole given in the

appendices. Furthermore, using the coordinate transformation above, one can calculate ky and k�

�recall k1=1, k2=0� which also coincide with those of the fast rotating KK black hole given in the

appendices. This ends the proof of the equivalence of our a2�0 near-horizon geometry in the

region of parameter space defined by Z�p2 �where Z and p are defined as in �163�� and the

near-horizon limit of the fast rotating KK black hole.

D. Near-horizon geometry of a “small” extremal AdS5 black ring?

We have not been able to solve the near-horizon equations, in general, in D=5 with ��0.

Earlier we showed that to do this one needs to solve the two coupled ODEs �37� and �86� for Q

and 
. We first note that when ��0 it is possible to eliminate 
 from �86� and �37�, resulting in

a 6th order ODE for Q,

d

d�� Q3

Q̈ + 2C2

d5Q

d�5� +
5

3
Q2

d4Q

d�4
= 0. �177�

Given a solution to this one can then deduce 
 from �37�. Finding all solutions to �177� would lead

to the classification of all allowed near-horizon geometries of extremal vacuum black holes with

R�U�1�2 symmetry in AdS5. Curiously all explicit dependence in � has cancelled from this

sixth-order ODE �although we emphasize it is only valid when ��0�—it is thus more convenient
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to work with the coupled pair of ODEs �37� and �86�. We will now present some results which

follow from these equations.

Lemma: The most general polynomial solution to �37� and �86� is given by 
=a0+a1� and

Q=−�a1�
3− �C2+3�a0��2+c1�+c2.

Proof: First observe that �37� implies that Q is a polynomial if and only if 
 is a polynomial.

Suppose 
 is a polynomial or order n=2. The ODE �86� then implies Q2=0 and then �37� implies


=0, a contradiction. Now suppose 
 is a polynomial or order n�3. For �→" we have 

�an�

n for some nonzero constant an. The ODE �37� then implies Q�−6�aN�
n+2

/ ��n+1��n
+2��. Then, examining the �→" limit of the ODE �86� implies n=4 /7 which is a contradiction.

This leaves 
=a1�+a0 which is indeed a solution with the Q given above.

As we showed in an earlier section 
=a1�+a0 gives the near-horizon geometry of the known

extremal rotating AdS5 black hole,
40

which has spherical horizon topology. An interesting question

is whether there exists a near-horizon geometry with S1�S2 topology, thus providing a candidate

extremal AdS black ring near-horizon geometry. Recall that the near-horizon limit of the asymp-

totically flat black ring has 
=a0+a2�
2. But the above lemma tells us that this cannot be the case

when one has a cosmological constant. This is perhaps surprising as the near-horizon limits of the

topologically spherical Myers–Perry black hole and its generalization to include a negative cos-

mological constant both have 
 of the same form �a linear polynomial�.
If an extremal vacuum AdS black ring does exist, one might expect it to be continuously

connected to the asymptotically flat extremal vacuum black ring as one turns off the cosmological

constant. It is thus of interest to investigate the existence of “small” AdS black rings, in the sense

that both the radii of the S1, say R1, and the S2, say R2, are much smaller than the AdS length scale

� ��=−4 /�
2�. For the asymptotically flat extremal black ring R2�a �where a is the Kerr param-

eter in the corresponding boosted Kerr string solution� and R1 is just proportional to the period of

z �which does not appear explicitly in the near-horizon geometry, only implicitly through identi-

fication of z�. Therefore, we will consider linearizing the pair of ODEs about the solution corre-

sponding to the boosted Kerr string near-horizon geometry �which includes that of the extremal

black ring� for small a /� �or equivalently small �C−2�. In our formalism a near-horizon geometry

is specified by the data �C2 ,
 ,Q ,�ij� �recall we set k1=1, k2=0� and thus these are the data which

we must linearize about.

Expand
75

Q��� = Q0��� + �Q1��� + O��2�, 
��� = 
0��� + �
1��� + O��2�, C2 = C0
2�1 + A1� + O��2�� ,

�178�

where ���C0
−2 is a dimensionless expansion parameter, Q1, 
1, and A1 are dimensionless func-

tions and constant respectively, and

Q0 = C0
2�1 − �2�, 
0 =

�1 + �2�

2c�
, C0

2 =
1

2a2c�
, �179�

are the zeroth order data corresponding to the Kerr string �which we denote with a 0 subscript�.
Plugging this into the ODEs �37� and �86� gives

Q1 + 2C0
2A1 + 6
0C0

2 = 0,
d

d�
�Q0

3


0

d3
1

d�3 � −
10C0

2Q0
2

c�
= 0, �180�

which determines Q1 and 
1. Explicitly

Q1 = C0
2
−

�4

4c�
− �A1 +

3

2c�
��2 + d1� + d2� , �181�

where d1 ,d2 are integration constants and
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d3
1

d�3
=

10C0
2
0

c�Q0
3 
�

d��Q0����2, �182�

which determines 
1 up to quadratures. We find


1 = −
�4

24c�
2

+
�2

2
� 1

c�
2

+ e2� + ��e3 −
5e1

8C0
4c�

2 � + e4

+
�1 + �2�

2

� 5e1

8C0
4c�

2
−

1

3c�
2 �log�1 + �� + �−

5e1

8C0
4c�

2
−

1

3c�
2 �log�1 − ��� , �183�

where ei are four constants of integration. Now, using �39� we may compute �11 to linear order in

�, which for later convenience we write as

�11 =
Q

c�
2


�1 + �F + O��2�� ,

F =
�2�4 + �2�6c��A1 − d2� − 6c�

2�2e4 + 3e2� − 17� + 11 + 6c��A1 − d2� + 6c�
2�e2 + 6e4��

12c��1 − �2�

+
�15e1 − 8C0

4�

12c�C0
4

log�1 + �� −
�15e1 + 8C0

4�

12c�C0
4

log�1 − �� . �184�

We now turn to determining �=�12 /�11. Equation �80� determines �̇2 in terms of �
 ,Q ,�11�
which can now calculated to linear order in �. Recall that we also showed that �̇�11

2 
=k, where k

is a constant �90�. Using �80� we compute this quantity to linear order and find

�̇2�11
4 
2 =

4�C0
6

3c�
4

�3c��A1 − d2� + 3c�
2�− e2 + 2e4� − 1� + O��2� , �185�

which is indeed a constant; in fact, note that for generic parameter values k=O�	��. Integrating for

� gives

� = k� �

1 − �2
+ O���� + �0, �186�

where the constant �0 is the �=0 value of the boosted Kerr string.

Let us now analyze regularity of this perturbative solution. First, observe that the location of

the roots of Q change, so write them as ��=�1+����+O��2�, where we have written �+=�2

and �−=�1 for convenience. Inserting into Q gives

��� = �
Q1� � 1�

2C0
2

= �
1

2
�−

7

4c�
+ d2 − A1 � d1� �187�

and regularity requires ��+�0 and ��−�0 to ensure that log�1��� is regular in the relevant

interval ��− ,�+� �note ��0�. For consistency of our perturbation series we require that the various

metric functions evaluated at the endpoints �� coincide with those of the boosted Kerr string as

�→0. It turns out that 
����=1 /c�+O�� log���� due to the logarithm terms. However, the func-

tion F �appearing in �11� and � both contain factors of 1 / �1−�2� which at the end points con-

tribute O��−1� as a result for generic parameter values F����=O��−1� and �=O��−1/2�. Both of

these are not acceptable: we must choose parameters such that the factor of 1−�2 in the denomi-

nator of the first term of F cancels with its numerator and also impose that the constant k=O��� so

�=O�1�. Demanding that the O��� term in �185� vanishes gives
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A1 − d2 =
1

3c�
− c��2e4 − e2� , �188�

which is equivalent to k=O���. Using this to eliminate A1−d2 in F �184� implies, remarkably, that

the numerator of the first term has a factor of 1−�2 which thus cancels the unwanted factor in the

denominator, leaving

F = c��e2 + 2e4� +
13 − 2�2

12c�
+

�15e1 − 8C0
4�

12c�C0
4

log�1 + �� −
�15e1 + 8C0

4�

12c�C0
4

log�1 − �� . �189�

Therefore, we have �F����=O�� log����. We conclude that the near-horizon solution we have is

valid to order O��2� for �−����+.

We must also ensure the absence of conical singularities in the horizon metric which reads

�abdxadxb =

d�2

Q
+

Q

c�
2


�1 + �F + O��2���dx1 + �dx2�2 + c�
2�1 − �F + O��2���dx2�2.

�190�

Simultaneous removal of conical singularities is equivalent to

Q̇��+��1 +
�

2
F��+� + O��2��


��+�
= −

Q̇��−��1 +
�

2
F��−� + O��2��


��−�
. �191�

It is easily seen that this can be satisfied if Q ,F ,
 are even
76

functions in �. This can be achieved

by setting d1=e1=e3=0.

With the choices the various functions simplify


1 = −
�4

24c�
2

+
�2

2
� 1

c�
2

+ e2� + e4 −
�1 + �2�

6c�
2

log�1 − �2� ,

F = c��e2 + 2e4� +
13 − 2�2

12c�
−

2

3c�
log�1 − �2� . �192�

Note that determining � �i.e., the constant k� requires a higher order calculation: one needs the

O��2� term in �185� which we will not pursue here. The perturbation we have constructed is

parametrized by e2 ,e4 ,d2 �on top of three parameters of boosted Kerr string� with A1 determined

by �188� and 2e4−e2�25 /12c�
2 �this is equivalent to the �����0 condition�.

For a boost value given by sinh2 �=1 the near-horizon geometry of the Kerr string is isomet-

ric to that of the asymptotically flat extremal black ring which is a two-parameter family of

solutions �these can be taken to be the two angular momenta Ji�. One would expect an AdS

extremal black ring to also have two parameters. However, the regular perturbations we have

derived depend on more parameters. Presumably these extra parameters must be fixed somehow

�perhaps asymptotic information� for our perturbative solution to be interpreted as the near-

horizon geometry of a “small” AdS black ring.

We can introduce coordinates �� ,z� where �=d1x1 where d1 is chosen to ensure � has period

2
 and z=x2 runs along a periodic direction �corresponding to that of the string in the unperturbed

case�. As explained in Refs. 22 and 23, we expect �� generating the S1 of the presumptive black

ring solution to be given by a linear combination of �� and �z, while �� can be taken to be the

generator of the U�1� in the transverse S2. From our linearized solution above, we can readily

compute J� via a Komar integral.
23

However, to determine Jz and hence J�, we require knowledge

of the O��2� term in �185� which is not available from our first order calculation. Physically, one

would expect that a black ring in AdS5 would have greater angular momenta in the S1 direction,

relative to the corresponding asymptotically flat solution, in order to prevent self-collapse.
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To summarize we have constructed an approximate solution to the vacuum near-horizon

equations with a negative cosmological constant by perturbing about the near-horizon geometry of

the boosted Kerr string. To this level of approximation it describes a regular near-horizon geom-

etry with horizon topology S1�S2. Taking the boost to be that of the asymptotically flat black ring

sinh2 �=1 provides a candidate for a near-horizon geometry of a “small” extremal ring in AdS5.

VI. DISCUSSION

In this paper we have shown how one may determine all possible vacuum near-horizon

geometries of extremal �but nonsupersymmetric� black holes under in four and five dimensions

under the following assumptions. In 4D we assume axisymmetry and that the horizon has compact

sections of nontoroidal topology. In 5D we assume there are two commuting rotational symmetries

and the horizon has compact sections of nontoroidal topology.

Our results in 4D are unsurprising. We find that the only solution is the near-horizon limit of

the extremal Kerr black hole. In fact, in the context of isolated horizons the same result has been

established.
44

Observe that uniqueness of Kerr has only been proven for nonextremal black holes;

therefore our result can be viewed as a first step toward proving uniqueness of extremal Kerr

among asymptotically flat black holes with degenerate horizons. Pleasingly, our method in 4D

worked just as easily with a negative cosmological constant showing that the only regular solution

is the near-horizon geometry of extremal Kerr-AdS4. It should be noted that there are no known

uniqueness theorems for asymptotically AdS black holes even in 4D; perhaps our result will be

useful in proving uniqueness of extremal Kerr-AdS4.

In 5D we were able to find all solutions in the pure vacuum, i.e., zero cosmological constant.

Naturally the results are more complicated than in 4D. We found three families of near-horizon

geometries: two spherical topology horizons and one S1�S2 horizon. Further, we identified how

all the known vacuum extremal black hole solutions fit into these families: i.e., extremal boosted

Kerr string, extremal vacuum black ring, extremal Myers–Perry, and the extremal KK black holes

�both slow and fast rotating�. Our results are summarized in detail in Sec. II. A number of things

may be deduced from our classification.

For example, one expects a vacuum doubly spinning black ring which is asymptotic to the KK

monopole to exist �i.e. a “Taub NUT” black ring�.77
Such a solution would have four parameters

�roughly Ji ,M , P�. Presumably like other doubly spinning solutions in 5D it admits an extremal

limit, which would be a three-parameter family. One can then consider its near-horizon limit. From

our Theorem 2, it follows that its near-horizon geometry is contained in our family of S1�S2

horizons. A reasonable guess is that it is simply given by the near-horizon limit of the extremal

boosted Kerr string �which is a three-parameter subfamily of our solution�. The boost then would

be related to the NUT parameter P and as P→" �flat space limit� one must have sinh2 �→1 in

order to get the near-horizon geometry of the asymptotically flat black ring, see Ref. 22. In fact,

for the asymptotically flat extremal black ring both the infinite radius limit and the near-horizon

limit simplify to the tensionless �i.e., sinh2 �=1� boosted Kerr string.
23

In view of our near-

horizon results it is thus natural to expect that the infinite radius limit of a KK black ring is the

boosted Kerr string for arbitrary boost.

We also remark that a curious output of our analysis is that in some cases the near-horizon

geometries we derived are isometric to the near-horizon limit of known black holes only in a

subregion of parameter space. This occurs both for the S1�S2 family and the second spherical

topology case. It is possible that these other regions of parameter space are occupied by unknown

black hole solutions �e.g., KK black ring� but it seems more likely that such bounds on the

parameters are invisible from the near-horizon geometry alone �e.g., as for the near horizon of the

asymptotically flat extremal ring which actually is only isometric to the tensionless boosted Kerr

string in a subregion of its parameter space, see Ref. 23�.
Other interesting consequences of our results regards uniqueness of near-horizon geometries.

Our analysis has revealed there are two distinct classes of S3 horizon geometries in 5D vacuum

gravity. Also the same near-horizon geometry can arise as the near-horizon limit of different black

holes although in all known examples the black holes have different asymptotics �i.e., KK or
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asymptotically flat�. Furthermore, it seems clear that not all near-horizon geometries arise as

near-horizon limits of black holes with a given asymptotics. For example, one can ask whether our

second class of S3 topology horizon geometries can ever arise as the near-horizon limit of an

asymptotically flat extremal black hole. Due to its S3 topology one can identify the correct U�1�
generators which must match onto those in the orthogonal two-planes as asymptotic infinity. One

can therefore calculate the angular momenta via a Komar integral over the horizon
23

which gives

J�1
= −

4
	2�2

G5C8
��2�	C2a0 − a2c2

, J�2
= −

4
	2�2

G5C8
��1�	C2a0 − a2c2

. �193�

It is clear that one can have J�1
=J�2

�this occurs if and only if 
��2�=
��1� which is equivalent

to the parameter c1=0�. Observe that the near-horizon geometry always possesses exactly a U�1�2

rotational symmetry group �i.e., it is never enhanced even when J�1
=J�2

�. However, from group

theoretic reasoning one might expect
78

asymptotically flat black holes �with a single horizon� with

equal angular momenta to posses an enhanced rotational symmetry group SU�2��U�1� �recall the

rotation group SO�4��SU�2��SU�2��. This leads us to conclude that this near-horizon geometry

does not correspond to that of an asymptotically flat black hole. It should also be noted that in the

nonextremal case it has been shown
64

that the Myers–Perry black hole is the unique asymptoti-

cally flat black hole with two rotational symmetries and S3 topology horizon, and one expects this

result to go over in the extremal case �and its near-horizon geometry is, in fact, given by our other

class of S3 horizon geometries�.
Another useful aspect of this analysis is that the explicit metrics for the various near-horizon

geometries appear simple in the coordinates we have derived. In contrast, the metrics one obtains

by taking the near-horizon limits of known solutions tend to be far more complicated, as can be

seen from the appendices. This should make the problem of generalizing our results to include

gauge fields more tractable. It would be interesting to classify the near-horizon geometries of

extremal, nonsupersymmetric black holes in ungauged supergravity theories. We intend to inves-

tigate this problem in the near future.

One of the main motivations for this work was to investigate the existence of asymptotically

AdS black rings. Unfortunately, we were not able to solve the vacuum near-horizon equations in

the presence of a negative cosmological constant, in general, even with the assumption of two

rotational symmetries. This is in contrast to 4D where using the assumption of axisymmetry it was

possible for us to do so. However, we did reduce the problem to solving a single sixth-order ODE

of one function. We found one set of solutions to this equation which correspond to the near-

horizon geometry of the known, topologically S3, extremal rotating AdS5 black hole.
40

It would be

interesting to find a solution which gives rise to the near-horizon geometry of an extremal AdS5

black ring. By perturbing the near-horizon geometry of the asymptotically flat black ring, we were

able to construct an approximate near-horizon geometry corresponding to the near-horizon limit of

a small �i.e., the sizes of the S1 and S2 are small compared to the AdS length scale� extremal black

ring in AdS. The fact that the perturbation can always be made regular and preserves the S1

�S2 topology appears to be nontrivial; perhaps this provides some evidence for the existence of,

at least a small, extremal vacuum black ring in AdS5.
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APPENDIX A: GLOBAL ARGUMENT

In this section we prove the following results quoted in the main text: Q2P �needed in 4D� and

Q3d3
 /d�3 �needed in 5D� are globally defined functions on H which vanish where Q vanishes.
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This is not actually obvious as 
̇, 
̈, and d3
 /d�3 need not be globally defined, although 
 is.

To see this note that the norm of � /�� is 
 /Q which is regular everywhere except at the points

where Q vanishes. However, we know that Q must vanish at two distinct points, and thus we

conclude that this vector field is not globally defined and thus �� /���
= 
̇ and higher derivatives

are not guaranteed to be globally defined. Note that this argument relies crucially on Q vanishing

somewhere. Recall this comes from the fact that � is a globally defined smooth nonconstant
79

function on a compact space and thus d� vanishes at two distinct points �the max and min of ��.
Then the invariant �d��2=Q /
 tells us Q�0 and vanishes at these two points.

To proceed we introduce the vector field S=Q�� /���. Its norm squared is 
Q which is

globally defined and vanishes at the zeroes of Q. S is certainly regular everywhere except possibly

at the zeros of Q. Let the zeroes of Q be �1��2. Then, assuming regularity, we have Q= Q̇i��

−�i�+¯ near �=�i, and since Q�0 we learn that Q̇1�0 and Q̇2�0. This allows us to define

r1
2=�−�1 and r2

2=�2−�. Then, near �i we have S���Q̇i� /2
i�ri�� /�ri� which is regular at ri=0

and vanishes there, as can be seen by using the Cartesian coordinates xi ,yi associated with ri. We

deduce that S is a globally defined vector field on H which vanishes at the zeros of Q.

Thus we now employ the globally defined vector S to construct invariants, e.g., S�
�=Q
̇ is

globally defined �and vanishes where Q does�. Note the following identity:

Q2
̈ � S�S�
�� − S�
�Q̇ �A1�

proves that Q2
̈ is globally defined as Q̇ must be �this is because Q̇ is regular at the only potential

problem points �=�i as Q= Q̇i��−�i�+. . .�. Therefore Q2
̈ is an invariant of the solution which

vanishes at the zeros of Q since S vanishes at those points. Since Q2P=2Q2
̈−S�
�2
/
−Q2

/

this proves that Q2P is indeed globally defined and vanishes at the zeros of Q. This establishes the

result needed for the 4D analysis. The 5D case may be treated similarly using the identity

Q3
d3


d�3
= S�Q2
̈� − 2Q̇Q2
̈ , �A2�

which proves that Q3d3
 /d�3 is globally defined �using the fact that Q2
̈ is�. Therefore,

Q3d3
 /d�3 is an invariant which vanishes at the zeros of Q as claimed.

APPENDIX B: NEAR-HORIZON GEOMETRY OF KERR-AdS4

Use the form of the Kerr-AdS4 metric as in Ref. 65 which satisfies R��=−3g2g�� �our g is the

same as their ��. The angular velocity is given by �=a / �r+
2 +a2�, where r+ is the largest zero of

�r= �r2+a2��1+g2r2�−2mr. Define

�2 = r2 + a2 cos2 �, �� = 1 − a2g2 cos2 �, � = 1 − g2a2. �B1�

Using the algorithm presented in Ref. 22 to determine the near-horizon data, we find

k# =
2ar+

�r+
2 + a2�2

, 
 =
�+

2

��r+
2 + a2�

, A0 =
− �+

2��r+
2 + a2�

, �B2�

�abdxadxb =
�+

2

��
d�2 +

sin2 ����r+
2 + a2�2

�+
2�2

d#2. �B3�

where �+�= ��r��r=r+
, etc. Notice that in the flat space limit g→0 limit r+→a and thus the above

near-horizon metric reduces correctly to that of Kerr as given in Ref. 22.
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APPENDIX C: NEAR-HORIZON GEOMETRY OF ROTATING AdS5 BLACK HOLE

In this appendix we present the near-horizon geometry of the known, topologically S3, rotating

AdS5 black hole.
40

1. Self-dual case

We first consider the self-dual case that occurs if the two independent angular momenta are set

equal �J1=J2�. In this case the full solution exhibits symmetry enhancement, and it is convenient

to treat it separately to the general case studied below. The self-dual solution can be written in

corotating coordinates as

ds2 = −
V�r�

w�r�2
dT2 +

dr2

V�r�
+

r2w�r�2

4
�d� + cos �d� − ���r� − �+�dT�2 +

r2

4
�d�2 + sin2 �d�2� ,

�C1�

where

V = 1 + g2r2 −
2M�

r2
+

2Ma2

r4
, w�r�2 = 1 +

2Ma2

r4
, ��r� =

4Ma

r4w2
. �C2�

The horizon is located at the largest real root of V�r�, r=r+ so V�r+�=0. Extremality implies

V��r+�=0. The near-horizon limit of this metric is given by the data


 =
1

w+

, k� = − �+�, A0 = −
V+�

2w+

, �C3�

�abdxadxb =
r+

2w+
2

4
�d� + cos �d��2 +

r+
2

4
�d�2 + sin2 �d�2� . �C4�

We will now show that the near-horizon metric �101� derived in the main text is identical to

the near-horizon of self-dual solution above. Consider �101� and define

M �
4
�C2 + 2�
�2

�C2 + 3�
�3
, a2 �

2
�C2 + �
�

�C2 + 2�
�2
, r+

2 �
4


C2 + 3�

. �C5�

Observe that these definitions imply V�r+�=0, V��r+�=0, V��r+�=2C2
/
, and that

w+
2 � w�r+�2 =

2�C2 + 2�
�

C2 + 3�

, �C6�

where V and w are defined as above. It now follows that the horizon metric �101� agrees exactly

with that of self-dual solution. Now, using the definition of � above compute

���r+� = − �C2 + 3�
�	 C2 + �


C2 + 2�

�	 C2 + 3�


2
2�C2 + 2�
�
. �C7�

Next, use the scaling freedom 
→K
 to set 
=1 /w+, which is equivalent to

C2 + 3�


2
2�C2 + 2�
�
= 1. �C8�

This then implies that in �101� k�=−���r+� and C2=V��r+� / �2w+�, both of which coincide with

those for the self-dual solution given above. This completes the proof of equivalence.
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2. General angular momenta

We now consider the general case for which the two independent angular momenta are not

equal, i.e., J1�J2. The solution satisfies R��=−4g2g�� �we have set the parameter l used in Ref.

40 to g−1�. The near horizon geometry is parametrized by three parameters �r+ ,a ,b� subject to the

extremality constraint,

2g2r+
6 + r+

4�1 + g2b2 + g2a2� − a2b2 = 0. �C9�

Following the procedure given in Ref. 22, it is straightforward to compute the near-horizon limit

and we omit the details. The near-horizon metric can be written in the form �22� with horizon

metric given by

�abdxadxb =
�+

2d�2

��
+ �ijdxidx j , �C10�

with

�ijdxidx j =
��

�+
2 
 �r+

2 + a2�2 sin2 �d�2

�a
2

+
�r+

2 + b2�2 cos2 �d�2

�b
2 �

+
1 + r+

2g2

r+
2�+

2 
b�r+
2 + a2�sin2 �d�

�a

+
a�r+

2 + b2�cos2 �d�

�b

�2

, �C11�

where

�� = 1 + g2r+
2 − g2�+

2, �+
2 = r+

2 + a2 cos2 � + b2 sin2 �, �a = 1 − a2g2, �b = 1 − b2g2.

�C12�

The remaining near-horizon data are


 =
�+

2r+
2

�r+
2 + a2��r+

2 + b2�
, A0 = −

4r+
2�1 + 3g2r+

2 + g2a2 + g2b2�

�r+
2 + a2��r+

2 + b2�
,

k� =
2ar+�a

�r+
2 + a2�2

, k� =
2br+�b

�r+
2 + b2�2

. �C13�

Note that the above formulas simplify in the zero cosmological constant case g=0, in particular,

r+
2 = �ab�. We should also note that there is no loss of generality in assuming a�b�0.

APPENDIX D: NEAR-HORIZON GEOMETRY OF KK BLACK HOLE

In this section we give the near-horizon geometries of the extremal KK black holes found in

Ref. 37 �see also Ref. 38�. We will use the form of the solution as given in Ref. 26. The

nonextremal solution carries the 4D conserved charges �M ,Q , P ,J� �i.e., it a rotating dyonic black

hole� and we will choose an orientation for rotation such that J�0. In 5D when P�0 it has

horizon topology S3 and is asymptotic to the KK monopole. When P=0 it is merely the boosted

Kerr string, and thus we only consider the P�0 case in this section. As is well known there are

two different extremal limits of this black hole called slowly rotating �since G4J�PQ� and fast

rotating �since G4J�PQ�.

1. Slowly rotating solution

This extremal limit of the KK black hole is given by a ,m→0 with  =a /m�1 fixed. This

extremal solution can be parametrized by three positive constants �p ,q , �. In this case the angular

velocities are
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�y =	p + q

q
, �� = 0. �D1�

After some calculation one can show that the near-horizon is of the form �22� with the metric on

H given by

�abdxadxb = Hpd�2 +
Hq

Hp

�dy + A�d��2 +
�pq�3�1 −  2�sin2 �d�2

4�p + q�2Hq

, �D2�

where

Hp =
p2q

2�p + q�
�1 +  cos ��, Hq =

pq2

2�p + q�
�1 −  cos ��, A� =

q2p5/2

2�p + q�3/2Hq

� − cos ��

�D3�

and regularity of the horizon demands y�y+8
P �or quotients� and ���+2
, where P

=	p3
/4�p+q�� and 0���
. Coordinates which are adapted to the U�1�2 rotational symmetry

can be defined by �=�1+�2 and y=2P��2−�1�; the absence of conical singularities then implies

�1, �2 are 2
 periodic with � /��1 vanishing at �=
 and � /��2 vanishing at �=0, i.e., one must

have S3 topology. The other near-horizon data are

A0 = −
2�p + q�

�pq�3/2�1 −  2�1/2
, 
 =

2�p + q�

�pq�3/2�1 −  2�1/2
Hp, �D4�

and

k� = −
2�p + q� 

�pq�3/2�1 −  2�
, ky =

2

1 −  2
	p + q

q3
. �D5�

There is a special case which simplifies considerably,  =0 �note this gives J=0�. Defining

y= p	p / �p+q�� one gets

�abdxadxb =
p2q

2�p + q�
�d�2 + sin2 �d�2 + 2�d� − cos �d��2� �D6�

and


 =	p

q
, C2 =

2�p + q�

�pq�3/2
, �D7�

and

k =
2�p + q�

�pq�3/2

�

��
= C2

�

��
. �D8�

Noting that


C−2 =
p2q

2�p + q�
, �D9�

it is easy to see this is of the form of the 
=a0 case we derived in the main text. To prove complete

equivalence one needs to invert the parameter change which is easily done,

p = C−1	2
�1 + 
2�, q = C−1	2�1 + 
2�


3
. �D10�
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2. Fast rotating solution

This extremal limit of the KK black hole is given by m=a�0. This extremal solution can be

parametrized by three positive constants �p ,q ,a� which satisfy p ,q�2a. In this case the angular

velocities are

�y =	�q2 − 4a2�

q�p + q�
, �� =

1

	pq
�D11�

After some calculation one can show that the near-horizon is of the form �22� with the metric on

H given by

�abdxadxb = Hpd�2 +
Hq

Hp

�dy + A�d��2 +
pqa2 sin2 �

Hq

d#2, �D12�

where

Hp = − a2 sin2 � +
p�pq + 4a2�

2�p + q�
+

2pQP

	pq
cos �, Hq = − a2 sin2 � +

q�pq + 4a2�

2�p + q�
−

2qQP

	pq
cos �

�D13�

and

A� = −
2P

Hq

�Hq + a2 sin2 ��cos � +	p

q

Q�2a2�p + q� + q�p2 − 4a2��sin2 �

�p + q�Hq

�D14�

and

P =	p�p2 − 4a2�

4�p + q�
, Q =	q�q2 − 4a2�

4�p + q�
. �D15�

Regularity of the horizon demands y�y+8
P �or quotients� and ���+2
. Coordinates which

are adapted to the U�1�2 rotational symmetry can be defined by �=�1+�2 and y=2P��2−�1�; the

absence of conical singularities then implies �1, �2 are 2
 periodic with � /��1 vanishing at �
=
 and � /��2 vanishing at �=0, i.e., one must have S3 topology. The other near-horizon data are

A0 = −
1

a	pq
, 
 =

Hp

a	pq
, �D16�

and

k� =
pq + 4a2

2a2	pq�p + q�
, ky = −

�p2 − 4a2�Q

qa2�p + q�
. �D17�

APPENDIX E: D=5, �=0 SPECIAL CASES

In this appendix we provide details concerning special cases arising in the �=0 and 
=a0

+a2�
2 case analyzed in the main text.

1. Exclusion of a special case

In this subsection we show that the case
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c1
2a0a2 + �C2a0 + a2c2�2 = 0 �E1�

is not compatible with having a compact horizon. Observe that this case implies that the polyno-

mial P���=��2+��+� has vanishing discriminant. From �147�, �̇=0, and we may shift x1 to set

�=0. Since �C2a0+a2c2�=�c1
	−a0a2, it follows that

�11 =
2��� − �0�2



, �E2�

�=!a2c1
	−a0a2 and

�0 = � �−
a0

a2

�1/2

. �E3�

Further, 
=a2��−�0���+�0� and hence the horizon metric is

�abdxadxb =

d�2

Q
+

2��� − �0��dx1�2

a2�� + �0�
+

Q�dx2�2

2��� − �0�2
. �E4�

Having obtained the local form of the horizon metric, we turn to its regularity. The roots of Q in

this case are easily seen to be

�� =
c1

2C2
�

C2a0 − a2c2

2C2	− a0a2

. �E5�

Now suppose �0�0; then it is easy to show �+=�0. Similarly �0�0 implies �−=�0. Therefore in

either case, �d��2=Q /
 vanishes only at one point. This implies that �E4� cannot describe a

compact manifold and hence we exclude this case.

2. �=0

Consider now the special case �=0. Note that since �=0, a0=−a2c2C−2, which implies �
=0, and therefore ��0. Observe that another way of writing the solution to �147�, valid when

��0 �and any ��, is

� = � 
��a2�
2 − a0�

�P���
+ c3�� . �E6�

The advantage of this expression is that it is valid when �=0 and it is related to �155� by c3

=c3�+ ��a2� / ����. Thus, setting �=0 gives

� = � 
 C

4	c1
2c2

2a2

C2�2 + c2

a2�
+ c3�� �E7�

and a2�0. Also note that 
=a2��2−c2C−2� and

�11 =
4a0a2c1�



= 4a0a2�Q���



+ C2� �E8�

so a0�0 and thus c2�0. We must have c1��0, and without loss of generality, we choose �
�0 so c1�0. Therefore, �11�0 for �1����2 and hence the horizon metric is nondegenerate

everywhere except at the points �i where there are conical singularities. The rest of the analysis is

identical to the ��0 case, and one obtains the same values for di noting that P��i�=2a0a2c1�i.
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In General Relativity kinematical arguments such as this are not sufficient to establish symmetry enhancement; one

usually uses dynamical input from the Einstein’s equation. In any case this symmetry enhancement occurs in all known
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As discussed below �32�, � cannot be constant as otherwise det �ij =0 everywhere.
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