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Abstract

The systems based on image processing have numerous applications in the domain of motion control of robots and

autonomous vehicles. The current paper is oriented to the solution of the problem that precedes the implementation

of automatic avoidance of the on-road obstacles—how to detect them, to track in the sequence of images, and to

recognize which of them are stationary, incoming, or outgoing from the camera. The overall algorithm of obstacle

classification presented in this paper consists of three basic phases: (1) image segmentation in order to extract the

pixels belonging to the image of a road and the objects over it; (2) extraction of characteristic points inside the area of

the obstacle, their description and tracking in following frames; and (3) estimation of distances between the camera,

the obstacles and their rates of change (relative velocities). The verifications of particular steps of the proposed

algorithm are illustrated using real road-traffic images, while the overall algorithm is tested using both synthesized

sequences of images and the ones acquired in real driving.

Keywords: Machine vision, Image processing, Image segmentation, Pattern recognition, Support vector machines,

Feature extraction, Tracking, SURF, Pose estimation

1 Introduction

In recent years, self-anti-collision systems have been

developed for preventing traffic accidents and achieving

safe driving. This system should alert drivers of the pres-

ence of obstacles and help them to react in advance. In

these systems, the ability to detect obstacles is essential.

The safe operation of a vehicle depends heavily on the

vision. The vision of a driver can be improved by systems

that provide information about the environment around

the vehicle that cannot be seen or barely seen by human

eyes. Therefore, an obstacle detection system based on

machine vision is the subject of current research in smart

vehicle technology.

The particular aim of this work is to enable the classifi-

cation of the on-road obstacles according to their relative

velocities, onto the categories of incoming, outgoing, and

stationary, as a prerequisite for their avoidance in the

context of autonomously guided cars.

The existing techniques used in the on-road obstacle

detection may vary according to the definition of the
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obstacles. They might be classified into two categories

[1]. The first one is related to the obstacles reduced to a

specific object (vehicle, pedestrian, etc). In this case, the

detection can be based on search for specific patterns,

possibly supported by features such as texture, shape

[2, 3], symmetry [4, 5], or the use of an approximate

contour. The second category is used when the defini-

tion of the obstacles is more general. In this case, two

methods are generally used. (1) The usage of a monoc-

ular camera based on an analysis of optical flow [6–9].

This method requires rather huge calculation, and it is

sensitive to vehicle movement. Also, it detects only the

moving obstacles and fails when obstacle has small or null

speed (static ones). (2) The method based on stereo vision

[10–13]. Images are captured using two or more cameras

at the same time from different angles, and then obstacles

are detected by matching. This method generally requires

more time to do the necessary calculations, and it is sen-

sitive to the local motion of each camera caused by the

vehicle movement.

Generally, a method for detecting both moving and

static objects simultaneously is required because the static

objects such as boxes can fall on the road in front of a car

and they are dangerous too.
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Actually, the algorithm of on-road obstacles detection

should provide that:

1. The objects that are outside the road are eliminated.

2. Irregularities on the road surface that are not

affecting the driving are not considered.

3. Static obstacles on the road are properly recognized

in order to be avoided.

4. Vehicles on the road are detected in order to adjust

own motion according to their relative distances and

velocities.

We propose in this paper an obstacle detection method

using a monocular camera mounted on a vehicle receiv-

ing the light variations in the scene on the road ahead

and analyzing the captured images to carry out the obsta-

cle detection. The output of the proposed algorithm is a

classification onto classes of moving and static obstacles.

After getting the obstacle information, drivers can react

quickly and precisely to take corresponding actions to pre-

vent car accidents. Moreover, the system of autonomous

car driving may react appropriately in order to keep the

motion of a car along the nominal trajectory relative to

the road borders, simultaneously avoiding incoming and

outgoing cars. Here, obstacles are defined as actual arbi-

trary objects protruding from the ground plane in the road

area, both static and moving ones. Road markers in the

road area (e.g., pedestrian crossings) as well as a number

of objects outside the road region are considered as the

obstacles of no interest.

The current paper is organized as follows. Section 2

presents the methods used in the diffrents steps of the

proposed algorithm. Section 2.1, for the given sequence

of video images, synthetic or taken by a mobile camera,

the road region is detected using support vector machine

method. Section 2.2 describes how the on-road obstacles

are detected and extracted over the road region. From this

point on, the obstacle is represented by rectangular area

around the detected object on the road. Description of the

characteristic points inside these areas and their tracking

from frame to frame is done using the SURF (Speeded-

Up Robust Features) algorithm in Section 2.3. Section 2.4

deals with the calculation of the position and the relative

velocity of each obstacle to classify the static and dynamic

(incoming, outgoing) ones. Illustrations based on experi-

mental results are given throughout Section 3. The paper

is concluded in Section 4, with some comments regarding

the actual limits of the application and suggestions for the

future work.

2 Themethods

In order to detect the road obstacles, to track them, and to

determine their positions and relative velocities, the fol-

lowing operations are employed (as illustrated on Fig. 1).

Fig. 1 Flowchart of the proposed method

First, the road region is detected using the SVM (support

vector machine) classification method in order to distin-

guish class “road” from the class “non-road”. Second, the

non-road region as the result of this detection is classified

into two areas: “obstacles” and “road environment.” After

the latter classification, one has three types of regions:

environmental area, road region, and obstacles. The real

obstacles on the road like cars, pedestrians, boxes, etc.

are belonging to the class “obstacles.” Monitoring each of

these obstacles is done by using the SURF matching algo-

rithm. The final step consists in calculating the obstacles’

positions in the field of view and the calculation of their

relative velocities in order to distinguish the static and

dynamic obstacles (inside the range of 200 m ahead).

2.1 Road region extraction

The first step in the algorithm consists in segmentation

of an image into the road region and the other region

that includes the remaining part of image (“non-road”). In

order to classify one pixel as a member of a class “road,”

there are a number of possible segmentation methods

based on color, texture descriptors based on statis-

tic parameters, structure, or frequency spectrum, etc.

While some acceptable results have been obtained when

the color components have been used only, even three



Bendjaballah et al. EURASIP Journal on Image and Video Processing  (2016) 2016:41 Page 3 of 17

decades ago [14] or by use of the best candidates

among texture statistic and structure descriptors [15],

our reasoning here was oriented toward a more complex

approach where the color and texture are simultaneously

considered [16].

The proposed algorithm is composed of five compo-

nents. In the first feature extraction component, a feature

vector is extracted from each pixel of the input image. Sec-

ond, the component of dynamic training database (DTD)

is filled with training set labeled by a human supervisor in

initialization and updated by the new training set online.

Third, the component of Classifier Parameters Comput-

ing is used to estimate the parameters in SVM classifier.

The fourth SVM classifier component is in charge of train-

ing and classification which takes the training data and

classifier parameters to train the SVM classifier and use

the trained SVM classifier to classify image into road/non-

road classes. The last component contains two stages:

morphological operation and online learning operation.

The former implements connected region growing and

hole filling on the classification result to determine the

road region. The latter compares morphological result

and classification result to evaluate the quality of the

current classifier, then select new training set from that

comparison and update the DTD. The flowchart shown

on Fig. 2 illustrates this algorithm.

As an initial operation, the populations of “road” and

“non-road” pixels are indicated by an operator (driver)

action, via marking the appropriate rectangular regions

on the image as shown in Fig. 3. The same initialization

can be made by automatic designation of a rectangular

window in the central lower part of image, a priory guar-

anteeing that the contents is typical for the road area. This

way, an initial content of a Dynamic Training Database

(DTD) is specified.

In order to reduce the calculations, the number of pix-

els inside the rectangle is limited to 1000. If the total of

encompassed pixels is greater, one thousands of them will

be chosen in a random manner. This DTD is going to be

continually updated in order to follow the changes in the

road scene. The selected set of classifying parameters is

calculated for every subsequent image. The process of seg-

mentation is based on the SVM method. The final step in

the classification consists in morphological processing of

the binarized image. After the final segmentation is done,

the upgrade consisting in online updating of DTD is the

finishing step before the acquisition of a new image.

Feature vector is eight-dimensional:

Fi,j =[ ft1(i,j), ft2(i,j), ft3(i,j), ft4(i,j),

ft5(i,j), fc1(i,j), fc2(i,j), fc3(i,j)]
(1)

where i = 1..H and j = 1..W

Fig. 2 Flowchart of the road region extraction algorithm
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Fig. 3 Initialization of DTD. Red rectangles are used for “positive” training (road class), and blue ones for “negative” training (non-road class)

The first five elements are Haralick’s statistical features:

Energy =
∑

u

∑

v

{p(u, v)}2 (2)

Enthropy =
∑

u

∑

v

p(u, v) log{p(u, v)} (3)

Contrast =

Ng−1
∑

n=0

n2
{ Ng

∑

u=1

Ng
∑

v=1

p(u, v)

}

(4)

IMD =
∑

u

∑

v

1

1 + (u − v)2
p(u, v) (5)

Correlation =

∑

u

∑

v
(u.v)p(u, v) − μxμy

σxσy
(6)

where IMD is the inverse moment of differences, p(u, v)

is an element of gray level co-occurrence matrix (GLCM),

and (μx,μy) and (σx, σy) are the mean values and covari-

ances calculated using this matrix.

The remaining three elements of feature vector are

pixels, USV color, and components.

It is natural to suppose that the features space of “road”

and “non-road” classes are in nonlinear relation and that it

is not expected to obtain some linear hyper-plane which is

distinguishing these two classes in original feature space.

Following the results given in [17], a Gaussian radial basis

function (RBF) kernel is used as the SVM kernel function.

There are two classifying parameters: complexity param-

eter C and γ parameter. It should be found which one is

more appropriate for this discrimination. In order to do

so, the parallel validation relative to these two parameters

is done on the image belonging to DTD.

Due to the continuous dynamic changes of the road

contents as a result of camera motion, DTD should be

updated from time to time. It was chosen that after each

ten frames, the training databases for both classes are

refreshed by replacing a hundred of stochastically chosen

old members by a hundred of new ones, among the pop-

ulation of pixels already classified in the particular class.

The larger numbers of updated elements leads to exces-

sive impact of incorrectly classified pixels, while for too

low numbers of replaced sampled pixels, one can expect

low adaptation abilities.

After this step of classification, it is usual that there

would be a number of small unconnected groups of pix-

els around the road, classified as the “road”, as well as

the number of “holes” over the road region. In order to

eliminate such small aggregations of pixels, the algorithm

includes morphological operations “opening” and “filling

the holes”.

Online training upgrade of SVMmethod [16] is optional

but is very useful in the context of this application. Besides

the already mentioned updating the DTD, it includes the

evaluation of the performance of current classification.

This process is based on the basic assumption that the

road region consists from connected pixels. As a result

of this, “road” pixels detected outside the main region of

road as well as the “non-road” pixels located over the road

region are the sources of information on how the classifier

should be modified.

2.2 On-road obstacles extraction

2.2.1 Classification inside the “non-road” region

To extract the on-road obstacles, one has to remove two

kinds of image objects: the marks on the road and the

environment outside the road. It is supposed that the

markers on the road are going to be associated to the road

region in the previous process of road detection. The envi-

ronment around the road has been already classified as

“non-road” region in the first step of classification. This

step of algorithm is oriented toward the separation of the

whole “non-road” region into two subclasses: the “obsta-

cles on the road” and “everything else existing outside the

road”.

Figure 4 shows the result of detection of a road region

(a) and the template image of the road region (b) where

the black pixels are representing the road. After analyzing

of a particular row in the image, one obtains a profile as

shown in Fig. 5. Based on this line profile, white line seg-

ments that have two adjacent black segments on both the

left and right sides are the line segments belonging to the

on-road obstacles. By checking each row in the template

image of the road, this classification can be done. Figure 4c

shows the results of this classification. The overall class

of obstacles on the road is represented by gray pixels

on (d).
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Fig. 4 Phases of classification inside the “non-road” region. a The result of road region detection. b Road region template image. c The result of

region classification. d Obstacle region

2.2.2 Obstacles’ detection andmarking

After the latter classification phase, three regions (classes

of pixels) are obtained: road region, obstacles on the

road, and environment region, while the on-road obsta-

cle class is important only. This region contains multiple

objects of different sizes (Fig. 4d). As a first step, the small

objects (less than 50 pixels) are eliminated because they

are considered as the false obstacles.

The extracted obstacles should be tracked continuously

in the sequence of incoming frames. In order to pre-

pare this tracking phase, some area of interest should be

specified—the detected obstacles should be marked by

specifying some tracking window encompassing each of

them. Even the last step in the relative velocity estimation

Fig. 5 Line profile of pixel intensity values (260th row in the road

region image)

is strictly affected by the choice of this regular geometrical

shape corresponding to the particular obstacle. Figure 6

shows the different steps of marking the obstacles on the

road. Figure 6a shows the region of the real obstacle after

filtering unwanted objects. The red rectangle around this

region is shown in b which will be replaced in the next step

by the green square of the width equal to the base of red

rectangle as in c. The final representation of a search area

superimposed to the original image is shown in d.

2.3 Principle of tracking of the on-road obstacles

In order to estimate the relative velocities of the obsta-

cles, they should be tracked in sequence of frames. If

the camera is stationary, the difference between two con-

secutive images would be used as a natural source of

information which part of the image is belonging to the

stationary background and which part is candidate to be

associated to the moving object. In our particular case,

the camera itself is a moving object and tracking princi-

ple cannot be based on this reasoning. The previous step

in the proposed algorithm was ended by the extraction

of a rectangular area around the detected road obstacle,

and the focus of attention should be directed toward these

regions in the sequence of incoming images.

The very first idea could be to detect in the next frame

what is the position where the overall content of rectan-

gular window around the obstacle can be found, based on

some correlation measure. This principle would be obvi-

ously a time-consuming one and, moreover, sensitive to
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Fig. 6 a–d Phases of on-road obstacle marking

the expected scale and rotation transformations in both

cases of incoming and outgoing obstacles.

As a result of this, it is more appropriate to select among

all pixels inside the tracking window a subset of points that

are the characteristics according to some pre-specified

criterion and to track them from frame to frame. These

characteristic points (key-points) may vary a lot, based on

the principle of extraction and capabilities to preserve the

stability of the object features based on their choice. Refer-

ence [18] was the source of exhaustive survey of methods

related to the subject of specifying the points of interest as

well as to the descriptors associated to these points.

Basically, our choice was oriented toward the points

characterized by high value of local gradients. The illumi-

nation conditions between two consecutive frames are not

going to be changed in some appreciable amount, while

the local gradients would keep almost the constant values

in the presence of affine transformations.

Corners are usually used as the characteristic points,

since they can be used to compute an angular orienta-

tion for the feature. Sometimes, it is highly suggested

to apply some sort of low-pass filtration as a first step

in order to reduce the influence of the noise. This way,

some combinations of LP and HP filtration, (Laplacian

of Gaussian—LOG—is the typical example) are used to

extract the corners as points of interest.

The well-known Harris detector [19] was analyzed as a

first among the appropriate candidates for characteristic

points extraction and description. While some very good

tracking results have been obtained using Harris detector

in a number of typical road scenarios, it was decided that

some more complex description of the neighbourhood

around the “high gradient” points is preferable in order to

overcome the problems when the obstacle changes its size

and orientation rapidly, which is typical when the incom-

ing vehicle closely approaching the camera, or the other

vehicle is just over-passing the vehicle where the camera

is mounted.

The next choice in this direction was the choice of

SIFT (Scale Invariant Feature Transform) algorithm. SIFT

belongs to spectra descriptors, typically involving more

intense computations in floating point. It is developed by

Lowe [20, 21] and provides the way of finding interest

points and feature descriptors, invariant to scale, rotation,

illumination, affine distortion, perspective and similarity

transforms, and noise. SIFT includes stages for selecting

center-surrounding circular weighted difference of Gaus-

sian (DoG) maxima interest points in scale space to create

scale-invariant key-point. While the SIFT algorithm can

be considered as the most powerful for this purpose, it is

a rather complex for any kind of real-time applications.

As a natural candidate based on SIFT principles, we

considered the SURF algorithm [22] as a version reducing

the computing time. The SURF algorithm is composed of

three consecutive steps [22, 23]. The first step is the detec-

tion of interest points, and the second step is building the

descriptor associated with each of the interest points. The

last step is descriptor matching.
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2.3.1 SURF algorithm

SURF was developed to improve the speed of inter-

est point detector, descriptor generation, and matching.

SURF uses a very basic Hessian matrix approximation for

feature point detection. At a point p(x, y) in an image I,

Hessian matrix inH(p, σ) at scale is defined as follows:

H(p, σ) =

[

Lxx(p, σ) Lxy(p, σ)

Lyx(p, σ) Lyy(p, σ)

]

(7)

where Lxx(p, σ) is the convolution of the Gaussian second-

order derivative
∂2

∂x2
g(σ ) with the image I in point x, and

similarly for Lxy(p, σ) and Lyy(p, σ). The authors approx-

imate the Hessian matrix with box filters approximating

second-order Gaussian derivatives and the filtering can

be performed using integral images with a very low com-

putational complexity while the calculation time is inde-

pendent of the filter size. Let Dxx,Dxy, and Dyy be the

approximations of Lxx, Lxy, and Lyy respectively.

The filter responses are further normalized with respect

to their size, which guarantees a constant Frobenius norm

for any filter size. With the Frobenius norm remaining

constant for the box filters at any size, the filter responses

are scale normalized and require no further weighting.

The construction of the scale space starts with the 9 × 9

filter. Then, filters with sizes 15× 15, 21× 21, and 27× 27

are applied (Fig. 7).

The dominant orientation assignment for the local set

of HAAR features is found using a sliding sector window

of size �
3 . This sliding sector window is rotated around

the interest point at intervals. Within the sliding sector

region, all HAAR features are summed. This includes both

the horizontal and vertical responses, which yield a set of

orientation vectors. The largest vector is chosen to repre-

sent dominant feature orientation. By way of comparison,

SURF integrates gradients to find the dominant direction.

To create the SURF descriptor vector, a rectangular grid

of 4 × 4regions is established surrounding the point of

interest, and each region of this grid is split into 4 × 4

sub-regions. Within each sub-region, the HAAR wavelet

response is computed over 5 × 5 sample points. The final

descriptor vector is of dimension 64: 4 × 4 regions with

four parts per region.

2.3.2 Proposed tracking algorithm

Algorithm 1 On-road obstacles tracking

1: Begin

2: Extraction of obstacles from the frame N◦1;

3: for i = 2 → Number of frames do

4: Extraction of obstacles from the frame N◦i;

5: for j = 1 → Number of obstacles in frame

N◦i − 1; do

6: Test = false;

7: for k = 1 → Number of obstacles in frame

N◦i; do

8: Test = SURF(frame i − 1, frame i,

9: obstacle j, obstacle k); ⊲ search if

the obstacle j in the frame i-1 matches obstacle k in the

frame i.

10: if Test then

11: obstacle k = obstacle j;

12: end if

13: end for

14: if Test == false then

15: lost obstacle;

16: end if

17: end for

18: The remaining obstacles are the new ones;
end for

19: end

The key-points are extracted from the rectangular

regions detected after the step described in Section 3.2.

These key-points are described as vectors in the descrip-

tion step. The next step is the matching. Several vectors

from a database are matched against new vectors from

a new input image by calculating the Euclidian distance

between these vectors. This way the objects can be rec-

ognized in a new frame. When the sufficient number of

matched points is found, particular obstacle is marked as

recognized and it is not tested more. Some new obsta-

cles would appear in this new frame, and they will be

considered in the next one, while there would be the

cases that some of previously existing obstacles are now

vanishing or are not recognized. Unmatched obstacles

Fig. 7 Filters Dxx (left) and Dxy (right) for two successive scale levels (9 × 9 and 15 × 15)
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would be treated in the next frames as the new ones. The

pseudo-code illustrating this part of algorithm.

2.4 Calculation of relative positions, velocities, and

classification of the on-road obstacles

2.4.1 General case of a reconstruction of camera’s spatial

and angular position

The spatial and angular position of a camera [24] (mov-

ing coordinate frame Ocxcyczc (CCF)) can be calculated

relative to the outer stationary coordinate frame (OIxIyIzI
(ICF)) according to the general relationships illustrated in

Fig. 8. Transformation matrix between these two coor-

dinate frames is defined as TO = T1(φ)T2(ϑ)T3(ψ),

where the angular orientation of a camera relative to

ICF is defined via a set of Euler angles of jaw, pitch,

and roll (ψ ,ϑ ,φ), and Tii = 1, 2, 3 are the elementary

matrix transformations. This rotational transformation is

followed by translation specified by position vector �R:

�eC = TO�eI ; �R = xO�eI1 + yO�eI2 + zO�eI3 (8)

In order to reconstruct the scene depth, |�R|, one should
know some a priory information about the distance |OIM|
between two points inside the scene (e.g., the distance

between the point M in horizontal plane of ICF and

coordinate origin OI as is illustrated in Fig. 8).

In practice, position reconstruction is based on detec-

tion of a rectangle ABCD, in the horizontal plane of ICF

with coordinate origin OI at the cross-section of diag-

onals, the axis OIxI parallel with AB (in direction of a

vanishing point P), and the axis OIyI parallel with BC (in

direction of a vanishing point Q), (Fig. 9).

For this particular application, parallel road lane borders

are used to specify vanishing point P (direction of OIxI ),

and the direction of OIyI is perpendicular to it (according

to the condition �mP �mQ = 0), while the lane-width is used

as a priory known distance in ICF.

Fig. 8 Illustration of a general case of camera’s position reconstruction

Fig. 9 Position reconstruction procedure

“m-vector” for any image point is generally defined as:

�m =

⎡

⎣

m1

m2

m3

⎤

⎦ = f

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

xc

xc

yc

xc

yc

xc

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎣

f

xL
yL

⎤

⎦ ; xc �= 0 (9)

where f is a focal distance, (xc, yc, zc) are the coordinates of

a point represented in CCF, and (xL, yL) are its coordinates

in the focal plane.

2.4.2 Position of an obstacle relative to the camera

To calculate the position of an on-road obstacle rela-

tive to a camera mounted on the moving vehicle, one

should apply the principle illustrated in Fig. 9. This prin-

ciple is illustrated here on an example of synthesized

sequence of images, assuming the angular orientation of

camera (0◦, 0◦,−5◦), field of view ±15◦, and focal dis-

tance f = 5 mm. As a first step, one has to extract the

borders of the lane in the lower part of image, where

they are parallel. The reference rectangle ABCD now is

as shown in Fig. 10a with a priory known the informa-

tion: (AD)//(BC), (AB)//(CD) and the width of the lane

(3 m in this example). Vanishing point P is the intersec-

tion of AD and BC,Q is the intersection of AB and DC,

and O is the center of the rectangle ABCD. Figure 10b

shows the result of calculating the scene depth using the

information about distance |OE| which is equal to one

half of the lane-width and the position of the camera rel-

ative to the virtual point O ( �R vector). The next step is

calculating the distance to each of the obstacles on the

road by providing the virtual point O using the scene

depth, but here, the unknown quantity becomes |OIM| =
|OO1|. Point O1 is the center of the base of the green

square (the result of algorithm described in Section 3).

Figure 10c illustrates this last step in calculation of a

scene depth to the point O1, while in Fig. 10d, the camera
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Fig. 10 a–d Illustration of a camera’s position reconstruction

distance from the obstacle is shown. The estimated rel-

ative position is (−29.38,−3.07, 1.51)[m], while the real

was (−30,−3.15, 1.5)[m], introducing the relative error of

(2.1, 2.5, 0.67)%.

2.4.3 Relative velocities

To calculate the relative velocity of each of the obstacles on

the road, one should first calculate the relative positions in

consecutive time instants t and t + 1, as shown in Fig. 11,

using the relation:

Vob =
Rt+1
ob − Rt

ob

△t
(10)

2.4.4 Classification

VRelative = VObstacle − VCamera

⇒ VObstacle = VRelative + VCamera (11)

The classification is done according to:

VObstacle = 0 ⇒ Stationary

VObstacle < 0 ⇒ incoming

VObstacle > 0 ⇒ outgoing (12)

Fig. 11 a–c Illustration of a relative velocity calculation
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2.4.5 Potential obstacles

Besides the obstacles that are already existing on the road

that should be classified according to their velocities rela-

tive to the moving camera, there are some objects poten-

tially suddenly incoming onto the road from the lateral

sides. These are pedestrians who are irregularly cross-

ing the street or vehicles making some parking maneuver

nearby the street car track, animals on the road, etc.While

it was shown that the initial classification of the road

surface is possible to make by proper characterization

based on color and texture features, the same approach is

practically not possible to apply when one considers the

neighboring non-road region, due to a huge diversity of

all possible continuously changing “out-of-the-road” back-

grounds. In order to take into account these potential

obstacles, they should be detected also and characterized

among themselves relative to their velocity component

perpendicular to the road orientation, in the following way.

Firstly, the vanishing point P should be determined as

the intersection of the lane and road border lines. Then,

the neighboring strip close to the road on the right side

(3 m in width and 30 m in length) could be extracted and

considered from its light intensity distribution point of

view. All pixels with a light intensity outside the region

specified as ±σ (standard deviation) around the mean

value are the candidates to represent the potential objects.

The realistic images require somemorphological filtration

of erosion type in order to eliminate small groups of pixels

after this segmentation. After that, the relevant groups of

pixels are aggregated and their centroids are representing

the potential objects’ positions. Their positions and veloc-

ities in direction perpendicular to the road orientation are

calculated in the same manner as for the obstacles already

appearing on the road. Objects that aremoving toward the

road are classified as potential suddenly incoming obsta-

cles. Their detection on the road (if they appear) is going

to be done in the regular way as for the other road obsta-

cles, but their existence is a type of alarm because their

appearance might require some immediate reaction (fast

stopping, sharp maneuver,...).

3 Results and discussion

3.1 Experimental results of the road region extraction

3.1.1 Comparison of results obtained by SVMmethod and

color onlymethod

The results of the road region extraction are shown in

Fig. 12. The typical images representing the highway

scenario, country road, and a street scene in an urban

environment are exploited.

The first row on Fig. 12 shows that the initialization of

DTD should select possible roadmarkers (lane separators)

as a part of road region. Similarly, when some areas in the

image are initially designated as the road environment, the

representative pixels of near and far environment should

be included. These were the criteria for positioning the

selecting windows on the images, while their shapes and

sizes are of no particular importance since the selection of

1000 points inside each rectangle is used. The second row

in Fig. 12 shows the results of SVM classification made

on these test pictures. It is obvious that some morpholog-

ical erosion procedures are needed in all cases, while the

need for filling of holes on the road was not frequently

present. The third row illustrates the situation when the

final classification results are superimposed onto the orig-

inal image. In order to show the superiority of the used

classification method, the fourth row represents the final

classification results if the color feature is used only (ini-

tialization and morphological processing have been the

same).

3.1.2 Comparison of results between offline learning and

online learning

Figure 13 shows three illustrations of advantages of online

training upgrade.

In the first example (a), the initial sampling acquired the

shadowed part of road but not in a sufficient way. The

second example (b) represents the case where the back-

ground was not encompassing the sky region. In the third

example (c), one can see that the surrounding buildings

are misclassified as a road because of the lack of learning.

Results obtained via offline learning are shown in the sec-

ond row, while the online upgrade resulted in the binary

images shown in the third one. After the morphological

processing, the resultant classification of offline learning

are superimposed in the original images in the fourth

row. The results of the online learning, clearly showing

superiority, are illustrated in the fifth row.

3.2 Experimental results of the on-road obstacles

extraction

Figure 14 shows the different steps of the on-road obsta-

cles detection in a sequence of digital images. the first row

illustrates the final classification results of the road region

using SVM method. The second row shows the result

of the real obstacle extraction. The third row represents

the final representation of a search area superimposed

onto the original image. Some of the tall vehicles, like

the trucks, are not going to be fully encompassed by this

type of tracking window, some low-profile cars would not

fill the tracking window completely, but the choice of a

square-shaped tracking window seemed as a reasonable

compromise.

3.3 Experimental results of the on-raod obstacles tracking

3.3.1 Comparison between Harris, SIFT, and SURF

Running time

The average time spent on key-point extraction,

description, and matching, normalized by the total
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Fig. 12 The process of basic road detection algorithm and comparison of results obtained by SVM method and color only method. 1st row: the

original image and sampling windows. 2nd row: the classification results (Red is road class. Yellow is non-road class). 3rd row: the results of

morphological filtration of SVM method. 4th row: the results obtained by the color only method

number of key-points processed are compared. The

results were obtained on an Intel(R) Core(TM) i5-4210

CPU @ 1.70 GHz, 1.70 GHz, and 8 GB of RAM using

the Matlab library implementations for each detector,

descriptor, and matching scheme. The results in Fig. 15a

clearly show that Harris detector spends approximately

0.75ms on each feature, while SIFT spends 3ms and SURF

spends approximately 1ms. SIFT and SURF compute at all

scales, but SURF is most likely because tSIFT ≃ 3 × tSURF.

Number of matches

Figure 15b shows the number of matching points

obtained by Harris detector, SIFT, and SURF algorithm.

Harris detector generates approximately 15 matches, and

in other case, using the SIFT algorithm, it generates

approximately 53 matches. The accelerated variant of

SIFT is SURF, and it generates approximately 31 matches

which is very accepted if the running time of each algo-

rithm is taken into consideration.

3.3.2 Experimental results of the on-road obstacles tracking

As it is illustrated in Fig. 16, two outgoing vehicles are con-

sidered as obstacles in series of pairs of two consecutive

frames, on 40 [ms] interval. The number of matches of

characteristic points between the pairs of tracked obsta-

cles is enough sufficient, especially having in minds the

fact that there were no false matches between the dif-

ferent obstacles at all. As it was expected, the number

of characteristic points and matched ones is obviously

greater when the obstacle is closer to the camera. The

second row in Fig. 16 illustrates the final result of the

tracking.

3.4 Results of calculation of relative positions, velocities,

and classification of the on-road obstacles

3.4.1 Simulation results of relative position calculation

The above described algorithm of relative position cal-

culation was first tested through a simulation of the

tracked vehicle, assumed to perform a uniform move-

ment. Although the image of the obstacle seen by

the camera is “calculated” by the simulator, the pro-

cessing chain implemented (incorporating the detection

phases/tracking and extraction of the primitive of inter-

est) is exactly the one to be used in real cases of images.

The tracked vehicle undergoes a uniform speed defined

by the vector (12.5, 0, 0)T [m/s] and an initial position

defined by the vector (70.5, 0, 0)T [m]. It is important to

note in this test, the vehicle carrying the camera under-

goes a uniform speed defined by the vector (21.25, 0, 0)T

[m/s] and an initial position defined by the vector

(0, 0, 0)T [m].

The results obtained at the end of the simulation are

shown in Fig. 17. These show the estimates of the coor-

dinates of the reference point in comparison to the

actual data, imposed by the simulated spatial relationships

between the obstacle/vehicle and the vehicle carrying the

camera. It is obvious that the error increases with the
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Fig. 13 a–c Comparison of results between offline learning and online learning

distance between the two vehicles. This is basically due

to the fact that as the vehicle moves away, its relative

size in the image decreases, affecting the image finite

resolution that becomes more important. In order to

improve the estimates of the relative position for further

objects, one can consider the usage of additional camera

with a narrow field of view, mounted above this one. The

overall task of tracking and position estimation could be

done by proper fusion of data collecting from these two

cameras.

Fig. 14 On-road obstacles extraction
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Fig. 15 a, b Comparison between three different tracking methods: Harris detector, SIFT, and SURF

3.4.2 Simulation results of relative velocities calculation

Figure 18 shows a comparison between the real and the

estimated relative positions and velocities of a simulated

moving obstacle on the road. It may be noted that the

actual relative velocity was uniform (V = −8.75m/s). The

estimated relative velocity oscillates around this value.

The error is increasing with the distance between the two

vehicles.

A simple moving average filter is applied to solve this

problem while its dimension (window size) has been

Fig. 16 Experimental results of the on-road obstacles tracking
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Fig. 17 Relative position estimation

dynamically adapted according to the estimated distance

as it is shown in Fig. 19.

3.4.3 Simulation results of the classification

For the specified scenario including four different vehicles

as shown in Fig. 20. In the sequence of frames with 400

[ms] inter-frame interval, the comparison results between

the estimated and real classification are shown in f and

g, respectively. Three areas can be distinguished: the red

zone for incoming vehicles, green zone for outgoing ones,

and the white area for stationary obstacles/vehicles. Col-

ors of curves correspond to the color of the vehicles. The

estimated results are consistent with actual data.

The illustration of detecting potentially incoming obsta-

cles coming from lateral direction is given on Fig. 21. The

first row represents the sequence of four images illus-

trating the potential obstacles in the strip aside the road.

Some of them are stationary while the others are moving

Fig. 18 Comparison between the real and estimated relative positions

and velocities

toward the road or out of the road. The result of detection

of groups of pixels representing the potential obstacles is

given in the second row. The third row of Fig. 21 is con-

sisting from the original sequence where the object’s labels

and the calculated data about their positions and lateral

velocities are superimposed. The fourth row distinguishes

the “dangerous” objects moving toward the road, as it is

also visible from the fifth row where the lateral veloci-

ties of all objects are represented, while two of them are

moving in direction toward the road.

3.4.4 Experimental results of the classification

Figure 22 shows a real scenario of a road traffic, presented

by a sequence of digital images captured by a monocular

cameramounted on amobile vehicle. In this sequence, the

inter-frame interval is 400 [ms]. Each frame contains two

vehicles (black and blue) which are moving with different

speeds. Figure 22f represents the estimation results of the

relative distance for each vehicle. The vehicles velocities

Fig. 19 Size of averaging filter in dependence to distance from the

obstacle
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Fig. 20 a–g Classification of the on-road obstacles (synthesized sequence of frames)

and their classifications are shown in Fig. 22g where it

can be seen that both of them represent an outgoing

obstacle.

4 Conclusions

The algorithm of an automatic classification of the

on-road obstacles according to their relative velocities

is presented here as a prerequisite for an application

of the automatic control system for obstacle avoidance.

The on-road obstacles have to be detected firstly, then

described properly in order to enable their tracking from

frame to frame. Our choice on these two steps have

been oriented toward rather complex methods: SVM

based on eight component vector (color + texture) for

the recognition of a road area and SURF based on 64

component vector for the description and tracking of

characteristic points inside the tracking windows. These

steps are verified using the realistic road-traffic images.

The effects of choice of these complex methods onto

the accuracy of detection and tracking have been shown

partially, comparing them with the simpler approaches

in road detection and obstacle’s characterization, and

showing the superiority. Consequently, the higher com-

putational cost must be paid and the ability to imple-

ment the algorithm in real time might be compromised.

Our further research will be oriented more toward the

algorithm implementation based on recent results in

parallel processing and new types of image coding given

in [25–28].

The final step of verification that was related to the

estimation of distances to the obstacles and their rates

of change was made using the synthesized sequences

representing the simulatedmotion of the camera andmul-

tiple vehicles as well as on the sequences from the real

driving.

These results have shown highly acceptable accuracy of

estimated relative velocities of obstacles. The automatism

of this algorithm is reduced by the very first requirement

that the operator should point onto the regions in the

image which are typical representatives of road and non-

road, but from that point on, nothing is required as a

human intervention. A priory knowledge of some road

measures, as lane-width, could be easily provided from

the vehicle global positioning system and digital map of

the road. A number of practically important algorithm

parameters have been analyzed and specified. They are

regarding to the part of the field of view usable for basic

orientation on the road, minimal size of tracked vehi-

cles, minimal correspondence of the characteristic points

required for the reliable tracking of obstacles, the size of

an averaging filter used in estimation of relative velocity,

etc. The future work will be oriented toward further ver-

ification of the algorithm using controlled experiments in

real road-traffic situations.
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Fig. 21 Classification of potential obstacles (synthesized sequence of frames)

Fig. 22 a–g Classification of the on-road obstacles (real scenario)
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