
 Open access Journal Article DOI:10.1007/S10951-007-0011-2

A classification of predictive-reactive project scheduling procedures
— Source link

Stijn Van de Vonder, Erik Demeulemeester, Willy Herroelen

Institutions: Katholieke Universiteit Leuven

Published on: 01 Jun 2007 - Journal of Scheduling (Kluwer Academic Publishers-Plenum Publishers)

Topics: Schedule (project management), Project planning, Dynamic priority scheduling, Two-level scheduling and
Rate-monotonic scheduling

Related papers:

 Project scheduling under uncertainty: survey and research potentials

 Proactive heuristic procedures for robust project scheduling: An experimental analysis

 Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities

 Executing production schedules in the face of uncertainties: a review and some future directions

 The use of buffers in project management: The trade-off between stability and makespan

Share this paper:

View more about this paper here: https://typeset.io/papers/a-classification-of-predictive-reactive-project-scheduling-
52jopxpv1c

https://typeset.io/
https://www.doi.org/10.1007/S10951-007-0011-2
https://typeset.io/papers/a-classification-of-predictive-reactive-project-scheduling-52jopxpv1c
https://typeset.io/authors/stijn-van-de-vonder-56a9a57glo
https://typeset.io/authors/erik-demeulemeester-2l6qhjxx6l
https://typeset.io/authors/willy-herroelen-4tl28vmcq6
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/journals/journal-of-scheduling-2yu85ez6
https://typeset.io/topics/schedule-project-management-uudwq3cr
https://typeset.io/topics/project-planning-3shgaiyt
https://typeset.io/topics/dynamic-priority-scheduling-37r1rl8z
https://typeset.io/topics/two-level-scheduling-2azc8q1h
https://typeset.io/topics/rate-monotonic-scheduling-hxc7c2do
https://typeset.io/papers/project-scheduling-under-uncertainty-survey-and-research-2qagvj3bhh
https://typeset.io/papers/proactive-heuristic-procedures-for-robust-project-scheduling-1n1klh1jv3
https://typeset.io/papers/proactive-and-reactive-strategies-for-resource-constrained-4wq68qupfw
https://typeset.io/papers/executing-production-schedules-in-the-face-of-uncertainties-1ml3ter5t5
https://typeset.io/papers/the-use-of-buffers-in-project-management-the-trade-off-4sz9in6xpe
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-classification-of-predictive-reactive-project-scheduling-52jopxpv1c
https://twitter.com/intent/tweet?text=A%20classification%20of%20predictive-reactive%20project%20scheduling%20procedures&url=https://typeset.io/papers/a-classification-of-predictive-reactive-project-scheduling-52jopxpv1c
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-classification-of-predictive-reactive-project-scheduling-52jopxpv1c
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-classification-of-predictive-reactive-project-scheduling-52jopxpv1c
https://typeset.io/papers/a-classification-of-predictive-reactive-project-scheduling-52jopxpv1c

J Sched (2007) 10: 195–207

DOI 10.1007/s10951-007-0011-2

A classification of predictive-reactive project scheduling
procedures

Stijn Van de Vonder · Erik Demeulemeester ·

Willy Herroelen

Published online: 15 May 2007

© Springer Science+Business Media, LLC 2007

Abstract The vast majority of the project scheduling re-

search efforts over the past several years have concentrated

on the development of workable predictive baseline sched-

ules, assuming complete information and a static and deter-

ministic environment. During execution, however, a project

may be subject to numerous schedule disruptions. Proactive-

reactive project scheduling procedures try to cope with these

disruptions through the combination of a proactive schedul-

ing procedure for generating predictive baseline schedules

that are hopefully robust in that they incorporate safety time

to absorb anticipated disruptions with a reactive procedure

that is invoked when a schedule breakage occurs during

project execution.

In this paper we discuss the results obtained by a large

experimental design set up to evaluate several predictive-

reactive resource-constrained project scheduling procedures

under the composite objective of maximizing both the

schedule stability and the timely project completion prob-

ability.

Keywords Proactive-reactive project scheduling · Time

uncertainty · Stability · Timely project completion

S. Van de Vonder · E. Demeulemeester (�) · W. Herroelen

Research Center for Operations Management, K.U.Leuven,

Leuven, Belgium

e-mail: erik.demeulemeester@econ.kuleuven.be

S. Van de Vonder

e-mail: stijn.vandevonder@econ.kuleuven.be

W. Herroelen

e-mail: willy.herroelen@econ.kuleuven.be

1 Introduction

The vast majority of the research efforts in project schedul-

ing over the past several years have concentrated on the de-

velopment of exact and heuristic procedures for the gener-

ation of a workable baseline schedule (pre-schedule or pre-

dictive schedule), assuming complete information and a sta-

tic and deterministic environment. This baseline schedule

serves a number of important functions (Aytug et al. 2005;

Mehta and Uzsoy 1998), such as facilitating resource alloca-

tion, providing a basis for planning external activities (i.e.,

activities to be performed by subcontractors) and visualiz-

ing future work for employees. Pre-schedules are the start-

ing point for communication and coordination with exter-

nal entities in the company’s inbound and outbound supply

chain: they are the basis for agreements with suppliers and

subcontractors, as well as for commitments to customers.

During execution, however, a project may be subject

to considerable uncertainty which may lead to numerous

schedule disruptions. Many types of disruptions have been

identified in the literature (we refer to Zhu et al. 2005;

Wang 2005). Activities can take longer than primarily ex-

pected, resource requirements or availabilities may vary,

ready times and due dates may change, new activities might

have to be inserted (Artigues and Roubellat 2000), etc. We

limit ourselves to the treatment of time uncertainties caused

by the fact that actually realized activity durations during

project execution may deviate from the durations that were

planned in the baseline schedule.

In general, there are two approaches to dealing with

uncertainty in a scheduling environment (Davenport and

Beck 2002; Herroelen and Leus 2005): proactive and reac-

tive scheduling. Proactive scheduling constructs a predictive

schedule that accounts for statistical knowledge of uncer-

tainty. The consideration of uncertainty information is used

196 J Sched (2007) 10: 195–207

to make the predictive schedule more robust, i.e., insensitive

to disruptions. Reactive scheduling involves revising or re-

optimizing a schedule when an unexpected event occurs. At

one extreme, reactive scheduling may not be based on a pre-

dictive schedule at all: allocation and scheduling decisions

take place dynamically in order to account for disruptions as

they occur. A less extreme approach is to reschedule when

schedule breakage occurs, either by completely regenerat-

ing a new schedule or by repairing an existing predictive

schedule to take into account the current state of the sys-

tem. It should be observed that a proactive technique will

always require a reactive component to deal with schedule

disruptions that cannot be absorbed by the baseline sched-

ule. The number of interventions of the reactive component

is inversely proportional to the robustness of the predictive

baseline schedule.

The basic scheduling problem in a deterministic project

setting is the so-called resource-constrained project schedul-

ing problem (RCPSP). This problem (problem m,1|cpm|

Cmax in the notation of Herroelen et al. 2000) involves

the determination of a baseline schedule that satisfies both

the finish-start, zero-lag precedence constraints between

the activities and the renewable resource constraints under

the objective of minimizing the project duration. Develop-

ing algorithms to solve this problem dominates the project

scheduling literature (for overviews: Herroelen et al. 1998;

Kolisch and Padman 1999; Kolisch and Hartmann 1999;

Brucker et al. 1999; Demeulemeester and Herroelen 2002).

A recent research track focuses on the stochastic

resource-constrained project scheduling problem, an ex-

tension of the RCPSP that involves the minimization of

the expected makespan of a project with stochastic activity

durations (problem m,1|cpm,dj |E(Cmax)). The stochas-

tic RCPSP aims at making a project quality robust, i.e., in-

sensitive to disruptions that affect the performance metrics

used to evaluate its quality. In this paper quality robustness

refers to makespan performance. Most of the research ef-

forts on the stochastic RCPSP rely on so-called scheduling

policies (Möhring et al. 1984, 1985). These policies do not

use a baseline schedule but view the scheduling problem as

a multi-stage decision process where decisions on the set

of activities to be started next have to be made at stochastic

decision points that correspond to the completion time of ac-

tivities, exploiting only knowledge about the observed past

and the a priori knowledge about the processing time distri-

butions. Stork (2001) examines the performance of different

classes of policies. In the proactive-reactive terminology of

this paper, these scheduling policies can be viewed as qual-

ity robust reactive procedures.

Besides minimizing the expected makespan E(Cmax),

the service level of a project can be regarded as a practi-

cal quality robustness measure that maximizes P(z ≤ z),

the probability that the objective function value z of the

realized schedule stays within a certain threshold z. For

the makespan objective, we maximize the probability that

the project completion time does not exceed the prede-

fined project due date δn, i.e., P(sn ≤ δn), where sn denotes

the start time of the dummy end activity. We will refer to

this measure as the timely project completion probability or

TPCP.

Constructing a baseline schedule with good makespan

performance for a wide range of execution scenarios cor-

responds to building a quality robust schedule. Research

efforts on proactive quality robust project scheduling are

rather scarce. The well-known critical chain buffer manage-

ment approach of Goldratt (1997) might be considered as

a quality robust baseline scheduling method in that the in-

serted buffers aim at protecting the project due date.

However, when uncertainties come into play, optimizing

the makespan performance is no longer the whole story.

Project plans should also include some stability or solu-

tion robustness, i.e., the insensitivity of planned activity start

times to schedule disruptions. The a priori predictive sched-

ule should not differ too much from the realized schedule

obtained after project execution. Constant rescheduling in

order to improve the expected makespan might strongly de-

crease the predictive value of the baseline schedule. For

this reason, we aim at minimizing a stability cost function∑
wjE|sj − sj |, defined as the weighted sum of the ex-

pected absolute deviation (E is the expectation operator)

between the actually realized activity start times sj and the

planned activity start times sj . Leus (2003) suggests this ob-

jective function to solve the NP-hard robust resource alloca-

tion problem in exact and approximate formulations, while

Van de Vonder et al. (2005) use it to introduce a heuris-

tic buffer allocation procedure aiming at solution robust-

ness to investigate the trade-off between makespan perfor-

mance and stability. The activity-dependent weights wj that

are used in the stability cost function represent the marginal

cost of starting the activity later or earlier than planned in

the baseline schedule. They may include unforeseen storage

costs, extra organizational costs, costs related to agreements

with subcontractors or just a cost that expresses the dissatis-

faction of employees with schedule changes.

The problem used as vehicle of analysis in this paper is

a variant of the stochastic RCPSP. The project has a single

zero-duration dummy start node 0 and a single zero-duration

dummy end node n. Project activities j (j = 1,2, . . . , n−1)

have stochastic activity durations dj , are subject to finish-

start zero-lag precedence constraints and require an integer

per period amount rjk of one or more renewable resource

types k (k = 1,2, . . . ,K) during their execution. The re-

newable resources have a constant per period availability ak .

During project execution the actually realized start time sj

of activity j (j = 1,2, . . . , n−1) may be smaller than, equal

to or larger than its scheduled activity start time sj . We as-

sume that s0 = s0 and that sn = δn. The scheduled project

J Sched (2007) 10: 195–207 197

completion time sn is thus set equal to a predefined deter-

ministic project due date δn. We assume that the project is

not penalized when finished early. This boils down to as-

suming that the realized project completion time sn is set

equal to δn if the originally obtained sn is smaller than δn.

The project has to be scheduled under the composite ob-

jective of maximizing the timely project completion prob-

ability (TPCP) and minimizing the stability cost function
∑

wjE|sj − sj |. Relaxing the assumption that the earliness

costs equal the tardiness costs would incur minor changes to

the procedures proposed in this paper and would not affect

the validity of our research.

It is to be expected that it will be very difficult to find a

schedule that achieves the optimal value for both the timely

project completion probability and stability performance

criteria simultaneously. As no criterion is dominant from

the outset, we opt for a posteriori optimization (Hoogeveen

2005). Following the notation of Herroelen et al. (2000), the

problem can be classified as m,1|cpm,dj , δn|F(P (sn ≤ δn),∑
wjE|sj − sj |). The function F(·, ·) is a composite objec-

tive function that is not known a priori and where the relative

importance of the two criteria is not specified from the outset

and no clear linear combination is known that would reflect

the preference of the decision maker.

We tackle the problem in a roundabout way. Solutions

to the problem will be obtained through the application of

different predictive-reactive scheduling procedures. The an-

alytic evaluation of the composite objective function is very

cumbersome (the PERT problem is ♯P complete (Hagstrom

1988) and the scheduling problem for stability has been

shown to be NP-hard in the ordinary sense by Leus and Her-

roelen 2005). Therefore, the composite objective function

values will be evaluated through simulation. In the simula-

tion we make the assumption that at any given time instant

we not only know the real activity duration of the activities

finished by that time but also the remaining duration of the

activities that did not finish but should have finished by that

time, given their realized start times and expected duration.

The simulation runs provide insight into the overall per-

formance of the tested predictive-reactive scheduling proce-

dures with respect to the composite objective function used.

The main objective of this paper is to identify the conditions

under which proactive scheduling pays off and the condi-

tions that favor reactive scheduling when the uncertainty of

a project resides in the activity durations. The simulation re-

sults also permit to examine the potential trade-off between

quality and solution robustness. They will also enable an

analysis of the impact of (a) the level of variability in the

activity durations, (b) the relative weights of the project ac-

tivities, and (c) the tightness of the project due date.

The remainder of the paper is organized as follows.

Section 2 introduces a number of baseline scheduling al-

gorithms that differ in the complexity of the scheduling

methodology used and in their degree of proactiveness, i.e.,

the amount of safety included. The reactive scheduling pro-

cedures are the subject of Sect. 3. They can be classified as

either quality or solution robust. Section 4 is devoted to a

description of the experimental set-up used in the computa-

tional experiment. The computational results are described

in Sect. 5. A last section provides some overall conclusions.

2 The baseline scheduling methods

Three procedures for generating a baseline schedule will be

introduced in this section: an exact procedure for generating

quality robust schedules (Sect. 2.1), a suboptimal quality ro-

bust scheduling procedure (Sect. 2.2), and a suboptimal pro-

cedure for generating solution robust schedules (Sect. 2.3).

To the best of our knowledge, the literature on exact solution

robust project scheduling procedures is still void.

The procedures will be illustrated on the simple project

instance of Fig. 1. This project network is a 6-activity, zero-

lag, finish-start activity-on-the-node network with one re-

newable resource with a constant per period availability of

10 units and resource requirements identified for each ac-

tivity by the number shown to the right of the corresponding

node. The number shown to the left of each node denotes the

expected duration of the corresponding activity. The project

due date is arbitrarily set to δ5 = 10.

2.1 An exact procedure for generating quality robust

baseline schedules

Any solution procedure for the deterministic resource-

constrained project scheduling problem (problem m,

1|cpm|Cmax) may be used to generate a predictive schedule.

Using an exact procedure and mean activity durations, we

opt for minimizing the project duration in the hope that this

provides a quality robust baseline schedule, i.e., a schedule

that maximizes P(sn ≤ δn), the probability that the project

ends within a given project due date. Many exact procedures

have been proposed in the open literature. In this paper we

Fig. 1 An example network

198 J Sched (2007) 10: 195–207

Fig. 2 A minimal duration quality robust baseline schedule for the

example network of Fig. 1

use the branch & bound procedure of Demeulemeester and

Herroelen (1992, 1997). Application of this procedure to

the problem example of Fig. 1 yields the minimum duration

baseline schedule of Fig. 2. The procedure yields a deter-

ministic makespan of 8 periods, 20% shorter than the project

due date δ5 = 10. The two-period time interval between the

minimum project completion time and the due date acts as

a protective time cushion during project execution, inducing

quality robustness into the schedule.

2.2 A suboptimal procedure for generating quality robust

baseline schedules

Because the RCPSP is known to be ordinary NP-hard

(Blazewicz et al. 1983), solving it to optimality can in-

duce a large computational effort. Most commercial project

scheduling software packages do not aim at schedule sta-

bility and rely on simple priority-based scheduling heuris-

tics to solve the RCPSP. The Late Start Time (LST) priority

rule (Davis and Patterson 1975) has been shown to obtain a

good makespan performance among several examined pri-

ority rules in an experimental study by Kolisch (1996). We

implement the LST rule using a simple serial scheduling

generation scheme. The project activities are entered in a

precedence feasible list in ascending order of their critical

path based latest allowable start times. The list is scanned

and the activities are scheduled at their earliest precedence

and resource feasible start time. For the example project

of Fig. 1, the serial LST uses the list L = (0,1,2,3,4,5)

and, a lucky coincidence, generates the minimum duration

schedule of Fig. 2.

2.3 A suboptimal solution robust baseline schedule

The last baseline scheduling procedure that we consider

does not try to minimize the project completion time but

aims at minimizing the stability cost function
∑

wjE|sj −

sj |, the sum of the weighted expected absolute deviations

between realized and planned activity start times. The liter-

ature on this ordinary NP-hard scheduling problem is vir-

tually void. We use the suboptimal resource flow depen-

dent float factor (RFDFF) heuristic that has been developed

by Van de Vonder et al. (2006) as an extension to the ac-

tivity dependent float factor (ADFF) heuristic proposed in

Leus (2003) and Van de Vonder et al. (2005). RFDFF starts

from a feasible RCPSP solution (in this paper this is the

minimum duration schedule obtained by the branch-and-

bound procedure as described in Sect. 2.1) and changes it

by adding safety buffers in front of activities in order to

make the schedule solution robust. The start time of ac-

tivity j in the RFDFF schedule is calculated as sj (S) :=

sj (B&B) + αj (float(j)), where sj (B&B) denotes the start

time of activity j in the optimal minimum duration base-

line schedule of Sect. 2.1. This start time is augmented by

some safety time (αj (float(j))) as a time buffer to enhance

stability. The total float “float(j)” in this expression is the

difference between the latest allowable start time of activity

j given the project due date (i.e., its start time in the right-

justified version of the minimum duration baseline schedule)

and its scheduled start time in the minimum duration sched-

ule.

To calculate the float factors αj we first need to construct

a resource flow network (Artigues and Roubellat 2000) for

the minimum duration schedule. The flow network is a net-

work with the same nodes as the original project network,

but with arcs connecting two activities if there is a resource

flow between these activities. It thus identifies how each sin-

gle item of a resource is passed on between the activities in

the schedule. We use the single-pass algorithm of Artigues

and Roubellat (2000) to construct a feasible resource flow

network. In our simple example network of Fig. 1 the non-

dummy activities were not precedence related. The mini-

mum duration schedule of Fig. 2 specifies that 5 resource

units have to be transferred from activity 1 to activity 4 and

5 resource units have to be transferred from activity 2 to ac-

tivity 3. This resource allocation induces a resource flow net-

work that is identical to the network of Fig. 1, except for the

two extra precedence arcs from activity 2 to activity 3 and

from activity 1 to activity 4. Note that in this simple exam-

ple the resource flow network is unique because the schedule

only allows for a unique way in which the resources may be

passed among the activities. In general, the same schedule

may allow for different ways of allocating the resources so

that the same schedule may be represented by different re-

source flow networks.

The float factors αj are now calculated as follows: αj =

βj/(βj + λj), where βj is the sum of the weight of activity

j and the weights of all transitive predecessors of activity j

in as well the original network as the resource flow network,

while λj is the sum of the weights of all transitive succes-

sors of activity j in both networks. The weights of activities

that start at time 0 are not included in these summations be-

cause these activities can always start at their planned start

time and thus do not need any buffering to cope with possi-

ble disruptions of their predecessors. The RFDFF heuristic

J Sched (2007) 10: 195–207 199

Fig. 3 RFDFF schedule for the example network of Fig. 1

consequently inserts longer time buffers in front of activi-

ties that would incur a high cost if started earlier or later

than originally planned and resource constraints will always

remain satisfied in the resulting schedule.

For our small example network, the RFDFF schedule

could be (dependent on the activity weights) as proposed

in Fig. 3 which reveals the time buffers in front of activities

3 and 4 that can absorb small disruptions of the activities’

predecessors in the resource flow network.

3 The reactive scheduling methods

In the previous section we discussed baseline scheduling

methods with a different ability to absorb disruptions. How-

ever, it is to be expected that none of them will ever be stable

enough to anticipate all possible disruptions that may occur

during project execution. A proactive scheduling procedure

must, therefore, be combined with a reactive scheduling pro-

cedure that allows to react during schedule execution on

schedule disturbances that cannot be absorbed by the proac-

tive schedule. In this section several possible reactive proce-

dures are defined. In fact, all procedures can again be clas-

sified as optimal quality robust (Sect. 3.1), heuristic quality

robust (Sects. 3.2 and 3.3) or solution robust (Sect. 3.4). The

solution robust reactive procedure of Sect. 3.4 can be con-

sidered as optimal because the schedule is reoptimized at

any decision point by fully using all information available

at that time. The development and investigation of heuris-

tic solution robust reactive procedures is subject to future

research.

In order to illustrate the reactive procedures, we start

from the quality robust schedule of Fig. 2 with a project

due date δ5 equal to 10 and we explain how each proce-

dure would react on a schedule disruption caused by the fact

that upon schedule execution the actual duration of activity

1 drops from the expected 5 time units to 3 time units.

3.1 Complete rescheduling by solving a deterministic

RCPSP

The first reactive procedure studied in this paper is to com-

pletely regenerate a new up-to-date schedule when sched-

ule breakage occurs. Rescheduling is done by applying the

Fig. 4 Full rescheduling by using the original baseline scheduling

method

scheduling algorithm that was used to generate the baseline

schedule but now on a modified project network. Activities

that are already finished at the schedule breakage point are

omitted from the original project network. Activities that

have already started but did not yet finish by the schedule

breakage point are kept in the network with the projected

remainder of the activity duration as their planned duration.

As stated above, we indeed make the assumption in this pa-

per that when an activity was planned to have finished by a

particular time instant, but has not, the remaining duration is

known.

In order to illustrate the procedure, let us assume that the

baseline schedule of Fig. 2 is disrupted due to the fact that

activity 1 finishes two time units earlier than planned, i.e.,

activity 1 finishes at time instant 3 instead of time instant 5.

At time instant 3, activity 2 is still in progress but has not

yet finished. As activity 2 has been in execution for 3 time

periods and was planned to finish only at time instant 4, its

remaining duration is set to 1 period. Activity 1 is removed

from the original project network and activity 2 is kept with

its remaining duration of 1 period. The RCPSP is set up for

this new project network. Solving the RCPSP for this new

project using the branch-and-bound procedure yields the up-

dated projected schedule of Fig. 4. Observe that the original

resource flows are broken. Activity 3 does not have to wait

any longer for the resources to be released by activity 2, as

was the case in Fig. 2, but may now receive its required re-

source units from activity 1 upon the completion of this ac-

tivity at time instant 3. When complete rescheduling is used,

it may be necessary to calculate a completely new resource

flow network.

In principle, as is the case here, the application of full

rescheduling may be capable of maintaining solutions with

minimum makespan. Alongside the high computational ef-

fort required, the main disadvantage of this procedure is

that the stability cost might be extremely high, because the

resulting schedule can differ completely from the original

baseline schedule. In the example of Fig. 4, activities 3 and 4

both start one time unit earlier than planned, leaving the total

stability cost at w3 + w4.

It should be noted that when the baseline schedule is con-

structed using a solution robust procedure such as RFDFF,

complete rescheduling using the same solution robust base-

200 J Sched (2007) 10: 195–207

line scheduling procedure does not make any sense and this

reactive option will not be investigated.

3.2 Early start policy after fixing the resource flows

The second reactive scheduling procedure studied in this pa-

per applies an early start policy at the schedule breakage

point, while maintaining the resource allocation decisions

made in the baseline schedule, as reflected in its resource

flow network. As activity duration disruptions do not change

the resource requirements of any activity, maintaining the

resource flow network that was constructed for the base-

line schedule and applying an early start policy upon sched-

ule disruption will yield a precedence and resource feasi-

ble schedule. This schedule allows every activity to start as

soon as all its precedence and resource-based predecessors

in the resource flow network have finished. Fixing the re-

source allocation reduces the rescheduling flexibility during

project execution. We will investigate the impact of this de-

creased flexibility on makespan performance and stability

cost in Sect. 5.

When the baseline schedule is constructed using the pro-

cedure described in Sect. 2.3, we apply railway scheduling,

i.e., activities will never start earlier than their planned start

time in the baseline schedule. A solution robust baseline

schedule requires railway scheduling during execution in or-

der to preserve the stability advantage of the idle times in the

schedule. The computational requirements for this reactive

procedure are very low. Disruptions do not require complete

rescheduling nor building a new resource flow network.

For the disruption scenario used in our problem example,

the reactive policy must be applied at time instant 3 when

activity 1 finishes. Keeping the resource flow network fixed

means that we maintain the resource-based precedence rela-

tions between activity 2 and 3 and between activity 1 and 4,

respectively. Applying the early start policy now allows to

start activity 4 at time 3. The resulting projected schedule1

is shown in Fig. 5. We note that the projected makespan at

this time is not changed by the disruption (it remains at the

Fig. 5 Fixing the flow network and calculating the early start schedule

when d1 = 3

1A projected schedule is a schedule that at every point in time describes

how the project will execute if no further disruptions occur, given all

information available at that time. It must be constantly updated.

originally planned 8 periods) and that the total stability cost

is projected as 2×w4 because activity 4 starts two time units

earlier than planned and all other activities can start at their

planned start time.

3.3 Activity-based priority rules

We stated in the introduction that a large part of the stochas-

tic RCPSP literature has concentrated on the development

of scheduling policies to decide which activity to schedule

next at stochastic decision points corresponding to the com-

pletion of activities. Many of these policies depend upon the

(minimal) forbidden set2 concept introduced by Igelmund

and Radermacher (1983a, 1983b) and might become com-

putationally extensive. The activity-based priority policies,

however, are the most efficient among the examined policies

and have shown to yield a good heuristic solution without re-

quiring the enumeration of the forbidden sets. Solutions to

the RCPSP are not represented by a schedule but by an ac-

tivity list. This activity list is an ordering of all activities that

can be transformed into a schedule at all times by applying

a schedule generation scheme on the activity list.

In our research, we deduce the activity list from the

baseline schedule by ordering the activities in increasing

order of their scheduled start time. The example schedule

of Fig. 2 can be represented by the activity lists (1,2,3,4)

and (2,1,3,4). This directly shows that a schedule might be

represented by multiple activity lists. We randomly choose

one activity list, for example (1,2,3,4). The scheduling

generation scheme (SGS) used to build a schedule from his

activity list is the one used by Stork (2001). Upon schedule

breakage, the activity list is scanned and we try to schedule

all activities that have not yet been started as soon as possi-

ble after the current decision point (we must make sure that

we don’t allow an activity to be scheduled in the past).

For the solution robust baseline schedule of Sect. 2.3,

again railway scheduling will be applied to preserve good

stability. When starting from a quality robust baseline sched-

ule, adding railway scheduling to a reactive procedure might

be considered as an easy adaptation to make a procedure

more solution robust. We will use the priority rule based pro-

cedure of this section extended with railway scheduling (this

procedure will be named Railway) as sub-optimal solution

robust reactive procedure.

The reactive procedure introduced in this section (with-

out railway scheduling) would react as follows on the exam-

ple disruption scenario used in our problem example. The

completion of activity 1 at time 3 introduces the first deci-

sion point at which the reactive policy has to decide which

2A forbidden set is a set of activities that are not precedence related,

but concurrently scheduling all activities of this set would result in a

resource constraint violation.

J Sched (2007) 10: 195–207 201

activity should be scheduled next. The next activity in the

list (1,2,3,4), activity 2, has already started and should

stay in progress because no preemption is allowed. Activity

3 is the first unscheduled activity in the activity list. After

checking the precedence and resource constraints, we may

conclude that this activity can start at time 3. The last ac-

tivity from the list, activity 4, then starts at time 4, resulting

in the projected schedule shown in Fig. 4 with a projected

makespan of 7 time units.

3.4 Minimizing earliness-tardiness costs

The reactive scheduling procedures described in the previ-

ous sections do not rely on stability issues to take corrective

action. A reactive scheduling procedure that focuses on so-

lution robustness can be based on exact procedures for the

resource-constrained earliness-tardiness project schedul-

ing problem (RCPSPWET). This problem, classified as

m,1|cpm|early/tardy in the classification scheme of Her-

roelen et al. (2000), allows for the specification of activity

due dates δj and associated unit earliness and unit tardi-

ness penalty costs. The objective then is to schedule the

project activities subject to the precedence and renewable

resource constraints in order to minimize the weighted ear-

liness/tardiness penalty cost of the project.

Vanhoucke et al. (2001) have developed an effective and

efficient exact solution procedure for the RCPSPWET that

may be turned into a reactive scheduling procedure in the

following way. The due date for an activity is set to its pro-

jected finish time in the baseline schedule. For the dummy

end activity, the due date thus becomes the project due

date δn. The unit earliness and tardiness costs of a non-

dummy activity j are assumed to be identical and are set

equal to the activity weight wj . The earliness cost of the

dummy end activity is set to zero, because we do not punish

the project for finishing earlier than planned, while the tardi-

ness cost again equals the weight wn. By invoking this exact

RCPSPWET algorithm upon schedule breakage, we make

sure that at each rescheduling point a new projected sched-

ule is constructed with the lowest stability cost (in terms of

deviation from the original baseline schedule).

For our previously mentioned example, rescheduling by

solving the RCPSPWET results in the schedule of Fig. 6.

Fig. 6 Rescheduling by solving the RCPSPWET

We note that the stability cost drops to zero because all ac-

tivities keep their originally scheduled start time. The pro-

jected makespan equals the baseline schedule duration in

this example, but it should be understood that in a larger

project this reactive scheduling procedure might deteriorate

makespan performance because some activities are started

beyond their earliest possible start time, holding the risk that

the project may have to be delayed by disruptions that may

occur later during project execution.

4 Experimental set-up

The predictive and reactive scheduling procedures were

coded in Microsoft Visual C++. A problem test set was

constructed using the RanGen project scheduling network

instances generator developed by Demeulemeester et al.

(2003). Eighty 30-activity networks were generated using

different settings for the order strength, resource factor

and resource constrainedness. Order strength (OS) (Mas-

tor 1970) defines the density of the network by dividing

the number of precedence relations in the network, includ-

ing the transitive ones, by the theoretical maximum number.

The resource factor (RF) and the resource constrainedness

(RC) describe the resource usage of all activities. RF (Pas-

coe 1966) reflects the average number of resource types used

by an activity, while RC (Patterson 1976) defines the average

portion of the resource availability that is used by an activity

that uses a certain resource. For all three project character-

istics, two values are used to build the data set, namely 0.5

and 0.75. For each of the 23 parameter combinations, 10 net-

work instances were generated, yielding a total of 80 test in-

stances. For a detailed study of the impact of these network

parameters on makespan performance and stability, we refer

to Van de Vonder et al. (2006).

In our computational experiment we will study the im-

pact of three parameters (see Table 1): the level of uncer-

tainty in activity durations, the weighting parameter and the

project due date. Activity duration uncertainty is set to two

possible values. High duration variability means that the

real activity duration is a discretized value drawn from a

right-skewed beta-distribution with parameters 2 and 5 that

is transformed in such a way that the minimum duration

equals half the expected duration, the mean duration equals

the expected duration and the maximum duration equals

Table 1 Experimental parameter settings

Parameter Setting 1 Setting 2

Variability in dj low high

wn = wp × wavg wp = 5 wp = 10

Project due date δn 115% × Cmax 130% × Cmax

202 J Sched (2007) 10: 195–207

2.25 times the expected duration. Low duration variability

means that the real activity durations are also discretizations

of values drawn from a beta-distribution with parameters 2

and 5, with the mean equal to the expected activity duration,

but with minimum and maximum values equal to, respec-

tively, 0.75 times and 1.625 times the expected activity du-

ration. This setting allows for fewer activities to be disrupted

(due to the discretization) with a smaller average disruption

size.

The weighting parameter (wp) is defined as the ratio be-

tween the weight of the dummy end activity and the aver-

age of the distribution of the weights of the other activities

(wp = wn/wavg). Van de Vonder et al. (2005, 2006) use the

wp to study the impact of the weight (importance) attributed

to the dummy end activity on the trade-off between stabil-

ity and makespan performance. The activity weights wj of

the non-dummy activities j ∈ {1,2, . . . , n − 1} are drawn

from a discrete triangular distribution with P(wj = q) =

(21−2q)% for q ∈ {1,2 . . .10}. This distribution results in a

higher probability for low weights and in an average weight

wavg = 3.85 that is used to calculate wn = wp × wavg. In

this paper two values for wp (wp = 5 and wp = 10) are ex-

amined.

We use two possible settings for the project due date:

a 15% and a 30% increase above the minimum baseline

schedule duration (Cmax) obtained using an exact solution

procedure for solving the RCPSP with mean activity dura-

tions.

5 Computational results

In this section we discuss the computational results obtained

by combining the predictive and reactive scheduling pro-

cedures of Sects. 2 and 3 into a total of twelve predictive-

reactive scheduling procedures. For each of the 80 project

network instances and every possible combination of the

activity duration uncertainty, weighting parameter and due

date settings, 30 project executions are simulated by draw-

ing beta-distributed activity durations as discussed above.

For each algorithm, this results in a total of 2400 project ex-

ecutions per parameter setting.

Each row of Table 2 shows the average results obtained

by a particular predictive-reactive procedure for the objec-

tive functions
∑

wjE|sj − sj | and P(sn ≤ δn) over the

19 200 network executions (23 × 2400) carried out in this

experiment. The column with heading Baseline identifies

the baseline scheduling methods discussed in Sects. 2.1, 2.2

and 2.3 as RCPSP, LST and RFDFF, respectively. The Reac-

tive column identifies the complete rescheduling procedures

discussed in Sect. 3.1 as RCPSP, while the reactive proce-

dures of Sects. 3.2, 3.3 and 3.4 are identified as Fix Flow,

Table 2 Overall performance values

Baseline Reactive Stability TPCP Dev. Time

1 RCPSP RCPSP 334.46 98.72 0.79 9.65

2 RCPSP Fix flow 297.03 98.48 1.18 0.08

3 RCPSP ABP 297.19 98.61 1.03 0.16

4 RCPSP Railway 257.26 98.21 3.70 0.16

5 RCPSP WET 235.00 96.90 4.63 353.41

6 LST Fix flow 335.11 84.71 8.51 0.09

7 LST ABP 342.52 86.25 8.09 0.16

8 LST Railway 290.78 80.74 11.50 0.16

9 LST WET 231.38 82.20 11.86 312.38

10 RFDFF Fix flow 48.14 88.56 19.39 0.09

11 RFDFF ABP 47.06 88.69 19.38 0.20

12 RFDFF WET 45.38 88.68 19.38 9.56

ABP and WET, respectively. The adaptation of ABP that in-

cludes railway scheduling to improve solution robustness is

identified as Railway.

The column with heading Stability shows the stability

cost
∑

wjE|sj − sj | averaged over all 19 200 network ex-

ecutions. The column with heading TPCP shows the aver-

age P(sn ≤ δn). The next column, headed by dev., repre-

sents the average deviation of the realized makespan during

schedule execution from the project makespan that would

be obtained by solving the RCPSP using the actually re-

alized activity durations. It should be observed that, even

when complete rescheduling with an exact quality robust

reactive policy is applied, this deviation value will not be

zero for every schedule execution. This is due to the fact

that during schedule execution activities may already have

been started when a schedule disruption occurs but cannot

be interrupted due to the non-preemption assumption. The

last column denotes the average computational time in sec-

onds required per network (for 30 simulated executions).

The results shown in row 1 for the RCPSP-RCPSP pro-

cedure demonstrate that the use of an exact procedure for

deriving the baseline schedule and performing a complete

rescheduling upon schedule breakage excels in makespan

performance but is clearly outperformed in terms of stability

costs. RCPSP-Fix Flow and RCPSP-ABP are computation-

ally far less demanding and obtain comparable makespan

performance at smaller stability cost. The extra computa-

tional effort for RCPSP-RCPSP is due to the fact that a

new RCPSP must be solved to optimality at every sched-

ule disruption, while fixing the flow network and building

an early start schedule (for Fix Flow) or generating a new

schedule from an activity list (for ABP) is very easily done.

The higher stability cost is due to the fact that complete

rescheduling does not look at the previous projected sched-

ule at all upon rescheduling, while combinations RCPSP-

Fix Flow and RCPSP-ABP do (partially) maintain the or-

J Sched (2007) 10: 195–207 203

dering of the activities which slightly improves stability.

Combining an exact baseline scheduling procedure with a

solution robust reactive procedure (combinations RCPSP-

Railway and RCPSP-WET) yields acceptable makespan

performance at much smaller stability cost. Using WET as a

reactive procedure requires a very heavy computational ef-

fort due to the need to solve a weighted earliness-tardiness

problem to optimality at each schedule breakage point.

Using exact procedures for constructing the baseline

schedule pays off. Comparing the results shown in rows

2–4 and rows 6–8 demonstrate that, when a quality ro-

bust reactive procedure is used, the makespan and stabil-

ity performance for the predictive-reactive procedures that

rely on an exact procedure for constructing the baseline

schedule (rows 2–4) are much better than for the predictive-

reactive procedures that generate the baseline schedule using

a simple priority-based procedure such as LST (rows 6–8).

The combination LST-WET yields a slightly better average

stability than RCPSP-WET, but performs much worse on

makespan. The improvement in stability is due to the fact

that a less tight schedule such as LST includes more flexi-

bility to absorb disruptions during execution. Obviously, this

advantage does not compensate for the loss in makespan

performance, but it indicates that generating initial sched-

ules with (near) minimum duration, but with more slack in-

cluded than the current minimum duration schedule, holds

promise.

The real advantage of using a heuristic procedure for

generating baseline schedules, especially for large real-life

projects, is the smaller computational effort in the project

scheduling phase. However, for large projects we would ad-

vise a more advanced (meta-)heuristic than the simple LST-

heuristic.

We note the huge difference in stability costs between

the strategies that rely on a quality robust baseline schedule

(rows 1–9) and those that start from a solution robust base-

line schedule (rows 10–12). The type of reactive scheduling

procedure to be used in combination with RFDFF has lim-

ited impact on makespan or stability. This is due to the fact

that the proactive schedule generated using RFDFF already

anticipates many disruptions and because all policies try to

preserve the buffers included in the baseline schedule. WET

remains, however, the best reactive procedure to maximize

the stability in the project.

Using a solution robust proactive procedure clearly out-

performs the simple use of a solution robust reactive pro-

cedure on stability. However, the obtained TPCP of solu-

tion robust scheduling methods (10–12) might be deemed

insufficient by project management when no information is

available about the project settings, it might be advisable to

combine an exact procedure for generating quality robust

baseline schedules (RCPSP) with solution robust reactive

procedures. This yields reasonable results in terms of both

makespan and stability.

Table 3 Performance values for high variability

Baseline Reactive Stability TPCP Dev. Time

1 RCPSP RCPSP 440.69 97.48 1.08 10.03

2 RCPSP Fix flow 396.32 97.02 1.66 0.08

3 RCPSP ABP 395.14 97.29 1.43 0.16

4 RCPSP Railway 347.95 96.48 4.90 0.17

5 RCPSP WET 312.69 94.31 5.92 502.94

6 LST Fix flow 445.09 81.83 8.76 0.09

7 LST ABP 451.78 83.83 8.16 0.16

8 LST Railway 390.43 76.65 12.61 0.16

9 LST WET 300.81 77.95 12.83 454.89

10 RFDFF Fix flow 83.34 80.54 19.56 0.09

11 RFDFF ABP 81.33 80.77 19.54 0.20

12 RFDFF WET 78.10 80.75 19.55 18.71

In the remainder of this section, we examine the perfor-

mance of the predictive-reactive procedures in more detail

and study the impact of the different settings for activity

duration uncertainty, weighting parameter and project due

date.

5.1 High activity duration variability

In this section we analyze the results obtained when the ac-

tivity duration variability is set to high. The results presented

in Table 3 are the averages of four setting combinations

(9600 executions) of the three examined parameters (vari-

ation, wp, project due date), namely (high, 5, +15%), (high,

5, +30%), (high, 10, +15%) and (high, 10, +30%).

We note that high variability increases stability cost and

decreases TPCP compared to the overall results of Table 2.

The 80% TPCP obtained by the solution robust baseline

scheduling method RFDFF (rows 10–12) will most likely

be rejected by the planner. Generating minimum duration

predictive schedules (rows 1–5) rises the TPCP above a rea-

sonable 94%. The combination RCPSP-Railway (row 4) and

RCPSP-WET (row 5) yield acceptable makespan and sta-

bility performance. The high computational requirements

of WET could drive the planner towards heuristic solu-

tion robust procedures. Note that the TPCP-values should

be interpreted with care. Remember that TPCP represents

P(sn ≤ δn). However, it might be the case that the disrup-

tions are so heavy that whatever proactive-reactive proce-

dure was used, sn will exceed δn, i.e., the makespan of the

ex-post minimum duration schedule exceeds δn. Punishing

a procedure for violating this due date would thus be im-

proper. For the high variability case, the simulation results

revealed that an unavoidable due date violation occurred in

1.50% of all executions, leaving the maximum obtainable

TPCP at 98.50%. Taking this into account, RCPSP-RCPSP

only fails in 1% of all executions to complete within time

when possible.

204 J Sched (2007) 10: 195–207

Table 4 Performance values for low variability

Baseline Reactive Stability TPCP Dev. Time

1 RCPSP RCPSP 228.23 99.96 0.50 9.27

2 RCPSP Fix flow 197.74 99.94 0.70 0.09

3 RCPSP ABP 199.23 99.94 0.63 0.16

4 RCPSP Railway 166.57 99.94 2.50 0.16

5 RCPSP WET 157.31 99.49 3.34 203.89

6 LST Fix flow 225.13 87.59 8.25 0.09

7 LST ABP 233.27 88.67 8.02 0.16

8 LST Railway 191.13 84.83 10.38 0.16

9 LST WET 161.95 86.46 10.89 169.87

10 RFDFF Fix flow 12.94 96.58 19.21 0.09

11 RFDFF ABP 12.78 96.62 19.21 0.19

12 RFDFF WET 12.66 96.62 19.21 0.41

5.2 Low activity duration variability

In this section we analyze the results obtained for the low ac-

tivity duration settings. Activity durations are still stochas-

tic, but the variance of the distribution is reduced. We ob-

serve that the predictive-reactive scheduling combinations

have a lower stability cost and a higher TPCP than in the

high variability case. The results are shown in Table 4.

All predictive-reactive procedures yield much smaller

stability costs than for the high duration variability settings

due to the fact that the disruptions are smaller in number

and size. The beneficiary impact of a solution robust base-

line schedule on the stability cost is now more clearly pro-

nounced. While the high variability setting results of Table 3

reveal that RCPSP-Fix Flow had a stability cost that was al-

most five times higher than for RFDFF-Fix Flow, this stabil-

ity cost ratio is now as high as 15. Solution robust reactive

scheduling (WET) results in an outstanding makespan per-

formance and requires much less computational time than in

the high variance case.

We can conclude that when activity duration variability

is low, it pays to invest in predictive and reactive scheduling

procedures that aim at stability. Observing the high TPCP

values obtained by the solution robust scheduling combina-

tions (rows 4, 5, 10, 11 and 12 in Table 4), we can even state

that pure quality robust scheduling is inadequate when activ-

ity duration variability is low. Most likely, a project manager

would opt for RFDFF-Fix Flow (row 10) resulting in a suf-

ficiently high TPCP and a very low stability cost at almost

no computational time. The fact that this proactive-reactive

scheduling combination has a very high average makespan

deviation of 19.21 (shown in column dev.) does not cause

any problems, because the high TPCP of 96.58% indicates

that this delay in the realized project completion hardly leads

to due date violations. If the TPCP values slightly above

Table 5 Performance values for loose due date settings

Baseline Reactive Stability TPCP Dev. Time

1 RCPSP RCPSP 333.44 99.96 0.79 9.66

2 RCPSP Fix flow 295.78 99.94 1.18 0.08

3 RCPSP ABP 296.04 99.94 1.03 0.16

4 RCPSP Railway 255.83 99.94 3.70 0.16

5 RCPSP WET 231.68 99.75 4.70 333.42

6 LST Fix flow 318.90 97.27 8.51 0.09

7 LST ABP 328.06 97.86 11.50 0.16

8 LST Railway 268.99 96.63 8.09 0.16

9 LST WET 208.10 96.58 12.16 195.65

10 RFDFF Fix flow 23.19 96.77 25.49 0.09

11 RFDFF ABP 22.74 96.78 25.49 0.19

12 RFDFF WET 22.21 96.74 25.49 0.36

96.5% (rows 10–12) obtained by the solution robust proce-

dures would be deemed unacceptable, management should

opt for the RCPSP-WET or RCPSP-Railway procedure.

The strong impact of the activity duration variability on

the obtained results is striking. RFDFF-Fix Flow had an in-

sufficient TPCP value for high variability settings, while it

produces very attractive results when activity duration vari-

ability is low. A project manager who anticipates minor

schedule disruptions and therefore decides to go for a deter-

ministic quality robust baseline schedule, runs into a serious

misconception of the impact of activity duration variability.

The lower the variability in the duration of the project activ-

ities, the more attractive solution robust baseline scheduling

procedures become.

5.3 Loose project due date settings

In this section the deterministic project due date δn is set

30% above the minimum duration schedule obtained using

average activity durations. This due date seems to offer a

rather wide protection for the disturbances studied in this

paper.

The aggregated results are shown in Table 5. They are

correlated with the results obtained for the low-variability

case (Table 4). We observe consistently higher stability

costs, but the basic conclusions drawn from this parameter

setting do not differ from the conclusions of the previous

section. This means that a project planner should rely on so-

lution robust baseline or reactive scheduling, depending on

the importance attributed to obtaining a high TPCP.

5.4 Tight project due date settings

Table 6 shows the results obtained when the due date δn

is set 15% above the minimum project duration obtained

J Sched (2007) 10: 195–207 205

Table 6 Performance values for tight due date settings

Baseline Reactive Stability TPCP Dev. Time

1 RCPSP RCPSP 335.48 97.48 0.79 9.63

2 RCPSP Fix flow 298.28 97.02 1.18 0.09

3 RCPSP ABP 298.34 97.29 1.03 0.16

4 RCPSP Railway 258.70 96.48 3.70 0.17

5 RCPSP WET 238.32 94.05 4.56 373.41

6 LST Fix flow 351.32 72.15 8.51 0.09

7 LST ABP 356.99 74.65 8.09 0.16

8 LST Railway 312.56 64.85 11.50 0.16

9 LST WET 254.66 67.83 11.56 429.11

10 RFDFF Fix flow 73.09 80.35 7.08 0.09

11 RFDFF ABP 71.37 80.60 13.05 0.20

12 RFDFF WET 68.54 80.63 12.82 18.76

using average activity durations. In this case we again en-

counter the problem that the ex-post solution of the problem

using the realized activity durations does not always yield

a makespan within the predefined due date δn, whatever

the proactive-reactive scheduling procedure used. The max-

imum obtainable TPCP is 98.5%, exactly the same value as

in Sect. 5.1. This is due to the fact that the unavoidable due

date violation problem typically occurs when high activity

duration variability is combined with tight due dates. Only

procedures 1–4 generate service levels that exceed the 95%

threshold.

It appears that tight due dates in combination with high

activity duration variability reveal a stability-makespan

trade-off in that the price we have to pay for obtaining

an acceptable TPCP is a high stability cost (e.g., RCPSP-

RCPSP). The average results obtained over the parameter

setting combinations (high, 5, +15%) and (high, 10, +15%)

(not shown in Table 6) divulge a maximal obtainable TPCP

of only 97.04%. But more importantly, the procedures that

aim for a solution robust baseline schedule (rows 10–12)

yield an inferior TPCP, while RCPSP-WET for which only

the reactive module aims at solution robustness still yields

an inadequate 89% TPCP. Remark that this is the first case

where the TPCP obtained by this procedure is really consid-

ered unsatisfactory. From all procedures that can improve

stability, only RCPSP-Railway obtains a reasonable 93%.

But as stated before, the Railway reactive procedure is an

adaptation of the quality robust ABP procedure and can

hardly be typified as a real solution robust procedure be-

cause no statistical information about uncertainty is taken

into account. The search for solution robust reactive pro-

cedures with acceptable makespan performance will be a

major point of interest for future research.

Table 7 Performance values for large wp

Baseline Reactive Stability TPCP Dev. Time

1 RCPSP RCPSP 334.81 98.72 0.79 9.63

2 RCPSP Fix flow 297.45 98.48 1.18 0.08

3 RCPSP ABP 297.58 98.61 1.03 0.16

4 RCPSP Railway 257.75 98.21 3.70 0.16

5 RCPSP WET 236.18 96.92 4.66 356.84

6 LST Fix flow 341.27 84.71 8.51 0.09

7 LST ABP 347.91 86.25 8.09 0.16

8 LST Railway 298.95 80.74 11.50 0.16

9 LST WET 238.51 82.22 11.85 328.03

10 RFDFF Fix flow 52.55 92.23 18.19 0.09

11 RFDFF ABP 51.31 92.36 18.19 0.20

12 RFDFF WET 49.44 92.33 18.19 12.34

5.5 Large wp settings

The overall performance values given in Table 2 and the

results obtained for large wp settings given in Table 7 are

very similar for the predictive-reactive procedures shown in

rows 1–9 of both tables. The limited impact of the wp on the

performance measures does not come as a surprise because

all the procedures used to generate quality robust baseline

schedules do not rely on the activity weights and thus do not

depend on the weighting parameter wp. WET is the only re-

active procedure that relies on the activity weights in order to

make its decisions. The result is that among the predictive-

reactive procedures shown in rows 1–9, only the procedures

RCPSP-WET (row 5) and LST-WET (row 9) may yield dif-

ferent realized schedules and thus a different TPCP for dif-

ferent wp-values. The last term wn(sn − δn) in the stabil-

ity cost function
∑

wjE|sj − sj | depends on wp. However,

because all the predictive-reactive procedures have a rather

high TPCP (and thus for many executions sn ≤ δn) the im-

pact of this last term on the total stability cost function is

minor.

For the procedures that rely on RFDFF to generate the

baseline schedule, wp has a strong impact. This had al-

ready been observed by Van de Vonder et al. (2006) who

reaches the paradoxical conclusion that procedures such as

RFDFF, that aim at generating solution robust (stable) base-

line schedules, are at their best when quality robustness

(i.e., makespan performance) is deemed important for the

project, i.e., when wp values are large. For large values of

wp, RFDFF starts to act as a quality robust scheduling pro-

cedure that still keeps an eye on stability. The results of Ta-

ble 7 show that for wp = 10 procedures RFDFF-Fix Flow,

RFDFF-ABP and RFDFF-WET (rows 10–12) yield a 92%

TPCP, a very promising result bearing in mind that these re-

sults include the high variability and tight due date cases and

206 J Sched (2007) 10: 195–207

Table 8 Performance values for small wp

Baseline Reactive Stability TPCP Dev. Time

1 RCPSP RCPSP 334.11 98.72 0.79 9.66

2 RCPSP Fix flow 296.61 98.48 1.18 0.09

3 RCPSP ABP 296.79 98.61 1.03 0.16

4 RCPSP Railway 256.78 98.21 3.70 0.17

5 RCPSP WET 233.82 96.89 4.60 349.98

6 LST Fix flow 328.96 84.71 8.51 0.09

7 LST ABP 337.13 86.25 11.50 0.16

8 LST Railway 282.61 80.74 8.09 0.16

9 LST WET 224.13 82.19 11.87 296.61

10 RFDFF Fix flow 43.74 84.90 20.59 0.09

11 RFDFF ABP 42.81 85.02 20.58 0.19

12 RFDFF WET 41.31 85.03 20.58 6.78

that RFDFF is only a simple heuristic procedure. The proce-

dures even outperform the LST heuristic that aims at quality

robust schedules. These excellent results certainly encour-

age further research efforts on the development of effective

and efficient scheduling procedures that aim at the genera-

tion of solution robust schedules.

5.6 Small wp settings

As mentioned above, the wp has an almost negligible im-

pact on the results obtained by the predictive-reactive pro-

cedures that aim at a quality robust baseline schedule (rows

1–9 in Table 8). For the procedures that rely on RFDFF for

generating the baseline schedule (rows 10, 11 and 12 in Ta-

ble 8), the TPCP drops to 85%. In line with the overall re-

sults of Table 2, the procedures RCPSP-Fix Flow, RCPSP-

ABP, RCPSP-Railway and RCPSP-WET (rows 2–5) yield

the best combined results for small wp values.

6 Conclusions

The overall objective of this paper was to evaluate the

performance of various predictive-reactive project schedul-

ing procedures under the combined stability-timely project

completion objective. The very promising results obtained

by the proactive RFDFF heuristic that aims at generating so-

lution robust (stable) baseline schedules, holds an invitation

to continue the research on the development of stable base-

line schedules. We advise project managers to add as much

solution robustness to a proactive-reactive project environ-

ment as the characteristics of the project allow to. Certainly

when timely project completion is deemed important (high

values for the weighting parameter wp), when the activity

duration variability is not too high and when the predefined

project completion due date leaves some room for buffer in-

sertion, the use of proactive scheduling procedures that aim

at generating solution robust (stable) schedules pays off.

The computational experiment revealed that stable base-

line scheduling procedures such as RFDFF do not per-

form that well on timely project completion when due

dates are tight, duration variability is high, and wp values

are small. In such project environments smart predictive-

reactive scheduling procedures that combine solution and

quality robust procedures are available that deliver good

results. For example, combining a procedure that gener-

ates minimum duration baseline schedules with a stability-

improving reactive policy, such as WET, clearly performs

very well overall. Only if variability is very high and the

due date is tight, this combination might still result in a un-

satisfying makespan performance. The search for solution

robust reactive procedures that maintain a good makespan

performance and have a lower computational requirement

than WET is an interesting issue for future research.

Acknowledgements This research has been supported by Project

OT/03/14 of the Research Fund K.U.Leuven.

References

Artigues, C., & Roubellat, F. (2000). A polynomial activity insertion

algorithm in a multi-resource schedule with cumulative constraints

and multiple modes. European Journal of Operational Research,

127, 294–316.

Aytug, H., Lawley, M., McKay, K., Mohan, S., & Uzsoy, R. (2005).

Executing production schedules in the face of uncertainties: A re-

view and some future directions. European Journal of Operational

Research, 161(1), 86–110.

Blazewicz, J., Lenstra, J., & Kan, A.R. (1983). Scheduling subject to

resource constraints—classification and complexity. Discrete Ap-

plied Mathematics, 5, 11–24.

Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999).

Resource-constrained project scheduling: Notation, classification,

models and methods. European Journal of Operational Research,

112, 3–41.

Davenport, A., & Beck, J. (2002). A survey of techniques for schedul-

ing with uncertainty. Unpublished manuscript.

Davis, E., & Patterson, J. (1975). A comparison of heuristic and op-

timum solutions in resource-constrained project scheduling. Man-

agement Science, 21, 944–955.

Demeulemeester, E., & Herroelen, W. (1992). A branch-and-bound

procedure for the multiple resource-constrained project scheduling

problem. Management Science, 38, 1803–1818.

Demeulemeester, E., & Herroelen, W. (1997). New benchmark results

for the resource-constrained project scheduling problem. Manage-

ment Science, 43, 1485–1492.

Demeulemeester, E., & Herroelen, W. (2002). International series

in operations research & management science: Vol. 49. Project

scheduling—A research handbook. Boston: Kluwer Academic.

Demeulemeester, E., Vanhoucke, M., & Herroelen, W. (2003).

RanGen: A random network generator for activity-on-the-node

networks. Journal of Scheduling, 6, 17–38.

Goldratt, E. (1997). Critical chain. North River: Great Barrington.

Hagstrom, J. (1988). Computational complexity of PERT problems.

Computers and Operations Research, 18, 139–147.

J Sched (2007) 10: 195–207 207

Herroelen, W., De Reyck, B., & Demeulemeester, E. (1998). Resource-

constrained scheduling: a survey of recent developments. Comput-

ers and Operations Research, 25, 279–302.
Herroelen, W., De Reyck, B., & Demeulemeester, E. (2000). On the

paper “Resource-constrained project scheduling: notation, classifi-

cation, models and methods” by Brucker et al., European Journal

of Operational Research, 128(3), 221–230.
Herroelen, W., & Leus, R. (2005). Project scheduling under

uncertainty—Survey and research potentials. European Journal of

Operational Research, 165, 289–306.
Hoogeveen, H. (2005). Multicriteria scheduling. European Journal of

Operational Research, 167(3), 592–623.
Igelmund, G., & Radermacher, F. (1983a). Algorithmic approaches

to preselective strategies for stochastic scheduling problems. Net-

works, 13, 29–48.
Igelmund, G., & Radermacher, F. (1983b). Preselective strategies for

the optimization of stochastic project networks under resource con-

straints. Networks, 13, 1–28.
Kolisch, R. (1996). Efficient priority rules for the resource-constrained

project scheduling problem. Journal of Operations Management,

14, 179–192.
Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for solv-

ing the resource-constrained project scheduling problem: classi-

fication and computational analysis. In: J. Weglarz (Ed.), Project

scheduling: Recent models, algorithms and applications, Dor-

drecht: Kluwer Academic.
Kolisch, R., & Padman, R. (1999). An integrated survey of determinis-

tic project scheduling. Omega, 49, 249–272.
Leus, R. (2003). The generation of stable project plans. PhD thesis,

Department of Applied Economics, Katholieke Universiteit Leu-

ven, Belgium.
Leus, R., & Herroelen, W. (2005). The complexity of machine schedul-

ing for stability with a single disrupted job. Operations Research

Letters, 33, 151–156.
Mastor, A. (1970). An experimental and comparative evaluation of

production line balancing techniques. Management Science, 16,

728–746.

Mehta, S., & Uzsoy, R. (1998). Predictive scheduling of a job shop

subject to breakdowns. IEEE Transactions on Robotics and Au-

tomation, 14, 365–378.

Möhring, R., Radermacher, F., & Weiss, G. (1984). Stochastic schedul-

ing problems, I: Set strategies. Zeitschrift für Operations Research,

28, 193–260.

Möhring, R., Radermacher, F., & Weiss, G. (1985). Stochastic schedul-

ing problems, II: General strategies. Zeitschrift für Operations Re-

search, 29, 65–104.

Pascoe, T. (1966). Allocations of resources c.p.m. Revue Française de

Recherche Opérationelle, 38, 31–38.

Patterson, J. (1976). Project scheduling: the effects of problem

structure on heuristic scheduling. Naval Research Logistics, 23,

95–123.

Stork, F. (2001). Stochastic resource-constrained project scheduling.

PhD thesis, School of Mathematics and Natural Sciences, Techni-

cal University of Berlin.

Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R.

(2005). The use of buffers in project management: The trade-off

between stability and makespan. International Journal of Produc-

tion Economics, 97, 227–240.

Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R.

(2006). The trade-off between stability and makespan in resource-

constrained project scheduling. International Journal of Produc-

tion Research, 44(2), 215–236.

Vanhoucke, M., Demeulemeester, E., & Herroelen, W. (2001). An

exact procedure for the resource-constrained weighted earliness-

tardiness project scheduling problem. Annals of Operations Re-

search, 102, 179–196.

Wang, J. (2005). Constraint-based schedule repair for product develop-

ment projects with time-limited constraints. International Journal

of Production Economics, 95, 399–414.

Zhu, G., Bard, J., & Yu, G. (2005). Disruption management for

resource-constrained project scheduling. Journal of the Opera-

tional Research Society, 56, 365–381.

