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A CLASSIFICATION OF SIMPLE LIE MODULES
HAVING A 1-DIMENSIONAL WEIGHT SPACE

D. J. BRITTEN AND F. W. LEMIRE

Abstract. Let L denote a simple Lie algebra over the complex numbers. In this
paper, we classify and construct all simple L modules which may be infinite
dimensional but have at least one 1-dimensional weight space. This completes the
study begun earlier by the authors for the case of L = A„. The approach presented
here relies heavily on the results of Suren Fernando whose dissertation dealt with
simple weight modules and their weight systems.

0. Introduction. Let L be a finite-dimensional simple Lie algebra over the complex
field C having a Cartan subalgebra H and denote by C(L) the centralizer of H in
the universal enveloping algebra U of L. If X: H -» C is a weight function of a
1-dimensional weight space Mx in a simple L module M then tj: C(L) -* C,
defined by r](c)v = cv for v e Mx and c e C(L), is an algebra homomorphism
called a mass function of M. Clearly tj restricted to H is equal to A. Conversely,
given any algebra homomorphism tj: C(L) -» C one can construct a unique simple
L module which admits 17 as a mass function [4, 10]. In [4] the authors determined
all algebra homomorphisms tj: C(L) -* C for the simple Lie algebras L of type An
and using these classified all "pointed" An modules (where we call a module pointed
if it is simple and has at least one 1-dimensional weight space). In this paper we
complete the classification of all pointed L modules for arbitrary simple Lie
algebras. The collection of all pointed L modules clearly includes the highest weight
L modules and is included in the collection of all Harish-Chandra L modules
relative to the Cartan subalgebra H (-i.e. simple L modules having a weight space
decomposition and finite-dimensional weight spaces relative to H). The latter
inclusion is strict since there exist examples of Harish-Chandra A2 modules in which
every weight space is two dimensional. In the special case of AY modules, every
Harish-Chandra A1 module is pointed.

Our approach to this problem makes heavy use of the results from Fernando's
thesis [8]. In particular, from Fernando's results we see that in place of determining
all algebra homomorphisms 17: C(L) -» C it suffices to find only those algebra
homomorphisms tj which are associated with so-called pointed "torsion free" L
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684 D. J  BRITTEN AND F. W. LEMIRE

modules (these are defined in §1) and further that such modules can only occur for
simple Lie algebras of type An or C„.

In §1 we outline the relevant results from Fernando's thesis and other background
material which will be used in this paper. §2 contains the construction of canonical
examples of pointed torsion free A„ and C„ modules. The main results of this paper
are contained in §§3 and 4 where we show that the examples given in §2 exhaust all
pointed torsion free An and C„ modules and hence by Fernando's results exhaust all
such modules. Finally in §5 we provide an alternate construction of all pointed L
modules by constructing a mass function associated with each one. This allows us to
realize all pointed L modules directly as quotient modules of the universal envelop-
ing algebra U(L).

1. Structure of simple weight modules. In this section, we review the results of
Fernando [8] on simple weight modules, and establish some basic facts about
pointed modules. Fernando's results reduce the classification of pointed modules of
simple Lie algebras to the classification of pointed, torsion free modules of the
simple Lie algebras of types A and C.

Throughout this section L denotes a reductive Lie algebra, H a Cartan subalgebra
of L, R the root system of (L, H), B a base of R, Rg the positive roots relative to
B, and for B1 c B, (Bx) denotes the integer linear span of Bl intersected with R.
Also, we express the root space decomposition of L by L = H ffi T.a e R ® La, and
denote a root vector of L belonging to a e R by Xa. For notational convenience,
occasionally we use Ya to denote X_a.

Definition 1.1. M is an (L, H) weight module provided
(i) M is a finitely generated L module, and

(ii) M = EXe„. ® Mx where for A e H*, Mx = {v e M\hv = \{h)v for all
h g H } is finite dimensional.

Definition 1.2. Let M be an (L, H) weight module. M is torsion free provided
the action of Xa on M, Xa: M -* M, is injective for all a e R. M is said to be
pointed provided it is simple and has a 1-dimensional weight space.

Theorem 1.3 [Fernando]. // L is a finite-dimensional complex reductive Lie
algebra which admits a nonzero, torsion free weight module then the simple ideals of L
are of two possible types; type A and type C.

Let M be an arbitrary simple (L, H) weight module. Let T(M) be the set of all
roots a g R such that Xa: M -* M is injective. As shown in [8], for some base B of
R and some subset Bx of B the parabolic subset P = (Bx) \J R+B  is related to
T(M) by the following two properties:

(i) P n (-P) = T(M) n (-T(M)), and
(ii) T(M) n(R\ -T(M)) QPn(R\ -P).

Setting Ps = P n (-P) and Pa = P n (R\-P), we define the following subalge-
bras of L:

p-=h® Z  ®ta,   g = H®  E   ©*•«.   u =  £   ®La,
a e P <*^PS <*£P„
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U + =    £     ®La,    p + =g®u + .
aE-Pa

Definition 1.4. Mu+= {v ^ M\u+v = 0}.

Theorem 1.5 [Fernando]. Let W(M) denote the set of weights of M and Z the set
of integers. If a G R and X G W{M) then (A + Za) n W{M) is an interval and Xa
is locally nilpotent if and only if (X + Z+a) Pi W{M) is finite. Moreover, if Xa is not
locally nilpotent then it is torsion free.

Theorem 1.6 [Fernando]. M"+ is a nonzero simple, torsion free (g, H) weight
module. Moreover, Mu  is equal to a sum of complete weight spaces of M.

Theorem 1.7 [Fernando]. M is equivalent to the unique simple quotient of the
(L, H) weight module U(L) ®U(p+)Mu+.

We close this section with an outline of some basic results on pointed, torsion free
L modules M which are used in the subsequent sections of this paper. In particular,
it is clear that all nonzero weight spaces of M are 1 dimensional and for ft,■ g R the
monomial X ••■ X^k acts bijectively on M mapping Mx onto Mx+/i]+ ... +
Therefore, it follows that if p., v, a + v G R and Mx is a nonzero weight space of M,
there exists a nonzero scalar Kx(u, v) such that (X X„ - Kx(p, v)Xfl+lJ)Mx = {0}.
If C(L) denotes the cycle subalgebra of U(L), i.e. the centralizer of the Cartan
subalgebra H in the universal enveloping algebra U(L) of L, then each weight
function X g H* of M can be extended uniquely to an algebra homomorphism tj:
C(L) -* C referred to as a mass function of M. Its action is defined by cvx = n(c)vx
for all c g C{L). Evidently, the existence of this algebra homomorphism requires
only that dim Mx = 1 and not that M is torsion free.

Theorem 1.8 [4, 10]. A pointed module M is determined, up to equivalence, by any
of its mass functions.

In the case of pointed, torsion free modules we can strengthen this result to read

Theorem 1.9. Let Af, and M2 be pointed, torsion free L modules admitting a
common weight function X. Let r\l and tj2 be mass functions for M, and M2 with
respect to X such that tj1(c) = tj2(c) for all monomials c G C(L) of degree less than
or equal to three. Then Mx is equivalent to M2.

Proof. Let (Af,)A = Cu, and (M2)x = Cv2. As previously pointed out, if /x, v,
p. + v G R, then there are nonzero complex numbers Kx and K2 such that

{X^-K.X^v^O

and
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686 D. J. BRITTEN AND F. W. LEMIRE

Since

1i(*-(M+,)V,) = ^(*-(,+,)^)
and

Th(^'-(M+x)^r/*+v) = V2\X_ili+v)X)1, + v),

we know that Kx = K2.
Let c = zx • • • ztbea monomial of degree k in the Poincare-Birkhoff-Witt basis

which is in C(L). We prove ijj(c) = tj2(c) by induction on k. This is true for k < 3
by assumption. The induction assumption, that tj,(c) = tj2(c) for all c of degree less
than k, permits us to permute the z,'s since such a permutation is done at the
expense of adding lower degree terms. Either c is an element in the universal
enveloping algebra of H in which case the result is clear or

z, • • • zk = X^ ■ ■ ■ X^    X X„ + polynomial of degree < k

where p.l,...,fxk_2, /x, v, ju + yG/?. Our induction assumption implies we need
only show that

r,i(X,ii---X^XflXr) = rl2(X^---X^_XllXv).

But for / = 1,2 we know that

Therefore,

TJil^u, • ■ • X^X^X,) = ^Vh^u, • • • X^X^,) = K2n2(X^ ■ ■ ■ X^   X^J)

= tj2(A'u   ••• Xu    XX).       □'2V       Ml MA-2M       *"'

2. Construction of simple torsion free modules. In this section, we construct certain
simple, torsion free modules of the Lie algebras of types A and C which we show
later exhaust all such modules. These are slight variants of those presented by
Fernando in [8].

The Weyl algebra Wn of order n can be realized as the associative subalgebra of
EndcC[x,,..., xn] generated by {x,, St \ i = 1,..., n} where x, and 5, are viewed as
left multiplication by xt and partial differentiation with respect to a,, respectively.
Following [6, Chapter 4.6] the simple Lie algebra C„ can be embedded in the
subalgebra of degree two elements of Wn as indicated below.

The root system R of C„ can be identified with the set of vectors

{±(e,±e/)|l Ki<j<n] U {±2e,|/ = 1.n}

in R" where e, denotes the ith standard basis vector of R". A base B for R is given
by B = {e, - £2,...,£„„, - e„,2e„}. For computational purposes throughout this
paper, we fix a Chevalley basis of Cn which we call standard. This is one of the form

(*±<e,±e,)|l <i<j<n] U{X±2J. = !,...,«} U{/7a|a,Gfl}
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having the property that the map 4>: Cn -* Wn given by

4>{Xf_Cj) = Xj8j for 1 < i *j < «,

*(**,+*,) = xixj torij = l,...,n,

*(*-<„+,,>) = «,«, for/J-l,...f«,

*(*.(-e(+1) = *.8.- *,+i8,+i     for j = 1,...,«- 1,

♦(*2.J = (*A + VO/2
is a Lie algebra isomorphism.

A modification of the C„ module C[xx,...,xn] produces the module M(a) which
we seek. For each rc-tuple a = (a,,...,a„) g C" with a, £ Z for all /', we define
M{a) to be the complex linear space spanned by

j xh = xf1 • • • x*" | bj -a,.eZ for all j and £(*>,- a,) g 2Z>.

The linear space M(a) can be viewed as a C„ module through the natural action of
<f>(C„) on M(a). One can easily show that distinct xh G M(a) form a basis for
distinct weight spaces for M(a). The C„ module M(a) is torsion free, since

Xe<_e xb = bjXb+e>-eJ for 1 </#,/< n,

Xei+e.xb = xb+e'+eJ for j,7 = 1,...,«,

*-<*,+«,)** = bibjxb-'<-^ ioxi±j = \,...,n,

X_2txb = bi(bi- l)xh-2e- for/ = l,...,n,

and none of the /?,'s are integers.
The following argument shows that M(a) is a simple C„ module. For xb,

xc g M(a) we have b - c = £"=1 A:,£, where fc, g Z and E"=1A:, g 2Z. Therefore,

E ^,e, = Mei - e2) +(^1 + ki)(ei - Ea)
1-1

+ ■•■+("£ *,)(%-i-0+(|)(t*,)2«,,
so that

is a nonzero multiple of x*  where e, = |Hy_. fcyl for i = 1,...,«- 1  and  e„
= i| Ej_i A: -| and s, = sgnE^., kj. Summarizing these results we have

Theorem 2.1. For each n-tuple a = (av ..., a„) g C" with at <£ Z for all i, M(a)
is a pointed, torsion free Cn module.

The root system R of C„ contains a subsystem {±(e,, - e.) |1 < / <j < «} which
is equivalent to a root system of the simple Lie algebra An_v The basal vectors in a
standard base of Cn corresponding to this subsystem form a base for An_1 which we
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688 D. J. BRITTEN AND F. W. LEMIRE

call a standard base for A„_v When discussing simple Lie algebras of type A, we use
this base. For each «-tuple a = (ax,...,an) G C" with a, £ Z for all /', N(a) is
defined to be the complex linear space spanned by

| xb = xb> ■ ■ ■ xb»1b, - a,, G Z for all , and £ (6, - a,) = 0j.

N(a) can be viewed as an An_x module through the natural action of <p(A„_,) on
N(a). By an analysis similar to that described for the previous case, we have

Theorem 2.2. For each n-tuple a = (ax,..., a„) e C" with a, £ Z /or all i, N(a)
is a pointed, torsion free A n_x module.

3. Pointed, torsion free An modules. As indicated by Theorem 1.8, the determina-
tion of pointed modules can be achieved by determining the mass functions defined
on C(L). In [4], the authors constructed all possible mass functions on C(An). In
this section, we show that the mass functions of the pointed torsion free An modules
of the form N(a) constructed in §2 exhaust all mass functions of pointed torsion An
modules. It follows that every pointed torsion free An module is equivalent to one of
the form N(a).

First, we treat the case of M being an A2 module. Let {a, B} be a base for the
root system of A2. Let Mx = Cvx be a weight space of M. The basic cycles of
C(A2)siTeha, hB,

ci = YaXa,    c2 = YpX8,    c3 = Ya + BXa + B,

c4 = Ya + BXaXB,    c5 = YBYaXa + B.

Each of the c,'s acts on vx to produce a nonzero scalar multiple of vx. Define r, s,
and z; for 1 < i < 5 according to havx = rvx, hgvx = svx and c,ux = ztvx, 1 < / <
5. Since Mx+a + B is 1 dimensional, we know that there is some K G C such that
XaXBvx = KXa + Bvx. We show that we can express the z,'s in terms of r, s, and K
and hence M is uniquely determined by these values.

Lemma 3.1. Let r, s, and K be defined as above, then

(3.2) ^ = (^+0(^-1),
(3.3) z2 = K(K-s-l),
(3.4) z3 = (K+r)(K-s-l),

(3.5) z4 = z5 = K(K+r)(K-s- 1).
Moreover, if X # 0 (i.e. r + 0 or s ¥= 0) then the mass function tj: C(A2) —> C
defined by r, s, and z,, 1 < i < S, is in fact determined by r, s, and z(, 1 < / < 3 (i.e.
K can be found from these values).

Proof. One can show that the following identities hold in the universal envelop-
ing algebra of A2:
(3.6) cxc2 = c2cx + c5 - c4,

(3.7) cxc4 = c4cx - c2cx + c3cx - c4ha + c3ha - c5 + c4,

(3.8) c2c4 = c4c2 + c2cx - c3c2 - c4hB + cs - c4.
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The definition of r, s, and K and these three identities give us respectively

(3.9) z4 = z5,

(3.10) z2zx = z3(zx - Kr + r),

(3.11) z2zx = z3(z2 + Ks).

The definition of K produces immediately z4 = Kz3. Also, computing cxc2vx we get

cxc2vx = YaXaYBXBvx = YaYBXaXBvx = KYaYBXa + Bvx

= K(YpYaXa+p - Ya+BXa+B)vx = K(c5 - c3)vx

= K(c4-c3)vx = K(K-l)c3vx

or in terms of the z,'s we have

(3.12) zxz2 = K(K- l)z3.

Since none of the z,'s can be zero, (3.11) and (3.12) yield

(3.13) z2 = K(K-s-l).

Equating the right-hand sides of (3.10) and (3.11) and using (3.13) produces

(3.14) Zl = (K+r)(K-l).
Finally, we obtain the formula for z3 from (3.12), (3.13) and (3.14).

The closing statement of this lemma is proved by using (3.2) and (3.4) to solve for
K, if s * 0, or by using (3.2) and (3.3) to solve for K, if s = 0 and r ¥= 0.   □

Let Mx = Ct;A be a weight space of the pointed, torsion free An module M. We
show

Lemma 3.15. Let B = {ax,...,an} be a base for the root system R of An. The
values rx,...,rn and K defined by havx = rtvx and XaXavx = KX„i+avx uniquely
determine the action of the basic cycles c, on vx.

Proof. According to Lemma 3.1, this lemma is true for n = 1. Now assume
n > 2. We may assume that this lemma is true for all basic cycles contained in the
cycle subalgebra of An_x determined by the simple roots ax,...,an_x. If the lemma
is not true for the basic cycles of An, then according to Lemma 1.8, there must be
some A2 in An whose basic cycles are not uniquely determined by rt, 1 < i < n, and
K. Evidently, the root system of this A2 has a base of the form B = a ■ + • • ■ + ak_,,
y = ak + ■ ■ ■ +<x„. These two roots can be incorporated into a base for the root
system of An whose first n — 1 elements form a base for the root system of An_x,
e.g. -«„_!, -a„_2,...,-ak+1, -(ak + ak_x), -ak_2,..., -aJ+x, -(a, + «,._,),
-ctj_2,..., -ax,ax+ ••■ +aj_x, otj + ■■■ +ak-x, ak + ••• +an. Label the last
three roots in this list a, B, y, respectively.

We now have the problem reduced to a problem concerning A3 where A3 is the
subalgebra determined by a, B, y. Let r, s, S be defined by ha vx = rvx, hBvx = svx
and XaXBvx = SXa+Bvx. Clearly r, s are uniquely expressible in terms of the values
of the r,'s originally given to us. Also, according to Lemma 3.1, Ya+BXa+Bvx =
(S + r)(S — s - l)vx and hence by our assumption on An_x, S is uniquely
determined.
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We introduce some notation which helps us handle the A3 case. Whenever fi, v.
ju + v are roots of A3 we define K(u, v) by X Xyvx = K(p., v)X +vvx. Let

(3.16) K{a,B) = S,    K(B,y) = T,
K(a + B,y)= U,    K(a,B + y)=V.

Since our inductive assumption implies S is uniquely determined by the r/s and
K, it suffices to prove that T is uniquely determined by r, s and S. Using relations
in the universal enveloping algebra of A3, one can readily show that corresponding
to the base -a, a + B, y the values analogous to (3.16) are

(3.17) K{-a,a + B) = S + r,    K(a + B, y) = U,
K(B,y)=T,    K(-a,a + B + y) = V+s.

Also, since TXaXfi + y = XaXBXy = XaXp + y + XyXaXB we have (T - \)XaXp+y =
XyXaXB so that

V(T- l)Xa+B+y =(T- \)XaXfi + y = SXyXa + B

= S\Xa + BXy - Xa + B + y) = S(U - nXa + B + y

and hence the definitions given by equations (3.16) produce the relationship

(3.18) S(U- 1) = V(T- 1).
The following series of computations yield linear relationships among 5, T, U,

andK

(3.19) XaXB+yXBvx = (Xa + B + yXB + XB+yXaXB)vx

= Xtt + B + yXBvx + SXB+yXa + Bvx,

and

(3.20) XaXB + yXBvx = (Xa + BXp+y + XBXaXB + y)vx

~ Xa + BXB + yvx + VXa + B + yXBvx.

Subtracting (3.20) from (3.19) and using (3.16), we get

(3.21) 0 = (S - l)Xa+BXB+yvx +(1 - V)Xa + B + yXBvx

= [(S-l)/T]Xa + BXBXyvx+(l- V)Xa + B + yXBvx

= [[U(S-l)/T] +(l- V)]Xa+B + yXBvx

which implies
(3.22) (V-\)T=(S-\)U.
When we subtract (3.18) from (3.22) and simplify, we obtain

(3.23) S-U-V-T.
The equation analogous to (3.23) derived from (3.17) is

(3.24) S-T-V-U.
These last two equations tell us

(3.25) S = V   and    T= U.
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As we did in going from (3.16) to (3.17), we choose a new base for our A3
subalgebra, namely /J, y, -(« + B + y). Equation (3.24) implies K(B,y) =
K(B, -(a + B)), by analogy with equation (3.16). By Lemma 3.1, the coefficient
K(B,-(a + B)) is uniquely determined by r, s and S. This implies that T is
uniquely determined by r, s, and S, since T = K(B,y).   □

The main result of this section is

Theorem 3.24. // M is a pointed torsion free An module, then there is an complex
(n + l)-tuple a such that M = N(a).

Proof. Let Cvx be a weight space of M and define /-,-, K g C for 1 < i < n by
setting

havx = rtvx    for 1 < / < n

and

XaiXaV\ = KXai+avx.

For any complex n + 1 tuple a = (ax,..., an+x) we have

ha,x" = (ai~ ai + i)x"    fori <('<«,

XaXax" = a3(a2 + \)xa+^-^    and    Xai+axa = a3x'+*-*.

Setting a2 = K — 1, ax = rx + K - 1 and ai+x = at - r, for / = 2,..., n we have

hax" = rtxa   for 1 </'<«,

and

XaXaxa = KXa]+ax".

Therefore by Lemma 3.15 M = N(a).   D

4. Pointed torsion free C„ modules. In this section we show that every pointed,
torsion free C„ module is equivalent to one of the modules M(a) constructed in §2.
Our approach is similar to the method used in §3 to study An modules. We first treat
the case of n = 2 and then use this result along with the results of §3 to establish the
general result.

Theorem 4.1. If M is a pointed, torsion free C2 module and Mx = Cvx is one of its
weight spaces then the action of the cycles of C2 on Mx is completely determined by X.

Proof. Let B = {a, B} be a base for the root system R of C2 and let {X \ /j g
R} U {ha, hB) be the corresponding standard basis. The elements ha, hB together
with the basic cycles of C2 given by

ci = YpXB, c5 = Ya + BXBXa, c9 = Y2a + BXBXaXa,

c2 ~ YaXa, c6 — YaYBXa + B, cxo = YaYaYBX2a + B,

c3 = *a + pXa + B, c7 = Y2a + BXaXa + B, cxx = Y2a + BYBXa + BXa + B,

c4 = Y2a + BX2a + B, c8 = Ya + BYaX2a + B, cX2 = Ya + BYa + BXBX2a + B

form a generating set for the cycle subalgebra C(C2) of C2.
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Let 0 ¥= vx g Mx and let K = K(B,a) be the coefficient defined by XBXavx =
KXa+Bvx. Multiplying this equation on the left by Ya + B, YaYB, Y2a+BXa and
Y2a+pYpXa+B respectively and letting ctvx = ztvx for i = 1,2,..., 12 we obtain the
following relations:

(42) z5 = Kz3, (K+2)z6 = zxz2,

z9 = (K - 2)z7 + 2z4,     Kzu = zx(zn - z4).

The following identities hold in the universal enveloping algebra of C2:

(4.3) [c,,c2] = 2c5-2c6
(4.4) [c2,c4] = 2c7-2c8,

(4.5) [c,,c7] = -2cxx + 2cg + 8c7 - 4c4,
(4.6) [c4,c5] = 2cX2 - 2c9 - 4c8 - 4c7 + 4c4,

(4.7) [c4,c6] = -2cxx + 2cxo + 4c8 + 4c7 - 4c4,

(4.8) [cx,c5] = -2c2cx - 2cxc3 + 4hB(c5 + 2c3),

(4.9) [c4, cxx] = -4(Aa + hB)cxx + 4c4c6 + 8c4c3 - 2c4cx,

(4.10) [c2,c1] = -2c2c3 - 2c6 + c2c4 - ha(c7 - c4) + c9 + 2c8 - 2c4,

(4.11) [c2,c5] = ^c2cx + 2c2c3 - c9- 2c8 -(/z„ + 2)c5 + 2c4 + 4c6.

Define r, s g C by havx = rt)x and /j^u^ = sux. Applying the elements represented
by (4.3) through (4.11) to vx, we get a series of relations (4.3)' through (4.11)'
respectively, involving r, s and the z,'s. Using equations (4.3)' and (4.4)', we obtain

(4.12) z5 = z6,    and
(4.13) z7 = z8.

Adding (4.5)' to (4.6)' and using (4.13) gives us

(4.14) zu = z12.

Similarly using (4.6)', (4.7)' and (4.14), we find

(4.15) z9 = z10.

Now we use (4.8)' to express zx in terms of K and s.

0 = -2z,z2 - 2z,z3 + 4s(z5 + 2z3)    by (4.8)'

= -2(K+ 2)z6- 2zxz3+(4sK+ &s)z3    by (4.2)

= 2z3[-(A: + 2)K - z, + 2^(A: + 2)]    by (4.2) and (4.12)

and hence

(4.16) zx = -(K+2)(K-2s).

We can express z7 in terms of z4, K and s as follows

0 = -2zu + 2z9 + 8z7 - 4z4    by (4.5)'

= -2zu + 2[(K - 2)z7 + 2z4] + 8z7 - 4z4    by (4.2),
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which simplifies after multiplication by K/2 to

0 = -Kzxx + K(K+ 2)z7

= [K(K+2)+(K+ 2)(K-2s)]z1-(K+ 2)(K - 2s)z4

with the last equality following from (4.2)' and (4.16)' and simplifying to give

(4.17) z1=[(K-2s)/2(K-s)]z4.

We use this relationship to express zu in terms of s, K and z4 by modifying (4.6)'

0 = 2z12 - 2z9 - 4z8 - 4z7 + 4z4    by (4.6)'

= 2zu - 2(K - 2)z7 - 4z4 - 4z8 - 4z7 + 4z4,   by (4.2) and (4.14), or

0 = zxx-(K+2)z7,   by (4.13).

This expression and (4.17) give us

(4.18) zxx = [(K + 2)(K - 2s)/2(K - s)] z4.

Substitute this value as well as the one given by (4.17) into (4.6)' to get

(4.19) z9= [(K+ 2)(K - 2s)/2(K - s) - 4(K - 2s)/2(K - s) + 2] z4

= [K(K- 2s + 2)/2(K- s)]z4.

We see now that determining z4 determines several of the z, values we need. Before
trying to find z4, we first find z3. From (4.9)' we get

z6 =  (r + S)Zll/Z* ~ 2z3 + V2

= (r + s)(K + 2)(K - 2s)/2(K - s) -(K + 2)(K - 2s)/2 - 2z3

= -(K + 2)(K - 2s)(K -2s- r)/2(K - s) - 2z3    by (4.16) and (4.18)
= Kz3    by (4.2)

and hence

(4.20) z3 = -(K-2s)(K-2s - r)/2(K - s)    and
(4.21) z6 = -K(K - 2s)(K -2s- r)/2(K- s).

Moreover, we can now use (4.2) to determine z2.

(4.22) z2 = (K+2)z6/zx = K(K- 2s- r)/2(K - s)    by (4.21).

Our remaining unused primed equations (4.10)' and (4.11)' allow us to express z4
and K in terms of r and 5. First add these equations together to get

(4.23)
0 = -z2zx — rz5 + z2z4 + rz4 — rz7 — 2z5 + 2z6

= [K(K - 2s - r)(K + 2)(K - 2s) + rK(K - 2s)(K -2s- r)]/2(K - s)
+ [[K(K -2s-r) + r(2(K - s)) - r(K - 2s)]/2(K - s)]z4

which implies

(4.24) z4= -(K-2s- r)(K+2 + r).
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Now multiply equation (4.11)' by 2(K - s)2 and use the values we have obtained for
the z,'s as follows:

0 = 2(K - s) \-z2zx + 2z2z3 - z9 - 2z8 —{r— 2)z6 + 2z4]

= K(K- 2s)(K- 2s- r)

■ \(K - s)(K +2)-(K-2s- r)+(r- 2)(K - s)]

-{K- s)[K(K- 2s+ 2) + 2(K - 2s) - 4{K - s)] z4

= K(K - 2s)(K - 2s - r)[(K - s)(K + r) -(K - 2s - r)]

+ K(K- s)(K- 2s)(K- 2s - r)(K + 2 + r),    or

(4.25) 0 = 2(K - s)[K + r + 1] -(K - 2s - r) = 2[K -(2s - 1)/2][K + r].

Therefore, K = (2s - l)/2, or K = -r. To see that the second possibility cannot
occur, note that if K = -r then z2 = K and we arrive at a contradiction by
computing

(4.26) XaYavx = (ha + YaXa)vx = (r + K)vx = 0.

Equation (4.26) implies that either Xa or Ya is not torsion free contrary to
assumption.   □

Theorem 4.27. If M is a pointed, torsion free Cn module then there exists a complex
n-tuple a such that M = M(a).

Proof. Let A be a weight function of M such that X(ha) + 0 for all roots a of C„.
Let vx be a nonzero vector in Mx. If a = (ax,..., an) is the unique complex n tuple
such that ha vx = (a, - ai+x)vx for i = 1,...,«- 1 and h^ vx = ((a„ + l)/2)yA,
then M(a) is a pointed, torsion free Cn module admitting A as a weight function. In
order to verify that M = M(a), it suffices by Theorem 1.9 to show that the action of
the C„ basic cycles of degree less than or equal to 3 on Mx are completely
determined by A.

Since each basic cycle c of degree 2 belongs to a C2 subalgebra of C„, Lemma 4.1
implies that the value of cvx is uniquely determined by A. Any basic cycle c' of
degree 3 belongs to either a C2 oi an A2 subalgebra of Cn. If c' belongs to a C2
subalgebra, Lemma 4.1 again implies that c'vx is determined by A. If c' belongs to
an A2 subalgebra, Lemma 3.13 states that c'vx is determined by the values of the
basic cycles of degree less than or equal to 2. However from the argument above,
these values are uniquely determined by A and hence so is c'vx.   □

5. General construction of simple pointed modules. Fernando [8] has shown that all
simple (L,H) weight modules are equivalent to simple quotients of modules
induced from torsion free modules M" of certain reductive subalgebras (g,H) of
(L, H). The problem then is to determine all possible torsion free modules. In §§3
and 4 we have constructed all pointed torsion free modules. One can use these
torsion free modules and apply parabolic induction as presented by Fernando to
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construct pointed modules. We can conclude from the results below that in fact this
process yields all pointed modules. However, in this section we present an alternate
construction of these modules which realizes all pointed modules as simple quotients
of U(L).

We first require some general results concerning the classification of the roots of L
as torsion free or locally nilpotent for a given (L,H) weight module M. Fernando
[8] has shown that the set of torsion free roots T(M) is a "convex" subset of R, i.e.,
all roots which are positive rational linear combinations of roots in T(M) are
contained in T( M). We now use this result to prove

Lemma 5.1. N = {p g R\±p £ T(M)} is a root subsystem of R.

Proof. We first show that if R is any connected, rank 2 subsystem of R with
R C\N containing more than two linearly independent roots then R <Z N. We
proceed by contradiction assuming that Rgl N—i.e. there exists at least one torsion
free root in R.

Since R is of rank 2 and contains both torsion free and locally nilpotent roots we
may select two roots jti, v e R such that ju is torsion free, v is locally nilpotent and
no positive linear combination of p and v are roots. Clearly {p, -v} forms a base of
R. If -v is torsion free then by the convexity of T(M) all roots in R which are
positive with respect to [p, -v) are torsion free and hence R DN = 0 contrary to
assumption. We may therefore assume that -v is locally nilpotent.

Since v is locally nilpotent there exists a nonzero vector v g M such that Xvv = 0.
Since -v is locally nilpotent there exists a nonnegative integer j such that hjv = jv
where hv denotes the element of the Cartan subalgebra which is dual to v with
respect to the Killing form. Then for any nonnegative integer m we have

(i) X™v =£ 0 since p. is torsion free,
(ii) X,X?v = 0 since [Xr, X„\ = 0,

(iii) hvX™v = (m(p,v) + j)X™v where ( • , •> denotes the Killing form on H*.
It follows that XfvX™v * 0 for all integers p with 0 </> < m(p,v) + j.

For any root rfi + s(-v) g R with r ^ 1 we have that (rp + s(-v), -v) < 5
which implies that s < r(p,v). Therefore, for all nonnegative integers k, sk <
rk(p, v) + j and hence Xs_k„X£kv + 0. Then by Theorem 1.5 all roots rp + s(-i>)
with r 3* 1 are torsion free and hence R CiN = {±v} contrary to assumption. It
follows then that R c N as required.

Since N is a subset of a root system R, in order to show that N is a root
subsystem it suffices to show that a, B g N implies aa(B) e N where aa is the Weyl
reflection in the hyperplane perpendicular to a. If a = +/3 the aa(B) = -B G N. If
(a,B) = 0, the aa(B) = B G N. Finally if (a, B) * 0 and a * ±B, then {a,B}
spans a connected rank 2 subsystem R of R with {±a, ±B) <z R and hence by our
previous argument aa(B) g R c N as required.    □

Theorem 5.2. Let X be a weight of M" and y be a weight of M. Then
dim My > dim Mx.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



696 D. J. BRITTEN AND F. W. LEMIRE

Proof. Let 0 # vx g Mx and 0 =t= vy g My and assume dim A/A > dim M . We
may assume further that A and y are related by y = X + EA;,a, where a, G B and
A:, > 0. Moreover, we may take A and y so that E/c, is minimal among all such
pairs.

By the irreducibility of M and the Poincare-Birkhoff-Witt Theorem, we can
redefine vy so that it is the image of vx under the action of a monomial in the E/c,a,
weight space of U(L) and further that this monomial involves no elements of H and
no torsion free root vectors. Lemma 5.1 implies that all roots in the root system
spanned by {a, | ki =£ 0} are locally nilpotent.

The subset Bx = {a, | Ac, ¥= 0} of B is a base for a semisimple subalgebra Lx of L.
The weight vectors of Mx are lowest weight vectors relative to Bx in the L,-module
Mx = U(LX)MX. Our result then follows from the theory of finite-dimensional
modules once we have shown that Mx is finite dimensional.

Let Xxl ■ • • Xkk be a typical monomial in a Poincare-Birkhoff-Witt basis of
U(LX). (Here the A^-'s denote root vectors in Lx.) Then

Mx = lin. span{ X^ ■ ■ ■ XkkMx \ e,'s are nonnegative integers}.

If Sk_t = lin. span{ Xkk_-> ■ ■ ■ X[kMx \ e's are nonnegative integers} is finite dimen-
sional then since Xk_j_1 is locally nilpotent there is some m such that Xk_i_xms = 0
and hence Sk_j_x is finite dimensional. It now follows, since Mx is finite dimen-
sional, Mx = Sk_.x is also finite dimensional.   D

Corollary 5.3. If M is pointed then every weight space of M"  isl dimensional.

Theorem 5.4 [13, Theorem 6]. Let L be a simple Lie algebra with Cartan
subalgebra H. Let B be a base of the root system R of L with respect to H. Let
{Bt; | /' = 1,..., k} be mutually orthogonal components of B and set L, equal to the
subalgebra of L associated with the root subsystem Rt of R generated by Bt. Then the
cycle subalgebra C(L) can be written as a vector space direct sum

C(L) = U(H)C(LX) ■ ■ ■ C(LK) ffl C

where C is the linear span of all PBW basis monomials of C(L) involving at least one
root vector not in \ARt. The subspace C is an ideal in C(L) and moreover if tj,:
C(Lt) -* C are mass functions there exists a mass function tj: C(L) -* C such that
tj | C(Lj) = tj,, tj|C = 0 and tj may be defined arbitrarily on the basis elements H^
where p £ lift,.

We now indicate how the construction and classification of all torsion free
modules for algebras of types A and C lead to an alternate construction and
classification of all pointed L modules. We first use the foregoing results to observe
that every pointed L module admits (and hence by Theorem 1.8 is determined by) a
mass function of a certain type. In fact, if M is a pointed L module then by
Corollary 5.3 we may select a 1-dimensional weight space Mx contained in M"\ By
Theorem 1.3 there exists a base B of the root system R of L such that the symmetric
part of T(M) intersects B in mutually orthogonal components {BAi = 1,...,k)
where each J3, is a base of the root system Rt of a simple Lie subalgebra L, of type
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A or C. Then the L, submodule M, of M generated by Mx is a torsion free L,
module. Therefore the mass function tj: C(L) -» C of the pointed L module M
associated with the 1-dimensional weight space Mx has the following properties:

(i)T,|//=A,
(ii) tj | C(LA = a mass function of a pointed torsion free L, module, and

(iii)T,|C'  = 0.
Conversely then, using the classification of all pointed torsion free modules (and

hence all mass functions of pointed torsion free modules) and applying Theorem 5.4
we can construct all mass functions tj: C(L) -* C having properties (i)-(iii). The L
module U(L)/I associated to each such mass function tj where /,, denotes the
unique left ideal of U(L) containing the kernel of tj is then a pointed L module.
Moreover the collection of all such L modules yields all pointed L modules.
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