
1

A Classification of Software Reference Architectures:
Analyzing Their Success and Effectiveness

Samuil Angelov
School of Industrial Eng.

Eindhoven Univ. of Technology
s.angelov@tue.nl

Paul Grefen
School of Industrial Eng.

Eindhoven Univ. of Technology
p.w.p.j.grefen@tue.nl

Danny Greefhorst
ArchiXL

dgreefhorst@archixl.nl

Abstract

A software reference architecture is a generic
architecture for a class of information systems that is
used as a foundation for the design of concrete
architectures from this class. We observe that certain
reference architectures have become more successful
than others. One of the reasons for this is the level of
congruence between their goals, context, and design.
In this paper, we provide a framework for the
classification of reference architectures. Using our
framework on a set of reference architectures, and
based on experiences with reference architectures, we
define five main types of reference architectures that
have congruent goals, context, and design. Reference
architectures that can be classified in one of these
types have better chances to become a success. We
illustrate our conclusions with a number of reference
architectures. This research facilitates design of more
effective reference architectures.

1. Introduction

Software reference architectures have emerged as
abstractions of concrete architectures from a certain
domain. Reference architectures (RA) can be used as
an inspiration in the design of concrete architectures or
as a standardization tool that guarantees the
interoperability between systems and between
components of systems [21]. A reference architecture
is used for the design of concrete architectures in
multiple contexts, affecting different stakeholders in
each context [4]. Nowadays, the increasing complexity
of software, the need for efficient and effective
software design processes and for high levels of
system interoperability lead to an increasing role of
reference architectures in the software design process.

A commonly accepted definition for software
reference architectures does not exist. In this paper, we
use the definition for a reference architecture provided
in [6], according to which a reference model is “a
division of functionality together with data flow
between the pieces”, and a reference architecture is “a
reference model mapped onto software elements (that
cooperatively implement the functionality defined in
the reference model) and the data flows between
them”. In this paper, e use the term “reference
architecture” to refer to the documented description of
a reference architecture.

Concrete software architectures are designed on the
basis of required functionalities and system, business,
and architecture qualities defined by the stakeholders
[6]. These functionalities and qualities reflect a
specific context and the business goals of the
stakeholders. The types of possible goals, the
identification of required functionalities and qualities,
and their effects on the architecture design have been
well-studied and extensively published (see, e.g., [6]).
The usage in system design of a well-designed
concrete architecture is in a sense guaranteed as the
architecture is designed specifically for the
development of that system.

The business goals, required functionalities and
quality attributes are also considered as the aspects
influencing the design and specification of reference
architectures [7]. The definition of a reference
architecture, however, is not a direct response to a
need for a system. Rather, it is an estimation that the
existence of a reference architecture will facilitate the
work of a design team in multiple projects or, even
more, the work of multiple design teams in a specific
domain. The usage of a reference architecture (we call
this “success of a reference architecture”) is
determined by its design qualities and the “good”
estimation of the assignees (i.e., the stakeholders

2

deciding to design the architecture) for the initiation of
the design project in a proper context and with goals
properly reflecting this context. Thus, for designing an
effective architecture the assignees should consider not
only the systems-to-be-designed when defining goals
but also the context in which the architecture is defined
and the goals of the architecture itself.

In our work, we have studied 16 reference
architectures and observed that they have had different
levels of success. We observed that due to the higher
complexity of the design and application contexts in
the case of reference architectures, certain architectures
failed in defining business goals and elaborating
architectures that “fit” their context. In this work, we
investigate the contextual factors that influence the
success of a reference architecture and the ways they
influence it (see Figure 1, arrows indicate the causal
effects between contexts, goals, and design). The
results of this work provide a basis for the design of
more successful reference architectures.

Figure 1. Relationship between context, goals,

and design

In this paper, we first present a framework that

allows reference architectures to be classified in three
dimensions, according to their context, goals, and
design. We call a reference architecture “congruent” if
its goals are relevant for the context of the reference
architecture and its design reflects the goals and
context (illustrated by the arrows in Figure 1). We
investigate which values in the dimensions can be
combined for the design of a congruent reference
architecture. Each tuple of values in our dimensions
that defines a congruent architecture is called a “type”.
Reference architectures that fit into one of these main
types have higher chances for success and effective
application. Our framework together with the types of
reference architectures can therefore serve as a “tool”
for analysis of the chances for success of reference
architectures. We illustrate the usage of this tool with
two well-known reference architectures, i.e., the WRM
[18] and the ANSI-SPARC DBMS architecture [28],
and a number of other reference architectures.

The paper is structured as follows. In Section 2, we
describe the framework for reference architectures. In
Section 3, we present the main types of reference
architectures. In Section 4, we discuss a number of

reference architectures and relate them to our
framework. Section 5 contains a discussion on related
work. The paper ends with conclusions.

2. A framework for reference architectures

In this section, we present our framework for
reference architectures. The framework is constructed
with the aim to support analysis of reference
architectures in terms of relationships between their
context, goals, and architecture design/specification.
Consequently, the framework is based on three
dimensions: context, goals, and design. For each
dimension, we define orthogonal sub-dimensions that
address a specific aspect of the dimension. We have
collected a set of possible sub-dimensions and have
eliminated those that are non-orthogonal and those that
have no correlation with any of the other dimensions.
We have used the dimensions for concrete
architectures defined in [15] and [16] for the definition
of our sub-dimensions, selecting those dimensions that
are relevant for our goals (e.g., we have omitted the
“quality attribute” dimension which is out of the scope
of our framework). In addition, we have used industry
experiences and research results on classifications of
reference architectures [4], [14], [21] for the
identification of the sub-dimensions.

We denote the set of sub-dimensions by means of
interrogatives in order to make them more intuitive for
the reader (the usage of interrogatives is a well-known
technique for high-level problem analysis [19]). We
use the Where, Who and When interrogatives to
address the context sub-dimensions, as these questions
refer to the description of a contextual information. We
use the Why interrogative to address the goal sub-
dimensions. The How and What refer to operational
aspects and are used for the design dimension.

Next, we discuss the sub-dimensions. Note that the
values of a reference architecture can be mutually
exclusive for some sub-dimension (i.e., a reference
architecture can be attributed only one value from a
sub-dimension) and mutually inclusive for other sub-
dimensions (multiple values from the sub-dimension
can be attributed to the architecture).

2.1. Context sub-dimensions (C)

In this dimension, we investigate aspects of the
design and application contexts which may affect the
business goals and design/specification of a reference
architecture.

3

 C1: Where will it be used?
In [15], a "stakeholder" dimension is defined that

describes the stakeholders in the application context.
We use this dimension to address on a coarse-grained
level the organizations that are the intended recipients
of the reference architecture. A reference architecture
can be designed with an intended scope of a single
organization or multiple organizations that share a
certain property (they may share a market domain or a
geographical property such as a country). Hence, the
C1 sub-dimension contains two values: single
organization and multiple organizations.

 C2: Who defines it?

We use the "stakeholder" dimension from [15] as an
inspiration to define its equivalent dimension in the
“design process” context. The C2 sub-dimension lists
the set of stakeholders that can be involved in the
design of a reference architecture. At a high level, the
stakeholders can be seen as the types of organizations
involved in the process. These can be software
organizations, user organizations, research centres,
and standardization organizations (either commercial
or government). These stakeholders may participate in
the design process with people representing one or
more of the following roles: software designers,
software users, software researchers, software/project
managers. As discussed in [8], each of these general
roles can be further specialized into more specific roles
(e.g., maintainers, administrators). However, for the
goals of this paper such level of detail is not necessary.

 C3: When is it defined?

The C3 sub-dimension addresses timing issues that
may have an effect on the goals and design of a
reference architecture. A reference architecture can be
designed before any existing commercial system or a
set of commercial systems together fully implement the
reference architecture or after experience from
commercial application has already been
accumulated [4]. Hence, we define two possible values
for this sub-dimension, i.e. preliminary and classical
reference architectures. This dimension is inspired by
the “transformation” dimension in [15].

2.2. Goal sub-dimensions (G)

Next, we investigate the goal sub-dimensions that

may be affected by the context. One relevant sub-
dimension is identified, i.e., intended usage of a
reference architecture after its definition. Another
possible sub-dimension is the “commercial” sub-
dimension [14] which addresses the goal of the
architecture in terms of commercial benefits (a

reference architecture can be designed with the goal of
delivering financial benefits for the assignee or with
more “altruistic” purpose). However, in our work, we
did not observe any conclusive relations of this sub-
dimension with the context and design dimensions.
That is why we omit it in our discussion.

 G1: Why is it defined?

Based on [21], we distinguish two possible values
for the intended usage of a reference architecture:
standardization of concrete architectures (aiming at
system/component interoperability) and facilitation of
the design of concrete architectures (aiming at
providing guidelines for the design of systems in the
form of blueprints, patterns, etc.). Different types of
standardization and facilitation goals can be
distinguished [21]. However, these lower level goals
do not interplay differently with the context
dimensions (hence, they do not have to be addressed in
our framework). This dimension is related to the
"nature" dimension in [15].

2.3. Design sub-dimensions (D)

The sub-dimensions in this dimension describe a
reference architecture in terms of its “operational”
side, i.e., its design and specification. We have
identified four relevant sub-dimensions that address
the contents of a reference architecture, its level of
detail, its level of concreteness, and the techniques
used for its representation. The first sub-dimension
corresponds to the What interrogative, the latter three
together correspond to the How interrogative.

 D1: What is described?

This sub-dimension lists the elements that can be
defined in a reference architecture. It is based on the
“type of information” dimension in [15], tailored for
the context of reference architectures. As element
types in a reference architecture, we distinguish
components, interfaces, protocols, algorithms, and
policies and guidelines.

D2: How detailed is it described?
This sub-dimension lists possible levels of detail at

which the elements of a reference architectures (see
D1) can be defined, i.e., it corresponds with an
aggregation dimension. The sub-dimension is based on
the “detail” dimension in [15]. Similar to [15], we
distinguish three levels of detail, i.e., detailed, semi-
detailed, and aggregated representation of the
elements of a reference architectures.

4

 D3: How concrete is it described?
This sub-dimension lists the possible levels of

abstraction of a reference architecture. Abstraction is
related to the level of choices made in an architecture
in terms of technology, applications, vendors, etc. This
sub-dimension is related to the “abstraction”
dimension in [16]. We limit our values in this sub-
dimension to concrete, semi-concrete, and abstract
[16].

 D4: How is it represented?

This sub-dimension lists the possible levels of
formalization of reference architectures. It is based on
the “representation” dimension in [15] and uses the
same three levels defined there: informal, semi-formal,
formal.

3. Types of reference architecture

The problem of identifying the types of reference
architectures is a simple constraint-satisfaction
problem in which combinations of values of the sub-
dimensions should satisfy a number of constraints. The
constraints that we have used for the selection of
values of the sub-dimensions are postulates based on
existing literature on reference architectures, our
experience (including the one gained from the 16
reference architectures that we examined in our
explorative study), and “common-sense” reasoning.
These postulates are presented in this section as part of
the description of the architecture types and the
choices made in their construction. We have used a
backtracking algorithm for the problem analysis. We
started by fixing the value for the goal dimension and
discussed the possible context and design values based
on the goal dimension value. Next, we present our
results on the types of reference architectures, first for
the standardization goal value, then for the facilitation
goal value.

3.1. Types of “standardization RA”

In this section, we take the case where the goal of a
reference architecture is standardization. As already
noted in the early ages of software architecting, an
attempt to standardize architectures at an early stage is
doomed to fail [28]. Thus, standardization reference
architectures are typically classical reference
architectures. Next, we sequentially “fix” the possible
values for the C1 sub-dimension (“Where”) and
discuss the effect of this selection on the possible
values for the other sub-dimensions. We start with

fixing the values in the C1 sub-dimension because it
has only two, mutually-exclusive values.

Table 1. Type 1

Dimension Values
G1: Why Standardization

↓ ↓

C1: Where Multiple organizations
C2: Who User, software, and standardization

organizations
C3: When Classical

↓ ↓

D1: What Components, interfaces
D2: How Aggregated components;

(semi) detailed interfaces
D3: How Abstract
D4: How Semi-formal

Type 1: Reference architectures from Type 1 are

classical, standardization architectures designed to be
implemented in multiple organizations (see Table 1).
Representative sets of user and software organizations
should be involved in the architecture definition as
standardization requires a consensus in order to be
successful. The presence of a standardization
organization facilitates the attainment of consensus
and the establishment of the architecture as a standard.
Due to the classical nature of the architecture, no
research organizations are required (individual
researchers may be involved by providing survey and
summarization data from the field). Reference
architectures from Type 1 contain a description of the
components and interfaces as these are the elements
that are target of standardization [28]. Note that
specification of other elements than these is not
excluded, but will not contribute to achieving the main
goal of an architecture and may even have a negative
effect on it (by providing unnecessary information and
decreasing the efficient adoption of the architecture).
Components are defined at a high level of aggregation
as standardization of internal component details is
unnecessary. Interfaces are defined at more detailed
levels as their precise specification is crucial for
achieving interoperability. Type 1 reference
architectures are abstract (i.e., its elements are defined
at a high level of abstraction) as each organization has
the freedom to select the concrete implementation
details according to its own settings. Type 1
architectures are semi-formal in order to provide a
clear standard specification and to allow stakeholders
who typically are inexperienced in strong
formalization techniques to understand them. Example
reference architectures from Type 1 are the WRM [18]

5

(discussed in detail in Section 4.1), the OSI RM [31],
OATH [23], and CORBA [24].

Table 2. Type 2
Dimension Values
G1: Why Standardization

↓ ↓

C1: Where Single organization
C2: Who Software users, designers and

managers from the organization
C3: When Classical

↓ ↓

D1: What Components, interfaces, policies /
guidelines

D2: How Aggregated, semi-detailed, detailed
D3: How Semi-concrete, concrete
D4: How Semi-formal

Type 2: Reference architectures from Type 2 are

classical, standardization architectures designed to be
implemented in a single organization (see Table 2).
These reference architectures are designed to serve as a
standardization tool for the design of a set of software
solutions within the organization. For the same
postulates as in the case of Type 1 architectures,
representatives of all stakeholders should be involved
(in this case, the potential software users and designers
from the organization). Note that the software
designers may be working on a temporary basis for the
organization, e.g., on a consultancy project basis.
Managers perform the role of the standardization
organization in Type 1. Analogously to Type 1
architectures, reference architectures from Type 2
define architectural components and interfaces and are
semi-formal. In addition, concrete organization-
specific policies and guidelines are defined that will
facilitate the usage of the architecture in the
organization. The elements of reference architectures
from Type 2 can be defined at any level of aggregation
depending on the specific organization context. These
architectures make certain choices in terms of
technology, applications, and standards as a
consequence of their standardization goals within the
concrete organization. That is why they are concrete or
semi-concrete reference architectures. An example
Type 2 reference architecture is the Fortis Bank
Reference Software Architecture1.

A special case of Type 2 reference architectures can
be observed in situations where they are used within
software production organizations. In this case,

1 Due to their proprietary character, several of the architectures

discussed in this paper are not published.

reference architectures are designed to serve as the
core of software product line architectures which are
used in the software production process [25]. Although
user organizations are outside the organization borders,
they should still be involved in the design process. We
see this case as a variation of Type 2 reference
architectures (variation occurs in C2). Examples for
this variation of Type 2 reference architectures are
provided in [7].

3.2. Types of "facilitation RA"

In this section, we discuss the case where the goal
of a reference architecture is facilitation. We
sequentially “fix” the two possible values for the C3
and C1 sub-dimensions and discuss the effect of this
selection on the possible values for the rest of the sub-
dimensions. The C3 and C1 sub-dimensions are chosen
as a next step for a pragmatic reason, i.e., each of them
has two, mutually-exclusive values. We start with the
“classical” value of the C3 sub-dimension and the
“multiple organizations” value of the C1 sub-
dimension.

A classical, facilitation architecture designed for
multiple organizations by multiple software and user
organizations naturally becomes a standardization
effort (see Type 1). A design effort conducted by one
or more user organizations would face lack of
capabilities, resources, and motivation. A design effort
conducted by one or more research organizations may
have the capability and resources for defining a
classical, facilitation reference architecture for a
domain but will lack the background for correctly
addressing all practical requirements. Dissemination of
the results is difficult in this scenario. Furthermore,
such a project will not pose substantial research
challenges which may result in the lack of motivation
in the research organizations and long-term support for
the architecture. The inclusion of preliminary elements
in the architecture will be natural for a research
organization and will be in violation with the classical
character of the architecture. These issues remain even
in the case of involvement of user organizations in the
effort. Thus, although possible, the combination of
research organizations(s) with multiple user
organizations will face substantial hindrances. That is
why we do not discuss it as a separate type. A software
organization has the capabilities and resources to
design a classical, facilitating reference architecture
for a domain. Furthermore, it has a direct contact with
user organizations and has the possibility to obtain
requirements from them and to distribute the
architecture among them. However, its incentive to

6

design a reference architecture will only be for
promoting its own products. This leads us to the
definition of the Type 3 reference architecture.

Table 3. Type 3

Dimension Values
G1: Why Facilitation

↓ ↓

C1: Where Multiple organizations
C2: Who Software and user organizations
C3: When Classical

↓ ↓

D1: What Components, interfaces, guidelines
D2: How Aggregated components, interfaces;

(semi) detailed guidelines
D3: How Concrete
D4: How Semi-formal

Type 3: Reference architectures from Type 3 are

classical, facilitation reference architectures for
multiple organizations designed by a software
organization in cooperation with user organizations
(see Table 3). Type 3 reference architectures are
designed to promote a software product of the
designing organization by describing its main
components and interfaces and providing guidelines
for their implementation. As a result, these reference
architectures are concrete (promoting the organization
technology), with aggregate components and
interfaces (as they are aimed at a large set of contexts
and complex details are hidden from clients) and
detailed guidelines (needed to facilitate their
implementation). Similar to Type 1 architectures, Type
3 architectures are semi-formal as they should be easily
understood but still provide a clear specification of the
architecture. Example reference architectures from
Type 3 are Microsoft Application Architecture for .Net
[20], and IBM PanDOORA.

Type 4: Reference architectures from Type 4 are
classical, facilitation architectures designed to be
implemented in a single organization (see Table 4).
They are similar to Type 2 architectures but are
designed only as a facilitation (guidance) tool in the
design and implementation of systems in the
organization. Due to their similarity to Type 2
architectures they need a similar stakeholder
representation. Their facilitation role makes their
preferred representation to be semi-formal or even
informal. An aggregated or semi-detailed component
design suffices for achieving the architecture
facilitation goal. As they are designed for a concrete
organization, they can be technology independent
(abstract) or indicate technology choices (semi-

concrete, concrete) Examples of software reference
architectures of Type 4 are the Achmea Software
Reference Architecture [13] and the ABN-AMRO
Web Application Architecture [12].

Table 4. Type 4

Dimension Values
G1: Why Facilitation

↓ ↓

C1: Where Single organization
C2: Who Users, designers, and managers from

the organization
C3: When Classical

↓ ↓

D1: What Components, policies / guidelines
D2: How Aggregated/semi-detailed comp.;

(semi) detailed guidelines
D3: How Abstract, semi-concrete, concrete
D4: How Semi-formal, informal

Next, we investigate the “preliminary” value of the

C3 sub-dimension for multiple organizations.

Table 5. Type 5
Dimension Values
G1: Why Facilitation

↓ ↓

C1: Where Multiple organizations
C2: Who Research centres, software design

and user organizations
C3: When Preliminary

↓ ↓

D1: What Components, algorithms, protocols
D2: How Detailed, semi-detailed
D3: How Abstract
D4: How Formal, semi-formal

Type 5: Reference architectures from Type 5 are

preliminary, facilitation architectures designed to be
implemented in multiple organizations (see Table 5).
They are designed to facilitate the design of
architectures of systems that will become needed in the
future. As these architectures are preliminary, research
centres are typically leading the design effort. In order
to address the user and software design requirements,
organizations representing these roles should be
involved in the design process as well. These reference
architectures are innovative in their nature and have to
define the components required in a system
implementing it, algorithms that can be used to support
the operation of the components, and protocols that
demonstrate the interactions among the components.

7

These elements have to be detailed as they have to
provide details for the innovative aspects they define
(showing implementability of components, clarifying
their operation, etc.). Reference architectures from
Type 5 abstract from a concrete technology, as it may
still not exist or be immature (hence, they are abstract
architectures). Unambiguousness and evidences for
their qualities are important to convince the usage of
the architecture for the design of the first systems from
this class. That is why they are formal or semi-formal
architectures. The ANSI-SPARC database reference
architecture [28] is an example of a reference archi-
tecture that closely resembles a Type 5 architecture.

We view preliminary, facilitating reference
architectures designed for multiple organizations by
only a research centre as a special case of Type 5
architectures. The origin in pure research environment
of these reference architectures results in “futuristic”
designs that do not concentrate on the requirements of
the domain stakeholders but on the innovative
elements of the architecture. That is why these
architectures are usually not considered for system
implementations in practice. Their main contribution is
in inspiring future research efforts in the domain
(depicting main software issues, providing blueprints
for prototype implementations, etc). The success of
these architectures is hard to estimate. Examples for
this specialization of Type 5 architectures are ERA [2],
AHA [30], and eSRA [22].

Design of a preliminary, facilitating reference
architectures for a single organization is plausible.
However, the effort of defining a preliminary reference
architecture for a single organization requires
substantial resources. Only leading organizations
might invest in visionary architectures. As we did not
find an existing example for such reference
architectures, we do not define it as a separate type.

4. Analysis of reference architectures

In Section 3, we have discussed the types of
reference architectures in which goals, context, and
design are in congruence and provided example
references for each of them. In this section, we present
the WRM [18] as an example of a reference
architecture that fits in a type and discuss it in detail.
The ANSI-SPARC database reference architecture
[28] is presented as an example architecture that does
not completely fit in one of our types. We discuss the
consequences from this misalignment for its level of
success. We have selected these two reference
architectures because of their popularity and the
possibility to evaluate their contribution to the design

of concrete architectures from the perspective of time.
In addition, we briefly analyse the position of a
number of less known reference architectures in our
framework and their level of success. The findings for
all reference architectures that we studied are
summarized in a table.

4.1. The Workflow Reference Model

The Workflow Reference Model [18] is an example
of a Type 1 reference architecture. It was designed by
the Workflow Management Coalition - a
standardization consortium of user and software
organizations [3]. Their goal was to elaborate a
standard for the design of workflow management
systems. By the time of the definition of the WRM,
substantial experience with workflow management
systems had been accumulated. The WRM defines the
system components and the interfaces between them
on a high level of aggregation. There are no references
towards a specific technology in the WRM.

The congruence between the goals of the designers,
context, and architecture design made WRM a
successful reference architecture. It is a well-known
architecture that has been used as a basis for the design
of numerous concrete architectures of workflow
management systems [10].

4.2. The ANSI-SPARC DBMS reference
architecture

The ANSI-SPARC DBMS reference architecture
was conceived as a standardization architecture for
multiple organizations [28]. The design team was
composed of user, software, and research
organizations. The architecture specifies components
and interfaces. It is abstract, semi-detailed, and semi-
formal. Based on these values, the architecture can be
classified as Type 1 architecture with a variation in the
C2 sub-dimension (involvement of researchers).
However, as its designers concluded ‘post-factum’, the
existing technology was not able to support it [28]. In
the newly defined context, the architecture became
preliminary, facilitation architecture positioning itself
as a Type 5 reference architecture. The mismatch of its
values and Type 5 values occurs in the D1 sub-
dimension, which as a result of the initial confusion of
goals and context of the architecture, defines
components and interfaces instead of components and
algorithms. This misalignment decreased the
effectiveness of the architecture as the support for
certain components had to be further investigated
beyond this design effort (which has significantly

8

delayed the usage of the complete architecture in
practice). However, the congruence of goals, context
and the other design dimensions (as defined in Type 5)
contributed to the success of the design principles of
the ANSI-SPARC architecture (well-known as the
“ANSI-SPARC three-layer model”) which became a
fundamental model for the design of database
management systems.

4.3. Other reference architectures

In this section, we discuss a number of less known
reference architectures. We provide a summary of our
findings for the 16 reference architectures studied by
us in Table 6.

The Workflow Management Systems Reference
Architecture (WMS RA) [17] is a classical, facilitation
architecture designed for multiple organizations. It is
abstract, detailed, semi-formal, describing system
components and their operation. Based on its goals and
context it resembles a Type 3 reference architecture.
However, it was mainly designed in a research centre,
and thus, differs from a Type 3 architecture in its C2
sub-dimension (and consequently in the D2 and D3
sub-dimensions). As discussed in Section 3.2, the
origin of the architecture in a research centre led to the
lack of attention by the domain to the WMS RA and it
was never used as a basis for the design of a concrete
architecture. The success of the WMS RA could have
been greater if it was conceived as a Type 1
architecture by involving additional stakeholders and
becoming a standardization effort (and a competitor of
the WRM).

The INAHL reference architecture [29] is a recently
published, classical, facilitation reference architecture
designed for multiple organizations in the petroleum
industry. It was designed by a research centre in
cooperation with one user organization [5]. The
architecture is detailed, concrete, semi-formal,
describing mainly the system components. Thus, it
resembles a Type 3 architecture but similar to the
WMS RA, it was conceived in a research environment.
In contrast to the WMS RA, it involved a user
organization and is a concrete architecture. This makes
it a better fit for the Type 3 than the WMS RA. In our
opinion, the lack of a constant support for the
INAHL RA by a software organization (as required in
Type 3) will be a reason for its limited success. So far,
it has been experimentally implemented in the user
organization but is no longer in practical use there [5].

The Achmea Software Reference Architecture [13]
was developed to guide the application developers at
Achmea in the development and integration of new
applications. It is designed by a software organization

(IBM), together with designers from the user
organization (Achmea). It is a classical reference
architecture as it makes use of IBM best-practices,
supplemented with best-practices from Achmea. It
contains a description of components and a number of
organization-specific policies. The architecture is
concrete as it addresses specific software products and
protocols. The architecture is aggregated, providing
only high-level clustering guidance. The architecture is
described in structured natural language (informal).
We conclude that this is a Type 4 architecture with
congruent goals, context, and design. The architecture
has been used in numerous projects within Achmea.

Table 6. List of studied reference architectures

 T G1 C1 C2 C3 D1 D2 D3 D4 LS
WRM [18] 1 X X X X X X X X 4
OATH [23] 1 X X X x x X X X 3
OSI RM [31] 1 X X X X X X X X 4
HIF [27] 1 X X X X x X X X 3
CORBA [24] 1 X X X X X X X X 4
FORTIS RSA 2 X X X X X X X X 4
IBM PanDOORA 3 X X X X X X x X 3
WMS RA [17] 3 X X - X x - - X 1
INAHL [29] 3 X X x X x X X X 2
MS .NET [20] 3 X X X X X X X X 4
ACHMEA RA [13] 4 X X X X X X X X 4
ABN WAA [12] 4 X X x x X X X X 2
ANSI-SPARC [28] 5 X X X X x X X X 3
ERA [2] 5 X X x X x X X X -
eSRA [22] 5 X X x X x X X X -
AHA [30] 5 X X x X X x X X -

In Table 6, we list the values for all reference

architectures that we studied. A row in the table shows
the type that the reference architecture resembles the
most (indicated in the “T” column) and its values for
each of the sub-dimensions in our framework. We use
“X” to denote a complete match between the values of
the architecture and those recommended in the type,
“x” that certain variations occur, and “-” that there is
no match between them. The last column (“LS”)
indicates on a scale from 1 to 4 (1 being the lowest)
our estimation for the level of success of the
architecture. As already discussed, we do not estimate
the architectures from the variation of Type 5.

Our measurement of the success of a reference
architecture is based on the acceptance of the
architecture by the domain community. Acceptance by
the community leads to a higher number of
applications of the reference architecture in the design
of concrete architectures. Our estimations for the
success of the reference architectures presented in
Table 6 that exist relatively long are based on existing
publications on their usage [10] (for WRM), [9] (for

9

HIF) and on our experiences and judgement for the
acceptance of the architectures by the domain
communities (for the OSI RM, CORBA, ANSI-
SPARC DB, FORTIS RSA, IBM PanDOORA, WMS
RA, MS .NET, ACHMEA RA, ABN WAA). For
architectures that were released recently, i.e., OATH,
INAHL, ERA, eSRA (shown in italic in Table 6), no
conclusive evidence for their usage can be provided.
Our estimation for them is based on their match with
the indicated type and can be seen as a prediction for
their level of success. Clearly, our estimations are not
based on precise measurement criteria. Characteristics
of an architecture can affect its explicit usage. For
example, copyright issues may be a reason for not
stating the usage of a reference architecture. Providing
stronger evidence for the level of acceptance of the
reference architectures and details for the correlation
between the congruence of goals, contexts, and design
of the reference architectures and their acceptance is
future work. We use our estimations only as basic
indications for the existence of this correlation.

5. Related work

The literature on reference architectures is scarce.
Definitions and brief explanations on reference
architectures are provided in [6] and [26]. In [14], the
authors acknowledge the lack of clear understanding of
reference architectures and provide a multi-
dimensional classification of reference architectures.
The classification is, however, ad-hoc and mainly
based on practical experiences. In [21], an overview of
reference architectures is presented. Similar to [14], the
authors concentrate on the description of the many
facets of reference architectures. The goal of the paper
is to “create guidelines for the content of a reference
architecture and the process to create and maintain it”.
The dimensions discussed in [21] are less explicit
compared to our work and have a descriptive goal. The
dimensions discussed in our paper are clearly
structured and are defined to serve as a framework for
the classification of the level of congruence of goals,
context, and design of reference architectures. In [21],
the authors acknowledge the need for congruence of
different dimensions for the definition of successful
reference architectures but do not state requirements
with respect to these dimensions.

The design of reference architectures with
congruent business goals, functionalities and qualities
for software product line architectures is addressed in
[25] and [1]. However, this work is limited for the
concrete context of product families discussed in
Type 2 reference architectures (see Section 3.1).

As already discussed, the quality of a reference
architecture is clearly also a factor for its success.
Evaluation of reference architectures for their qualities
is performed through the Architecture Tradeoff
Analysis Method (designed for evaluation of software
architectures) [6], [8], [11]. The limitations of ATAM
for the context of reference architectures are addressed
in [4], where extension and tailoring of ATAM for the
context of reference architectures are proposed.

6. Conclusions

In this paper, we present a three-dimensional
framework for the classification of reference
architectures. The three dimensions are based on the
need for congruent goals, context and design of
reference architectures. We use the framework to
define five types of reference architectures that have
congruent values in the three dimensions. The match
of a reference architecture with one of these types is a
pre-condition for its effective usage in the design of
concrete architectures. The five types are defined by
using existing publications, reasoning on the possible
combinations of values, and by investigating 16
reference architectures and estimating their success.
We illustrate our conclusions by positioning the
reference architectures studied by us in our framework
and discussing their level of success.

The framework that we present in this paper can be
used as a tool for the analysis of existing reference
architectures and identification of the reasons for their
level of success. More importantly, the framework can
be used as a tool before and during the definition of
reference architectures, indicating potential deviations
in their congruence between goals, context, and
design. We believe that this work will contribute to the
design of more successful reference architectures and
in general to the structuring of the conceptual space of
reference architectures.

The main limitation of this study is the relatively
small set of reference architectures that was used in our
exploratory study and in the design of the architecture
types. Validating and extending our results with more
reference architectures will improve and strengthen our
conclusions. We see this as a next step in our research.

References

[1] M. Anastasopoulos, J. Bayer, O. Flege, and C. Gacek, "A
Process for Product Line Architecture Creation and
Evaluation: PuLSE-DSSA," IESE-Report 038.00/E, 2000.

10

[2] S. Angelov and P. Grefen, "An E-contracting Reference
Architecture," The Journal of Systems and Software, vol. 81,
no. 11, Elsevier, 2008, pp. 1816-1844.

[3] S. Angelov and N. Palmer, Pers. communication, 2008.

[4] S. Angelov, J. Trienekens, and P. Grefen, "Towards a
Method for the Evaluation of Reference Architectures:
Experiences from a Case," in Software Architecture, 2nd
European Conf., ECSA 2008, Springer, 2008, pp. 225-240.

[5] S. Angelov and G. Urdaneta, Pers. communication, 2009.

[6] L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice, Addison-Wesley Prof., 2003.

[7] J. Bayer, D. Ganesan, J.-F. Girard, J. Knodel, R. Kolb,
and K. Schmid, "Definition of Reference Architectures based
on Existing Systems," Fraunhofer IESE, IESE-WP2.6, 2003.

[8] P. Clements, R. Kazman, and M. Klein, Evaluating
Software Architectures: Methods and Case Studies, Addison-
Wesley Professional, 2002.

[9] F. Ferrara, "The standard 'Healthcare Information
Systems Architecture' and the DHE middleware," Int. J. of
Medical Informatics, vol. 52, no. 1, pp. 39-51, 1998.

[10] L. Fischer, Workflow Handbook 2004, Future Strategies
Inc., 2004.

[11] B. Gallagher, "Using the Architecture Tradeoff Analysis
Method to Evaluate a Reference Architecture: A Case
Study," SEI, Carnegie Mellon University, CMU/SEI-2000-
TN-007, 2000.

[12] D. Greefhorst, "Een applicatie-architectuur voor het web
bij de bank — de pro's en contra's van toestandsloosheid,"
Array Publications, 1999 (in Dutch).

[13] D. Greefhorst and P. Gehner, "Achmea streamlines
application development and integration," Via Nova
Architectura, 2006.

[14] D. Greefhorst, P. Grefen, E. Saaman, P. Bergman, and
W. van Beek, "Referentie-Architectuur: Off-the-Shelf
Architectuur," in Landelijk Architectuur Congres 2008, NAF
& SDU, Nieuwegein, The Netherlands, 2008 (in Dutch).

[15] D. Greefhorst, H. Koning, and H. van Vliet, "The many
faces of architectural descriptions," Information Systems
Frontiers, vol. 8, no. 2, 2006, pp. 103-113.

[16] P. Grefen, ICT Architectures, Eindhoven University of
Technology, Eindhoven, 2008.

[17] P. Grefen and R. Remmerts de Vries, "A reference
architecture for workflow management systems," Data &
Knowledge Engineering, vol. 27, no. 1, 1998, pp. 31-57.

[18] D. Hollingsworth, "The Workflow Reference Model,"
Workflow Management Coalition, TC00-1003, 1995.

[19] M. Metcalfe, Reading Critically at University, Sage
Publications Ltd, 2006.

[20] Microsoft, "Application Architecture for .NET:
Designing Applications and Services," Microsoft, 2002.

[21] G. Muller, "A Reference Architecture Primer,"
Eindhoven Univ. of Techn., Eindhoven, White paper, 2008.

[22] A. Norta, Exploring Dynamic Inter-Organizational
Business Process Collaboration, PhD Thesis, Eindhoven
University of Technology, Eindhoven, 2007.

[23] OATH, "OATH Reference Architecture, Release 2.0,"
Initiative for Open AuTHentication (OATH), 2007.

[24] OMG, "Common Object Request Broker Architecture:
Core Specification," OMG, Inc., Version 3.0.3, 2004.

[25] M. Pinzger, H. Gall, J.-F. Girard, J. Knodel, C. Riva, W.
Pasman, C. Broerse, and J. G. Wijnstra, "Architecture
recovery for product families," in Software Product-Family
Engineering,Berlin: Springer, 2004, pp. 332-351.

[26] P. Reed, "Reference Architecture: The best of best
practices," 2002.

[27] N. Saranummi, M. Demeester, A. F. P. d. Talens, J.
Harrington, V. Heimly, J. M. d. l. Riva Grandal, and J.
Taylor, "Healthcare information framework," Int. Journal of
Bio-Medical Computing, vol. 39, no. 1, 1995, pp. 99-104.

[28] SPARC-DBMS Study Group, "Interim Report:
ANSI/X3/SPARC Study Group on Data Base Management
Systems 75-02-08," FDT, vol. 7, no. 2, 1975, pp. 1-140.

[29] G. Urdaneta, J. Colmenares, N. Queipo, N. Arapé, C.
Arévalo, M. Ruz, H. Corzo, and A. Romero, "A reference
software architecture for the development of industrial
automation high-level applications in the petroleum
industry," Comp. in Industry, vol. 58, no. 1, 2007, pp. 35-45.

[30] H. Wu, A Reference Architecture for Adaptive
Hypermedia Applications, PhD Thesis, Eindhoven
University of Technology, Eindhoven, 2002.

[31] H. Zimmermann, "OSI reference model - the IS0 model
of architecture for open systems interconnection," IEEE
Transactions on Communications, vol. 28, no. 4, 1980, pp.
425-432

