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Abstract

In this paper we get different characterizations of the spherical strictly pseudoconvex CR manifolds

admitting a CR-symmetric Webster metric by means of the Tanaka–Webster connection and of the

Riemannian curvature tensor. As a consequence we obtain the classification of the simply connected,

spherical symmetric pseudo-Hermitian manifolds.
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1. Introduction

A spherical CR manifold is a strongly pseudoconvex CR manifold (M, H M, J ) of

hypersurface type which is locally CR-equivalent to the sphere S
2n+1, n = dimC R M ,

endowed with the standard CR structure as a real hypersurface of C
n+1. Recall that

strong pseudoconvexity means positive definiteness of the Levi form Lη associated

with a suitable global section η of the annihilator Ho M of the holomorphic tangent

bundle of M . The 1-form η is usually called a pseudo-Hermitian structure on M , and

it canonically determines a Riemannian metric gη which is compatible with the partial

complex structure J : H M → H M (see, for example, [27, 31]). We shall call gη the

Webster metric associated with η. Denoting by ξ the Reeb vector field of the contact

form η, at each point x ∈ M we have an orthogonal decomposition

Tx M = Hx M ⊕ Rξx

with respect to gη, and moreover gη|Hx M = (Lη)x , gη(ξ, ξ) = 1.

Spherical CR manifolds are characterized by S = 0, where S is the Chern–Moser–

Tanaka pseudoconformal invariant tensor field of type (1, 3), and they represent

flat spaces among strongly pseudoconvex CR manifolds from the point of view of

Cartan geometry (see, for example, [26]). The simply connected, homogeneous
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spherical hypersurfaces of the Euclidean space C
n+1 were fully classified by Burns and

Shnider in [11]. In particular, it is known that the unique compact simply connected

homogeneous spherical hypersurface of C
n+1 is S

2n+1, up to CR-equivalence. In

this paper we adopt a geometric point of view in studying spherical CR manifolds,

concentrating our attention on CR-symmetric Webster metrics gη. For the general

notion of a symmetric Hermitian metric on a CR manifold we refer to [19] (see also

Section 3). Here we recall that a Webster metric gη is CR-symmetric if for each point

x ∈ M there exists a CR-isometry σ : M → M with σ(x) = x and

(dσ)x |Hx M = −Id.

This notion of course is different from the requirement that (M, gη) be a Riemannian

symmetric space, which is known to be quite strong for a Webster metric (see, for

example, [15]).

Actually the standard metric go of curvature 1 on the sphere S
2n+1 is a CR-

symmetric Webster metric gηo for the choice of a canonical contact form ηo. The

symmetry at a point x ∈ S
2n+1 is the restriction of the unitary reflection σx (z) =

2〈x, z〉x − z with respect to the standard Hermitian scalar product of C
n+1 (see [19]).

More generally, any Sasakian space form (see, for example, [3]) is a spherical CR-

symmetric pseudo-Hermitian manifold. Indeed, in the Sasakian case, the Webster

metric g is CR-symmetric if and only if M is a ϕ-symmetric space (for this notion see,

for example, [25]).

In the present paper some basic features of CR-symmetric Webster metrics are

analyzed (see Theorems 3.2 and 4.4). Our main results can be summerized in the

following statement.

THEOREM 1.1. Let (M, H M, J, η) be a pseudo-Hermitian manifold of CR

dimension n ≥ 2. Assume that the Webster metric g := gη is not Sasakian. Denote by R̃

the curvature of the Tanaka–Webster connection and by R the Riemannian curvature

tensor of g. Then:

(a) (M, H M, J, g) is locally CR-symmetric if and only if the underlying contact

metric structure (ϕ, ξ, η, g) satisfies the (k, µ)-nullity condition – that is, for

some k, µ ∈ R,

R(X, Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )h X − η(X)hY ),

where h = 1
2 Lξϕ.

(b) Assume that g is locally CR-symmetric. Then the following are equivalent:

(i) M is spherical;

(ii) the Webster scalar curvature vanishes;

(iii) the pseudoholomorphic sectional curvature K̃ is constant;

(iv) µ = 2.

When one of these equivalent conditions holds, then K̃ = 0 but R̃ 6= 0.
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This result provides an interpretation in CR geometry of the theory of contact

Riemannian (k, µ)-spaces started in [4] and fully developed in the last decade by

several authors, especially by Boeckx in [6–8].

We shall present several applications of Theorem 1.1. First of all, one can obtain

a complete classification of the simply connected, spherical, CR-symmetric pseudo-

Hermitian manifolds, as follows. We remark that from the classification of Sasakian

ϕ-symmetric spaces carried out by Jiménez and Kowalski in [18] for n ≥ 2 and

0 < k < n there exists a principal fibre bundle Pn
k → CP

k × CH
n−k with ϕ-symmetric

Sasakian total space, the base space N = CP
k × CH

n−k being the product of two

Kähler space forms with holomorphic curvatures 1 and −1 respectively. This CR-

symmetric space Pn
k is spherical since the base manifold is Bochner-flat (see [10]),

according to a result of Webster which identifies the Chern–Moser tensor of Pn
k with

the Bochner tensor of N (see [32] or [14]).

We can now state the following theorem.

THEOREM 1.2. Every simply connected, spherical CR-symmetric pseudo-Hermitian

manifold of CR-dimension n ≥ 2 is homothetic to one of the following spaces:

S
2n+1, H2n+1, Bn × R, T1H

n+1, Pn
1 , . . . , Pn

n−1.

In this statement, two pseudo-Hermitian manifolds (Mi , H Mi , Ji , ηi ), i = 1, 2,

are called homothetic if there exists a CR-diffeomorphism f : M1 → M2 such that

f ∗η2 = αη1 with α a positive constant. The first three spaces are the simply connected

Sasakian space forms as described in [3, p. 114]. H2n+1 denotes the Heisenberg

group endowed with its standard Webster flat Sasakian structure, while Bn × R is the

product of a Kähler bounded domain in C
n having constant holomorphic negative

curvature with the real line, which carries a Sasakian structure with constant ϕ-

sectional curvature less than −3. The fourth space is the tangent sphere bundle T1H
n+1

of the Riemannian space form of curvature −1, with its standard CR structure and

pseudo-Hermitian structure studied, for example, in [28]. The remaining n − 1 spaces

are the Sasakian ϕ-symmetric spaces described above.

We also get the following consequences of the above classification.

COROLLARY 1.3. Up to homothety, the sphere S
2n+1 is the unique simply connected,

compact, spherical CR-symmetric pseudo-Hermitian manifold having CR-dimension

n ≥ 2.

COROLLARY 1.4. A spherical, CR-symmetric pseudo-Hermitian manifold of CR-

dimension n ≥ 2, having positive pseudoholomorphic curvature at some point, is

compact and is actually a Sasakian pseudo-Hermitian space form.

The notion of pseudoholomorphic sectional curvature is described in detail in

Section 2. We also remark that Theorem 1.2 includes the classification of pseudo-

parallel strongly pseudoconvex CR manifolds with constant pseudoholomorphic

sectional curvature obtained by Cho in [13]. These manifolds are precisely S
2n+1,
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H2n+1, Bn × R and T1H
n+1. The reason lies in the fact that any pseudo-Hermitian

manifold with constant pseudoholomorphic sectional curvature must be spherical.

Even though this statement should be almost obvious, it is not quoted in the paper of

Webster [31] where the Chern–Moser tensor S is first computed by means of pseudo-

Hermitian structures. In [31] some examples of pseudo-Hermitian space forms in C
n

are exhibited, and the vanishing of S is verified case by case. Hence we opted to give

a general proof, making the necessary computation explicit by using the equivalent

Bochner tensor (see Theorem 4.3).

As a further application of Theorem 1.1, in the last section we study the CR

geometry of tangent sphere bundles of arbitrary constant radius over Riemannian

manifolds with constant curvature. Our approach is slightly more general than that

appearing in [30] and [28]. We show that if M is a hyperbolic Riemannian space

form, each Tr M carries a one-parameter family of CR-symmetric nonhomothetic

pseudo-Hermitian structures, exactly one of which is spherical (Theorem 6.2). This

should be compared with the relevant fact that a homogeneous CR manifold which

is homeomorphic to a sphere admits a unique homogeneous CR structure [17]. Our

examples emphasize that ‘homeomorphic’ cannot be replaced by ‘homotopically

equivalent’, even if the homogeneous CR structure is spherical.

Finally, we mention that in [21] Kowalski and Sekizawa show how the geometric

properties of tangent sphere bundles Tr M of a given Riemannian manifold (M, g) are

influenced by the value of the radius r . Since in the constant curvature case the metric

induced by g on each Tr M is Webster and CR-symmetric, it is natural to ask how the

pseudo-Hermitian geometry of Tr M varies according to r . As regards this problem,

applying Theorem 6.2, we obtain partial information given by the following.

COROLLARY 1.5. Let (M, g) be a Riemannian manifold of constant curvature K and

dimension n ≥ 3. Consider the standard almost complex structure J on T M defined by

J X H = X V , J X V = −X H , X ∈ X(M),

where X H and X V denote horizontal and vertical lifts.

Endow each Tr M, r > 0, with the induced CR structure and the standard pseudo-

Hermitian structure ηr . Then:

(a) K < 0 if and only if there exists r > 0 such that Tr M is a spherical CR manifold;

(b) K > 0 if and only if there exists r > 0 such that the Webster metric gηr is

Sasakian;

(c) K = 0 if and only if (Tr M, H(Tr M), J, ηr ) and (Tr ′ M, H(Tr ′ M), J, ηr ′) are

locally homothetic pseudo-Hermitian manifolds for each r, r ′ > 0.

Moreover, if one of the equivalent conditions in (a) holds, there exists a unique ro such

that Tro M is spherical, which is related to K by

K = − 1

r2
o

.
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When one of the equivalent conditions in (b) holds there exists a unique ro such

that gηro
is Sasakian, which is related to K by

K = 1

r2
o

.

2. Preliminaries

Let M be a connected C
∞ manifold of dimension 2n + k, n, k ≥ 1. A partial

complex structure of CR-dimension n and CR-codimension k is a pair (H M, J ) where

H M is a smooth real subbundle of the tangent bundle T M having rank 2n, and J is

a smooth bundle isomorphism J : H M → H M such that J 2 = −I . An almost CR

structure is a partial complex structure such that

[X, Y ] − [J X, JY ] ∈ D (2.1)

for any X, Y ∈ D, where D denotes the module of all smooth sections of H M . If, in

addition, the formal integrability condition

[J X, JY ] − [X, Y ] − J ([J X, Y ] + [X, JY ]) = 0 (2.2)

is satisfied, (M, H M, J ) is termed a CR manifold. In this paper we shall be

concerned only with the case where M has CR-codimension 1 (hypersurface type).

Assuming (2.1) and that M is orientable, it is known that there exist globally defined

nowhere zero 1-forms η such that Ker(η) = H M . The corresponding Levi form is

defined by

Lη(X, Y ) = −dη(X, JY ), X, Y ∈ D.

The almost CR structure is said to be nondegenerate if Lη is nondegenerate for some η.

In this case, the 1-form η is a contact form, in the sense that η ∧ (dη)n is a volume

form on M . Moreover, there exists a unique nowhere vanishing globally defined vector

field ξ transverse to H M such that

η(ξ) = 1, dη(ξ, X) = 0,

for any X ∈ X(M). The second condition is equivalent to [ξ, D] ⊂ D or Lξη = 0,

where Lξ denotes the Lie differentiation with respect to ξ .

An almost CR structure is said to be strongly pseudoconvex if Lη is positive definite

for some η. In this case the Levi form can be canonically extended to a Riemannian

metric on M , called the Webster metric, defined by

gη(X, Y ) = Lη(X, Y ), gη(X, ξ) = 0, gη(ξ, ξ) = 1,

for any X, Y ∈ D. Such a 1-form η will be called a pseudo-Hermitian structure.

By a pseudo-Hermitian manifold we shall mean a strongly pseudoconvex CR

manifold (M, H M, J, η) on which a pseudo-Hermitian structure has been fixed.

The partial complex structure J of a pseudo-Hermitian manifold can be canonically

extended to a tensor field ϕ of type (1, 1) on M such that ϕ(ξ) = 0 and ϕX = J X for

any X ∈ D, which is an f -structure with rank 2n. The tensors (ϕ, ξ, η, gη) make up a

contact metric structure on M in the sense of [3]. Conversely, if M is a contact metric
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manifold with structure (ϕ, ξ, η, g), then M admits a strongly pseudoconvex almost

CR structure given by H M = Im(ϕ) and J = ϕ|H M . The Webster metric gη coincides

with g. Tanno proved that this almost CR structure is a CR structure if and only if

(∇Xϕ)Y = g(X + h X, Y )ξ − η(Y )(X + h X)

for any X, Y ∈ X(M) (see [27]). Here ∇ is the Levi-Civita connection of the Webster

metric g and h is the symmetric operator h := 1
2 Lξϕ.

We also recall that in the literature a pseudo-Hermitian manifold (M, H M, J, η)

such that h = 0 is called standard or regular while the metric gη is called a Sasakian

metric. We shall also use the term Sasakian manifold as a synonym for the regular

pseudo-Hermitian manifold.

Next we recall a special class of contact metric manifolds with which we will be

concerned in the following, the so-called (k, µ)-spaces. Such a space is characterized

by the following property of the Riemannian curvature tensor, known in the literature

as the (k, µ)-nullity condition:

R(X, Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )h X − η(X)hY ), k, µ ∈ R, (2.3)

for any X, Y ∈ X(M). In [4] the authors prove the relation h2 = (k − 1)ϕ2 which

implies that k ≤ 1. If k = 1, then h = 0 and M is a Sasakian manifold. If k < 1,

the contact metric structure is not Sasakian and M admits three mutually orthogonal

integrable distributions D(0) = Rξ, D(λ) and D(−λ), determined by the eigenspaces

of h, with λ =
√

1 − k. Moreover, when k < 1 the curvature tensor is completely

determined by the condition (2.3), and its explicit expression is the following [6]:

R(X, Y )Z =
(

1 − µ

2

)

(g(Y, Z)X − g(X, Z)Y )

+ g(Y, Z)h X − g(X, Z)hY + g(hY, Z)X − g(h X, Z)Y

+ 1 − (µ/2)

1 − k
(g(hY, Z)h X − g(h X, Z)hY )

− µ

2
(g(ϕY, Z)ϕX − g(ϕX, Z)ϕY ) + µg(ϕX, Y )ϕZ

+ k − (µ/2)

1 − k
(g(ϕhY, Z)ϕh X − g(ϕh X, Z)ϕhY )

+ η(X)

((

k − 1 + µ

2

)

g(Y, Z) + (µ − 1)g(hY, Z)

)

ξ

− η(Y )

((

k − 1 + µ

2

)

g(X, Z) + (µ − 1)g(h X, Z)

)

ξ

− η(X)η(Z)

((

k − 1 + µ

2

)

Y + (µ − 1)hY

)

+ η(Y )η(Z)

((

k − 1 + µ

2

)

X + (µ − 1)h X

)

. (2.4)
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In [7], Boeckx introduced the invariant

I = 1 − µ/2√
1 − k

and proved that two non-Sasakian (k, µ)-spaces are locally homothetic pseudo-

Hermitian manifolds if and only if their invariants coincide.

Moreover, the non-Sasakian (k, µ)-spaces are also characterized by the requirement

that

g((∇X h)Y, Z) = 0 (2.5)

for any X, Y, Z ∈ D. This fact has been proved in [9], where contact metric structures

satisfying (2.5) are called η-parallel.

We conclude this section by recalling some basic facts about the Tanaka–Webster

connection. We shall refer to [23].

THEOREM 2.1. Let (M, H M, J, η) be a pseudo-Hermitian manifold with subordi-

nate contact metric structure (ϕ, ξ, η, g). There is a unique linear connection ∇̃ such

that

∇̃ϕ = 0, ∇̃ξ = 0, ∇̃η = 0, ∇̃g = 0, T̃D = 0, F = − 1
2ϕLξϕ, (2.6)

where T̃ is the torsion tensor field of ∇̃, T̃D(X, Y ) denotes the D-component of

T̃ (X, Y ) for any X, Y ∈ D, and F is the tensor field of type (1, 1) defined by

F X = T̃ (ξ, X) for any X ∈ X(M).

The linear connection in the above statement is called the canonical connection or

the Tanaka–Webster connection of the pseudo-Hermitian manifold M . Denoting by ∇
the Levi-Civita connection of g, then ∇̃ = ∇ + H , with

H(X, Y ) = g(X, ϕY )ξ + η(X)ϕY + η(Y )ϕX + g(F X, Y )ξ − η(Y )F X (2.7)

for any X, Y ∈ X(M). The curvature tensor R̃ of ∇̃ satisfies

R̃(X, Y )ξ = 0, R̃(X, Y )ϕ = ϕ R̃(X, Y ), R̃(X, Y )D ⊂ D,

for any X, Y ∈ X(M).

If σ ⊂ Hx M is a holomorphic 2-plane in x ∈ M (that is, Jσ = σ ), then the quantity

K̃ (σ ) = R̃x (X, J X, X, J X),

where {X, J X} is an orthonormal basis of σ , depends only on σ and will be called the

pseudoholomorphic sectional curvature of σ . If K̃ (σ ) does not depend on σ and on

the point x , then M will be called a pseudo-Hermitian space form.

https://doi.org/10.1017/S0004972709000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000252


258 G. Dileo and A. Lotta [8]

3. CR-symmetric Webster metrics

Let (M, H M, J, g) be a Hermitian almost CR manifold, that is, an almost CR

manifold, having CR-codimension k ≥ 1, on which a Riemannian metric g is fixed,

whose restriction to H M is Hermitian with respect to J . Denote by D∞ ⊂ X(M) the

Lie algebra generated by D. Let σ : M → M be an isometric CR-diffeomorphism.

Then σ is called a symmetry at the point x ∈ M if x is a fixed point of σ and the

differential of σ at x coincides with −Id on the subspace D∞(x)⊥ ⊕ Hx M of Tx M .

Here D∞(x) = {Xx |X ∈ D∞}.
A connected Hermitian almost CR manifold M is called (globally) symmetric if

for each point x ∈ M there exists a symmetry σx at x (see [19]). We shall also say

that g is a CR-symmetric Hermitian metric on (M, H M, J ). Since the symmetry

at x is uniquely determined (see [19, Theorem 3.3]) it makes sense also to define

Hermitian locally CR-symmetric almost CR spaces in a natural manner. Observe that,

since the symmetries are CR maps, for this class of almost CR spaces the integrability

condition (2.2) is automatically satisfied.

It is proved in [19] that a Hermitian symmetric CR space M is CR-homogeneous: in

fact the subgroup of the automorphism group AutC R(M) generated by the symmetries

acts transitively. In particular, every Hermitian symmetric CR space M is a real

analytic CR manifold.

From now on we specialize to strongly pseudoconvex CR manifolds of hypersurface

type and discuss CR-symmetric Webster metrics. We remark that for a pseudo-

Hermitian manifold D∞(x) = Tx M , so that a symmetry at a point x is characterized

by the condition (ds)x = −Id on Hx M .

LEMMA 3.1. Let (M, H M, J, η) be a pseudo-Hermitian manifold. Denote by g = gη

the Webster metric associated with η and by (ϕ, ξ, η, g) the corresponding contact

metric structure. Let x ∈ M and assume that σx : U → U is a local symmetry at x

defined on an open neighbourhood of x. Then σx is local automorphism of (ϕ, ξ, η, g).

PROOF. According to [19, Remark 3.4] we see that the differential of σx at x is given

by

(dσx )x = −Id + 2ηx ⊗ ξx . (3.1)

Thus (dσx )x (ξx ) = ξx , which implies that (σx )∗ξ = ξ because σx is a CR-isometry. It

also follows that (σx )
∗η = η because η is dual to ξ with respect to g. Since σx is a CR

map it follows immediately that it also preserves the tensor field ϕ. ✷

At this point we get the following characterization of CR-symmetric Webster

metrics.

THEOREM 3.2. Let (M, H M, J, η) be a pseudo-Hermitian manifold. Assume that

the Webster metric gη is not Sasakian. The following conditions are equivalent:

(a) the Webster metric gη is locally CR-symmetric;

(b) the underlying contact metric structure satisfies the (k, µ)-nullity condition.
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PROOF. (a) ⇒ (b). It suffices to prove that the contact metric structure is η-parallel.

Let X, Y, Z ∈ D. We need to prove that g((∇X h)Y, Z) = 0. Fix a point x ∈ M and

consider a local symmetry σx at x . According to the lemma, σ preserves the tensor

field h and also its covariant derivative. Hence at x we obtain

gx ((∇Xx h)Yx , Zx ) = gx ((∇dσx (Xx )h)dσx (Yx ), dσx (Zx )) = −gx ((∇Xx h)Yx , Zx )

and the assertion follows.

(b) ⇒ (a). In [6] the following tensor field T is considered:

TX Y = (g(ϕX, Y ) + g(ϕh X, Y ))ξ − η(Y )(ϕX + ϕh X) − µ

2
η(X)ϕY.

T is a homogeneous structure for the contact metric structure (ϕ, ξ, η, g), that is,

∇̄g = ∇̄ R = ∇̄T = 0,

∇̄ξ = ∇̄η = ∇̄ϕ = 0,

where ∇̄ = ∇ − T , ∇ being the Levi-Civita connection and R its curvature tensor. We

also remark that ∇̄ R̄ = ∇̄ T̄ = 0, where R̄ is the curvature tensor and T̄ is the torsion

of ∇̄. Fix a point x ∈ M . From the expression for T we see that Tx is preserved by the

linear transformation L := −Id + 2ηx ⊗ ξx of Tx M . Moreover, from expression (2.4)

for the curvature tensor R, it is straightforward to verify that L also preserves Rx .

This in turn implies that L preserves R̄x . Hence, by a standard argument (see [20,

p. 261]), there exists an affine transformation σ : U → U with respect to ∇̄, defined

on an open neighbourhood of x , such that (dσ)x = L . From the parallelism of the

structure tensors (ϕ, ξ, η, g), it follows that σ is actually a CR-isometry, and thus a

local symmetry at x . ✷

To end this section, we shall prove that for Sasakian manifolds, local symmetry in

the sense of [19] is actually equivalent to a similar concept in the literature, namely

locally ϕ-symmetric contact metric structure (see [3, 6]). The latter is defined by the

requirement that the characteristic reflections, that is, the reflections with respect to

the integral curves of ξ , be local isometries. A (global) Sasakian ϕ-symmetric space

is a Sasakian locally ϕ-symmetric space whose characteristic reflections are globally

defined, and ξ generates a global one-parameter group of automorphisms of the contact

structure [25].

PROPOSITION 3.3. Let (M, H M, J, η) be a pseudo-Hermitian manifold. Assume

that the Webster metric g = gη is Sasakian. The following conditions are equivalent:

(a) (M, H M, J, gη) is a locally (globally) CR-symmetric pseudo-Hermitian

manifold;

(b) (M, ϕ, ξ, η, g) is a locally (globally) ϕ-symmetric space.
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PROOF. We treat the local statement first.

(a) ⇒ (b). Since the metric gη is Sasakian, it is known that the geodesic reflection sx

at a point x ∈ M with respect to the integral curve of ξ through x is given, on a normal

neighbourhood U of x , by

sx = expx ◦L ◦ exp−1
x ,

where L = −Id + 2ηx ⊗ ξx [5]. By (3.1) in Lemma 3.1 the symmetry σ at x coincides

with sx on a suitable U ′ ⊂ U . Hence sx is a local isometry. This means that M is

locally ϕ-symmetric.

(b) ⇒ (a) Under assumption (b), it is proved in [5] that sx is a local automorphism

of the contact metric structure, in particular it is a CR-isometry and (ds)x = −Id on

Hx M , so that sx is a symmetry at x .

Finally, as for the global statement, we remark that if gη is globally CR-

symmetric, M is CR-homogeneous and Riemannian homogeneous, hence ξ is

complete, being a Killing field. ✷

4. The Bochner-type tensor of a symmetric CR manifold

Let (M, H M, J ) be a strongly pseudoconvex CR manifold having CR-dimension

n ≥ 2 and let η and η′ be two pseudo-Hermitian structures, with subordinate contact

metric structures (ϕ, ξ, η, g) and (ϕ′, ξ ′, η′, g′). As proved in [23], these structures

are related by

η′ = e2µη, ξ ′ = e−2µ(ξ + Q), ϕ′ = ϕ + η ⊗ P,

g′(X, Y ) = e2µg(X, Y ), ∀ X, Y ∈ D, (4.1)

where µ is a C
∞-function, and P ∈ D is defined by g(P, X) = dµ(X) for X ∈ D

and Q = J P . In [24] the authors derive a pseudoconformal invariant on the CR

manifold, that is, an invariant of the change (4.1), called the Bochner curvature tensor.

A more general treatment is given in [29], where almost CR manifolds are allowed.

There it is proved that for CR manifolds this tensor coincides with the Chern–Moser–

Tanaka invariant [12, 26]. The definition of the Bochner curvature tensor involves the

curvature of the canonical connection ∇̃, as described in the following.

As usual, the Ricci tensor field s of ∇̃ is defined by

s(X, Y ) = tr(V → R̃(V, X)Y )

for any X, Y ∈ X(M). One can define another Ricci tensor field k by

k(X, Y ) = 1
2 tr(ϕ R̃(X, ϕY ))

for any X, Y ∈ X(M). Both s and k are symmetric when restricted to D, and they

satisfy

k(X, Y ) = s(X, Y ) + 2(n − 1)g(F J X, Y ) (4.2)
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for any X, Y ∈ D. We recall (see Theorem 2.1) that the tensor F is given by F =
−ϕ ◦ h. We shall also denote by ρ the Webster scalar curvature which is defined by

ρ = tr(s).

The expression for the Bochner curvature tensor also involves the tensors l and m

defined by

l(X, Y ) = − 1

2(n + 2)
k(X, Y ) + 1

8(n + 1)(n + 2)
ρ g(X, Y ),

m(X, Y ) = l(J X, Y ),

for any X, Y ∈ D, and the tensors L and M such that

g(L X, Y ) = l(X, Y ), g(M X, Y ) = m(X, Y ),

which satisfy L J = J L = M . Then the Bochner curvature tensor is defined by

B = B0 + B1,

where, for any X, Y, Z ∈ D,

B0(X, Y )Z = R̃(X, Y )Z − 2{m(X, Y )J Z + g(J X, Y )M Z} + l(Y, Z)X

− l(X, Z)Y + m(Y, Z)J X − m(X, Z)JY + g(Y, Z)L X

− g(X, Z)LY + g(JY, Z)M X − g(J X, Z)MY, (4.3)

B1(X, Y )Z = 1
2 {R̃(J X, JY )Z − R̃(X, Y )Z}. (4.4)

REMARK 4.1. In [23] and [24] the authors actually consider the canonical connection

associated with the structure (ϕ̄, ξ̄ , η̄, ḡ) such that

ϕ̄ = −ϕ, ξ̄ = 1
2 ξ, η̄ = 2η, ḡ = 4g.

It can easily be seen that the connections associated with (ϕ̄, ξ̄ , η̄, ḡ) and with

(ϕ, ξ, η, g) through conditions in (2.6) coincide. Since our computations involve

(k, µ)-spaces, we prefer to express the Bochner curvature tensor in terms of

(ϕ, ξ, η, g).

LEMMA 4.2. Let (M, H M, J, η) be a pseudo-Hermitian manifold with associated

contact metric structure (ϕ, ξ, η, g). Let ∇ be the Levi-Civita connection of g and ∇̃
the canonical connection. Then the corresponding curvature tensors R and R̃ are

related by:

R̃(X, Y )Z = R(X, Y )Z + g(FY − ϕY, Z)(F X − ϕX)

− g(F X − ϕX, Z)(FY − ϕY ) − 2g(ϕX, Y )ϕZ

+ g((∇̃X F)Y − (∇̃Y F)X, Z)ξ (4.5)
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for any X, Y, Z ∈ D. Denoting by Ric the Ricci tensor of g, then the Ricci tensor s

satisfies

s(X, Y ) = Ric(X, Y ) − g(R(X, ξ)ξ, Y ) − g(F2 X, Y ) + 3g(X, Y ) (4.6)

for any X, Y ∈ D. Finally, denoting by τ the scalar curvature of g, the Webster scalar

curvature is given by

ρ = τ − 2Ric(ξ, ξ) − tr(F2) + 6n. (4.7)

PROOF. Straightforward computations using (2.7) and the parallelism of the structure

tensors with respect to ∇̃. ✷

THEOREM 4.3. A pseudo-Hermitian space form of CR-dimension n ≥ 2 is a spherical

CR manifold.

PROOF. Consider a pseudo-Hermitian space form (M, H M, J, η). We need to prove

that the Bochner curvature tensor vanishes. Since the pseudoholomorphic sectional

curvature is a constant c, by [13, Proposition 5.2], using (4.5) we obtain the following

formula for the curvature tensor of the canonical connection ∇̃:

R̃(X, Y )Z = c

4
{g(Y, Z)X − g(X, Z)Y

+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY + 2g(X, ϕY )ϕZ}
+ g(hY, Z)X − g(h X, Z)Y + g(ϕhY, Z)ϕX − g(ϕh X, Z)ϕY

+ g(Y, Z)h X − g(X, Z)hY + g(ϕY, Z)ϕh X − g(ϕX, Z)ϕhY

for any X, Y, Z ∈ D. Using (4.4), a straightforward computation shows that

B1(X, Y )Z = g(h X, Z)Y − g(hY, Z)X + g(ϕh X, Z)ϕY − g(ϕhY, Z)ϕX

+ g(X, Z)hY − g(Y, Z)h X + g(ϕX, Z)ϕhY − g(ϕY, Z)ϕh X.

Now, taking X, Y ∈ D, observing that g(R̃(ξ, X)Y, ξ) = 0 and tr(h) = tr(hϕ) = 0, for

the Ricci tensor field s we obtain

s(X, Y ) = c

2
(n + 1)g(X, Y ) + 2(n − 1)g(h X, Y ).

Applying (4.2), since F = hϕ, for the Ricci tensor field k we obtain

k(X, Y ) = c

2
(n + 1)g(X, Y ).

Computing the Webster scalar curvature gives

ρ = cn(n + 1).
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With these ingredients one can compute the tensor fields l, m, L and M which are

given by

l(X, Y ) = −c

8
g(X, Y ), m(X, Y ) = −c

8
g(ϕX, Y ),

L X = −c

8
X, M X = −c

8
ϕX.

Applying (4.3) leads to

B0(X, Y )Z = g(hY, Z)X − g(h X, Z)Y + g(ϕhY, Z)ϕX − g(ϕh X, Z)ϕY

+ g(Y, Z)h X − g(X, Z)hY + g(ϕY, Z)ϕh X − g(ϕX, Z)ϕhY

+ c

4
{g(Y, Z)X − g(X, Z)Y + g(ϕY, Z)ϕX − g(ϕX, Z)ϕY

+ 2g(X, ϕY )ϕZ} + c

2
g(ϕX, Y )ϕZ

− c

4
{g(Y, Z)X − g(X, Z)Y + g(ϕY, Z)ϕX − g(ϕX, Z)ϕY }

= g(hY, Z)X − g(h X, Z)Y + g(ϕhY, Z)ϕX − g(ϕh X, Z)ϕY

+ g(Y, Z)h X − g(X, Z)hY + g(ϕY, Z)ϕh X − g(ϕX, Z)ϕhY.

It follows that B = B0 + B1 = 0. ✷

THEOREM 4.4. Let (M, H M, J, η) be a non-Sasakian locally CR-symmetric pseudo-

Hermitian manifold having CR-dimension n ≥ 2. Let (ϕ, ξ, η, g) be the underlying

contact metric structure. Then the Bochner curvature tensor is given by

B(X, Y )Z = ρ

4n2(n + 1)
(g(Y, Z)X − g(X, Z)Y

+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ)

+ ρ

2n tr(h2)
(g(hY, Z)h X − g(h X, Z)hY

+ g(ϕhY, Z)ϕh X − g(ϕh X, Z)ϕhY ) (4.8)

for any X, Y, Z ∈ D. Moreover, the following conditions are equivalent:

(i) B = 0;

(ii) the Boeckx invariant I = 0;

(iii) the Webster scalar curvature ρ vanishes;

(iv) M has constant pseudoholomorphic curvature.

If any of the above conditions holds, then K̃ = 0, but R̃ 6= 0.

PROOF. First we compute the curvature R̃ of the canonical connection ∇̃. Let us

consider X, Y, Z ∈ D. We remark that since M is a (k, µ)-space, then R(X, Y )Z ∈ D.

Hence from (4.5) we obtain

R̃(X, Y )Z = R(X, Y )Z + g(ϕhY + ϕY, Z)(ϕh X + ϕX)

− g(ϕh X + ϕX, Z)(ϕhY + ϕY ) − 2g(ϕX, Y )ϕZ ,
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using F = −ϕh. Hence, taking into account (2.4), we get

R̃(X, Y )Z =
(

1 − µ

2

)

(g(Y, Z)X − g(X, Z)Y

+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ)

+ 1 − (µ/2)

1 − k
(g(hY, Z)h X − g(h X, Z)hY

+ g(ϕhY, Z)ϕh X − g(ϕh X, Z)ϕhY )

+ g(Y, Z)h X − g(X, Z)hY + g(hY, Z)X − g(h X, Z)Y

+ g(ϕhY, Z)ϕX − g(ϕh X, Z)ϕY

+ g(ϕY, Z)ϕh X − g(ϕX, Z)ϕhY.

Computing R̃(ϕX, ϕY )Z , from (4.4) we get

B1(X, Y )Z = −g(Y, Z)h X + g(X, Z)hY + g(ϕY, Z)hϕX − g(ϕX, Z)hϕY

− g(hY, Z)X + g(h X, Z)Y + g(hϕY, Z)ϕX − g(hϕX, Z)ϕY.

The Riemannian Ricci tensor is given by (see [4])

Ric(X, Y ) = (2(n − 1) − nµ)g(X, Y ) + (2(n − 1) + µ)g(h X, Y )

for any X, Y ∈ D. Using (4.6), since F2 X = h2 X = (1 − k)X , we get

s(X, Y ) = n(2 − µ)g(X, Y ) + 2(n − 1)g(h X, Y ),

and the Webster scalar curvature is

ρ = 2n2(2 − µ), (4.9)

which proves that I vanishes if and only if ρ = 0. Applying (4.2),

k(X, Y ) = n(2 − µ)g(X, Y ).

With these elements, the tensors l, m, L , M are given by

l(X, Y ) = n(µ − 2)

4(n + 1)
g(X, Y ), m(X, Y ) = n(µ − 2)

4(n + 1)
g(ϕX, Y ),

L X = n(µ − 2)

4(n + 1)
X, M X = n(µ − 2)

4(n + 1)
ϕX.

Using (4.3) and the expression for R̃, a straightforward computation shows that

B0(X, Y )Z = 2 − µ

2(n + 1)
(g(Y, Z)X − g(X, Z)Y

+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ)

+ 2 − µ

2(1 − k)
(g(hY, Z)h X − g(h X, Z)hY

+ g(ϕhY, Z)ϕh X − g(ϕh X, Z)ϕhY )
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+ g(Y, Z)h X − g(X, Z)hY − g(ϕY, Z)hϕX + g(ϕX, Z)hϕY

+ g(hY, Z)X − g(h X, Z)Y − g(hϕY, Z)ϕX + g(hϕX, Z)ϕY,

and we get the expression (4.8) for B = B0 + B1, since tr(h2) = 2n(1 − k).

The equivalence of (i) and (iii) is an immediate consequence. As for the

pseudoholomorphic sectional curvature, consider a holomorphic 2-plane σ = 〈X, J X〉
where X is a unit holomorphic tangent vector at some point x ∈ M . Using the

expression for R̃, we get

K̃ (σ ) = g(R̃(X, ϕX)ϕX, X)

= 2(2 − µ) − 2 − µ

1 − k
(g(h X, X)2 + g(hϕX, X)2),

showing that K̃ vanishes for µ = 2. Conversely, if K̃ is constant, Theorem 4.3

guarantees that B = 0. ✷

5. Classification result

In this section we prove Theorem 1.2 and its corollaries.

PROOF OF THEOREM 1.2. Let (M, H M, J, η) be a simply connected pseudo-

Hermitian manifold which is a spherical CR manifold and such that gη is CR-

symmetric. If gη is not Sasakian, according to Theorem 4.4, M is a (k, µ)-space

with vanishing Boeckx invariant. It follows that M is homothetic to T1H
n+1 endowed

with its standard CR structure, since it is known that the Boeckx invariant of T1H
n+1

vanishes [4]. Next we consider the case where gη is Sasakian. Then M is a simply

connected Sasakian ϕ-symmetric space and, according to [18] or [25, Theorem 6.1], it

is a principal fibre bundle π : M → N over a simply connected Hermitian globally

symmetric space (N , go) and π : (M, gη) → (N , go) is a Riemannian submersion

with fibres tangent to ξ , which is also a CR map. Moreover, since M is spherical,

N is Bochner-flat. Indeed, denoting by BN the Bochner tensor of N , by a result of

Webster [32] already quoted in the Introduction,

π∗(B(X, Y )Z) = BN (π∗X, π∗Y )π∗Z

for any x ∈ M and X, Y, Z ∈ Hx M . Now, according to a result of Matsumoto and

Tanno (see [22] or [10, Proposition 2.5]) N is either a simply connected Kähler space

form or is isometric to a product N k(c) × N n−k(−c), c > 0, of two simply connected

Kähler space forms with holomorphic curvatures respectively c and −c. In the first

case, M is a Sasakian space form and hence, as a pseudo-Hermitian manifold, it is

homothetic to S
2n+1, H2n+1, or Bn × R. In the last case, up to a homothetic change

of the metric go, we can assume c = 1, yielding a homothetic change of the pseudo-

Hermitian structure η of M which turns M into a Sasakian manifold equivalent to the

Sasakian ϕ-symmetric space Pn
k over CP

k × CH
n−k . ✷

The proof of Corollary 1.3 is immediate.
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PROOF OF COROLLARY 1.4. According to Theorem 4.4, the assumption on K̃

forces gη to be Sasakian, hence M is a Sasakian ϕ-symmetric space. Thus the simply

connected covering M̃ is also a ϕ-symmetric space which is locally equivalent to M as

a pseudo-Hermitian manifold. In particular, M̃ is a spherical symmetric CR space with

positive pseudoholomorphic curvature at some point, which is a principal fibre bundle

π : M̃ → N over a Hermitian globally symmetric space N . Now, comparing with

the classification in Theorem 1.2, M̃ cannot be homothetic to any of the spaces Pn
k .

Indeed, observe that, at each point x of Pn
k , K̃ (σ ) = 0 for some holomorphic 2-

plane σ . Indeed, choose a holomorphic 2-plane σ ′ of CP
k × CH

n−k at π(x) with

vanishing holomorphic curvature. Such a σ ′ exists since CP
k and CH

n−k have

opposite holomorphic curvatures. Now take σ such that π∗(σ ) = σ ′. For the other

models in the classification except for S
2n+1, it is known that at each point K̃ ≤ 0.

Hence M̃ is compact and the assertion follows. ✷

6. Examples: CR geometry of tangent sphere bundles

Let (M, g) be a Riemannian manifold of dimension n ≥ 3. For each r > 0 we shall

denote by Tr M the tangent sphere bundle of radius r , which is the hypersurface of the

tangent bundle T M defined by

Tr M = {(x, u) ∈ T M |gx (u, u) = r2}.

Here and in the following we consider a point of the tangent bundle T M as a pair

(x, u) with x ∈ M and u ∈ Tx M . Let π : T M → M be the canonical projection

such that π(x, u) = x . For each smooth vector field X ∈ X(M) we shall denote by

X V its vertical lift to T M and by X H its horizontal lift with respect to the Levi-

Civita connection D of (M, g). For details, our standard reference is [3, Ch. 9]. If

t = (x, u) is a fixed point of T M and X ∈ Tx M , we shall also denote by X H
t ∈ Tt T M

its horizontal lift and by X V
t ∈ Tt T M its vertical lift. Then at each point t = (x, u) of

Tr M the tangent space to Tr M at t is given by

Tt (Tr M) = {X H
t + Y V

t |X, Y ∈ Tx M, gx (Y, u) = 0}.

Let λ 6= 0 be a fixed real number. One can define an almost complex structure

Jλ : T T M → T T M by

Jλ(X H ) = λX V , Jλ(X V ) = −1

λ
X H . (6.1)

Since Tr M is a real hypersurface of T M , it inherits canonically a partial complex

structure (H(Tr M), Jλ) from Jλ. The holomorphic tangent bundle H(Tr M) can be

described as follows. At a fixed point t = (x, u) ∈ Tr M ,

Ht (Tr M) = {X H
t + Y V

t |X, Y ∈ Tx M, gx (X, u) = gx (Y, u) = 0}. (6.2)
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We define a global horizontal vector field ξ ∈ X(Tr M) by

ξt = 2

λ
u H

t , t = (x, u). (6.3)

Denoting by U the canonical vertical vector field of T M (see [3, p. 142] or

[21, p. 210]), then

ξ = −2JλU.

We recall that the local expression of U in a coordinate system (x i , vi ) of T M induced

by a local chart (U, x1, . . . , xn) of M is

U = vi ∂

∂vi
.

Then ξ is everywhere transverse to the holomorphic tangent bundle H(Tr M).

THEOREM 6.1. For each r > 0 and λ > 0, (Tr M, H(Tr M), Jλ) is a strictly

pseudoconvex almost CR manifold. Moreover, if (M, g) has constant curvature

then Tr M is locally CR-symmetric with respect to the Webster metric gηλ
, where ηλ

is the pseudo-Hermitian structure such that ηλ(ξ) = 1. If, in addition, M is simply

connected and complete, gηλ
is globally CR-symmetric.

PROOF. Define the 1-form ηλ on Tr M by

ηλ(H(Tr M)) = 0, ηλ(ξ) = 1.

First we shall prove that the partial complex structure (H(Tr M), Jλ) satisfies (2.1)

and that the Levi form associated with ηλ is positive definite at each point t = (x, u) ∈
Tr M . In order to simplify the notation, in the following we shall denote simply by J

both the almost complex structure Jλ on T M and the partial complex structure induced

on Tr M . We shall also denote ηλ by η.

Hence we shall verify that, for each t = (x, u) ∈ Tr M ,

dη(Z , W ) = dη(J Z , J W ), dη(J Z , Z) > 0 (6.4)

where Z , W ∈ Ht (Tr M). To this end, we shall use the fact that, according to (6.2),

Ht (Tr M) is spanned by vectors of the form X H
t and X V

t where X ∈ X(M) is such

that Xx is orthogonal to u with respect to g. We remark that X V
t can be extended to

a global section X t of H(Tr M) defined as follows. Let gS be the Sasaki metric on

T M naturally constructed from g (see, for example, [3] or [21]). Observe that ξ is

orthogonal to H(Tr M) with respect to the Riemannian metric induced by gS on Tr M ,

which will be denoted by the same symbol. Then we set

X t := X V − 1

r2
gS(X V , U)U.

The vector field X t is the tangential lift of X as defined, for example, in [21, p. 211].
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We also remark that X H
t can be extended to a global section X0 of H(Tr M) defined

by

X0 := X H − λ

2r2
gS(X V , U)ξ. (6.5)

Actually, according to (6.1),

J X0 = λX t , J X t = −1

λ
X0. (6.6)

Now we compute dη(J X H
t , Y H

t ) where X, Y ∈ X(M) with gx (Xx , u) =
gx (Yx , u) = 0. According to (6.6),

2dη(J X0, Y 0) = −λη[X t , Y 0].

Moreover, taking into account the formula (see [3, p. 138])

[X H , Y V ] = (DX Y )V , (6.7)

we obtain, evaluating at the point t ,

η[X t , Y 0](t) = η

(

− λ

2r2
X V gS(Y V , U)ξ

)

(t).

On the other hand, it is readily verified that at t the function X V gS(Y V , U) takes the

value gx (X, Y ). Hence

η[X t , Y 0](t) = − λ

2r2
gx (X, Y ), (6.8)

and we conclude that

dη(J X H
t , Y H

t ) = λ2

4r2
gx (X, Y ). (6.9)

Next we compute dη(J X V
t , Y V

t ). Using (6.6) again,

2dη(J X t , Y t ) = 1

λ
η[X0, Y t ].

Hence, evaluating at t and taking into account (6.8), we get

dη(J X V
t , Y V

t ) = 1

4r2
gx (X, Y ). (6.10)

Next observe that from

2dη(J X0, Y t ) = −λη[X t , Y t ],

using [X V , Y V ] = 0, we obtain

dη(J X H
t , Y V

t ) = 0. (6.11)

Thus, taking into account (6.2), equations (6.9), (6.10) and (6.11) yield (6.4). The first

assertion is proved.
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Now suppose that (M, g) has constant curvature K . We shall compute first the

expression for the Webster metric gη. First of all we claim that ξ is actually the Reeb

vector field of η, that is, dη(Z , ξ) = 0 for any Z ∈ X(Tr M). To justify this, it suffices

to verify that

dη(X0, ξ) = dη(X t , ξ) = 0

for any X ∈ X(M), or equivalently η[X0, ξ ] = η[X t , ξ ] = 0, which in turn is

equivalent to

gS([X0, ξ ], ξ) = gS([X t , ξ ], ξ) = 0. (6.12)

Indeed, we have

[X0, ξ ] = [X H , ξ ] + λ

2r2
ξgS(X V , U)ξ.

Now fix a point t = (x, u) and consider a coordinate neighbourhood (x i , vi ) around t ;

then we have the local expression ξ = (2/λ)vk(∂k)
H . Assuming X = X i∂i , u =

uk(∂k)x , we compute

[X H , ξ ]t = 2

λ
{X H

t (vk)(∂k)
H
t + uk[X, ∂k]H

t − (Rx (X, u)u)V
t }

= 2

λ
{X H

t (vk)(∂k)
H
t + uk(DX∂k)

H
t − uk(D∂k

X)H
t − (Rx (X, u)u)V

t }

= −2

λ
{uk(D∂k

X)H
t + (Rx (X, u)u)V

t }, (6.13)

where we have used the formula for the Lie brackets of type [X H , Y H ] in [3, p. 138].

Here R denotes the curvature tensor field of (M, g). It follows that

gS([X H , ξ ], ξ)(t) = −2

λ
uk gS((D∂k

X)H , ξ)(t). (6.14)

On the other hand,

gS

(

λ

2r2
ξgS(X V , U)ξ, ξ

)

= 2

λ
ξgS(X V , U).

Now, taking into account that, with respect to the Levi-Civita connection ∇ of

(T M, gS), the equality ∇∂ H
k

U = 0 holds and that the vertical component of ∇∂ H
k

X V

is (D∂k
X)V (see [21, p. 210]), we obtain

ξgS(X V , U)(t) = 2

λ
uk gS((D∂k

X)V , U)(t) = uk gS((D∂k
X)H , ξ)(t).

Thus, comparing with (6.14), we can conclude that gS([X0, ξ ], ξ) = 0. The proof of

gS([X t , ξ ], ξ) = 0 is similar and hence omitted for the sake of brevity.

Now we see that the Webster metric gη is the restriction to Tr M of the g-natural

metric on T M :

G = 1

4r2
gS + λ2 − 1

4r2
gv (6.15)
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(see [1, 2] for the general theory of g-natural metrics on tangent bundles). Here gv

denotes the vertical lift of g determined by

gv(X H , Y H ) = g(X, Y ), gv(X H , Y V ) = gv(X V , Y V ) = 0, X, Y ∈ X(M).

This follows from formulas (6.9), (6.10), and (6.11) for the Levi form at a generic point

t = (x, u) ∈ Tr M , from the fact that G(X H
t , ξt ) = G(X V

t , ξt ) = 0 for every X ∈ Tx M

with gx (X, u) = 0, and finally observing that G(ξ, ξ) = 1.

Now we show that at each point t = (x, u) there exists a local symmetry of Tr M .

Since (M, g) has constant curvature, there exists a local isometry f : U → U defined

on an open neighbourhood of x in M such that

f (x) = x, d fx (u) = u, d fx (X) = −X if gx (X, u) = 0.

Indeed, the linear mapping −Id + (2/r2)u♭ ⊗ u of (Tx M, gx ) preserves the curvature

tensor Rx . Now consider the induced mapping F = d f : T U → T U . We remark that,

since f is an isometry, d F commutes with horizontal and vertical lifts, that is,

d Fs(X H
s ) = (d fy(X))H

F(s), d Fs(X V
s ) = (d fy(X))V

F(s), (6.16)

at each point s = (y, v) of T U , for every X ∈ Ty M . This implies that F is both a local

isometry of (T M, G) and a holomorphic mapping with respect to J . In particular, F

restricts to a local isometry of Tr M which is also a CR map. Finally, F is a local

symmetry at t , since F(t) = ( f (x), d fx (u)) = t and, using (6.16) again, for every

Z = X H
t + Y V

t ∈ Ht (Tr M),

d Ft (Z) = (d fx (X))H
t + (d fx (Y ))V

t = −Z .

Finally notice that f can be globally defined when M is complete and simply

connected, thus F is also globally defined on Tr M . ✷

THEOREM 6.2. Let (M, g) be a Riemannian manifold with constant curvature K and

dimension n ≥ 3. Fix r > 0, λ > 0, and consider the CR manifold (Tr M, H(Tr M), Jλ)

as above. Then:

(a) Tr M is spherical if and only if λ2 + Kr2 = 0;

(b) the metric gηλ
is Sasakian if and only if λ2 − Kr2 = 0;

(c) when (Tr M, H(Tr M), Jλ, gηλ
) is not Sasakian, its Boeckx invariant is

I = λ2 + Kr2

|λ2 − Kr2| .

Hence, when K 6= 0, each Tr M admits a one-parameter family (H(Tr M), Jλ, ηλ) of

locally (globally for a complete, simply connected M) CR-symmetric nonhomothetic

pseudo-Hermitian structures. If K < 0, exactly one of the underlying CR structures is

spherical.
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PROOF. We begin by computing the spectrum of the operator h = 1
2 Lξϕ where ϕ is

the f -structure extending J := Jλ on T (Tr M) by ϕ(ξ) = 0. Fix a point t = (x, u)

and consider a holomorphic vector of the form Z = X V
t with gx (X, u) = 0. We

shall verify that X V
t is an eigenvector of ht . Indeed we shall compute 2h(X t ) =

[ξ, J X t ] − J [ξ, X t ] and then evaluate at t . Here X t is a tangential lift extending Z as

in the preceding proof. Now observe that

[ξ, J X t ]t − J [ξ, X t ]t = −1

λ
[ξ, X0]t − J [ξ, X t ]t = −1

λ
[ξ, X H ]t − J [ξ, X V ]t .

(6.17)

In a coordinate neighbourhood (x i , vi ) around t ,

[ξ, X V ]t = 2

λ
{(Du X)V

t − X H
t }

using (6.7), whence

J [ξ, X V ]t = −2

λ

{

1

λ
(Du X)H

t + λX V
t

}

.

On the other hand, since (M, g) has constant curvature K , (6.13) yields

1

λ
[ξ, X H ]t = 2

λ2
{(Du X)H

t + Kr2 X V
t }.

Thus, coming back to (6.17), we get

h(X V
t ) = λ2 − Kr2

λ2
X V

t . (6.18)

Since h anticommutes with J , from this it also follows that

h(X H
t ) = −λ2 − Kr2

λ2
X H

t (6.19)

for any X ∈ Tx M . Thus according to (6.2) we can conclude that the spectrum of h

is {0, ±(λ2 − Kr2)/λ2}. Since Tr M is a CR manifold, assertion (b) follows directly.

To prove (a), we need to compute the Webster scalar curvature of Tr M . To this end,

we compute the scalar curvature of gη, where η := ηλ. We denote by ∇ ′ the Levi-

Civita connection and by R′ the curvature tensor of gη. Recall that gη is the restriction

of the g-natural metric G in (6.15); in particular, we remark that π : (Tr M, gη) →
(M, (λ2/4r2)g) is a Riemannian submersion. By standard arguments, we see that

the fibres of π are totally geodesic and of constant curvature 4. Indeed, we have the

formula

R′(X V
t , Y V

t )Z V
t = 1

r2
{gx (Y, Z)X V

t − gx (X, Z)Y V
t }

= 4{gη(Y
V
t , Z V

t )X V
t − gη(X V

t , Z V
t )Y V

t }.
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Here t = (x, u) and X, Y, Z ∈ Tx M are orthogonal to u. Using the Gauss equation,

this formula can be derived from the fact that R̄(X V , Y V )Z V = 0, which holds for

the curvature of any g-natural metric on T M of type G = agS + bgh + cgv (see [2]).

Now the scalar curvature τ of (Tr M, gη) is related to the scalar curvatures τM , τ̂ of

(M, (λ2/4r2)g) and of the fibres of π by

τ = τM + τ̂ − ‖A‖2 (6.20)

where A is the O’Neill fundamental horizontal tensor field of the submersion π (see,

for example, [16]). To compute ‖A‖2, we fix a point t = (x, u) and an orthonormal

frame {(1/r p)u, X1, . . . , Xn} of (Tx M, p2g) where p := λ/2r . Then we can con-

sider the orthonormal basis {(1/r p)u H , (X1)
H
t , . . . , (Xn)

H
t , λ(X1)

V
t , . . . , λ(Xn)

V
t }

of (Tt (Tr M), gη). Now we take into account the formula

∇ ′
X H

t
Y t = 1

2λ2
(Rx (u, Y )X)H

t + (DX Y )t
t

which can be derived from Gauss’s formula for Tr M and the expression for the Levi-

Civita connection of (T M, G) (see [2]). This formula yields

AX H
i

X V
j = K

2λ2 p2
δi

j u H , Au H X V
i = − Kr2

2λ2
X H

i .

Thus

‖A‖2 = λ2
∑

i j

gη(AX H
i

X V
j , AX H

i
X V

j ) + λ2

r2 p2

∑

i

gη(Au H X V
i , Au H X V

i )

= 2n
K 2r4

λ4
.

Hence, using (6.20), we obtain

τ = 4n(n + 1)
Kr2

λ2
+ 4n(n − 1) − 2n

K 2r4

λ4

which in turn yields the following formula for the Webster scalar curvature

ρ = 4n2

(

1 + Kr2

λ2

)

.

Hence, since the metric gη is locally CR-symmetric, assertion (a) follows from

Theorem 4.4. The determination of the Boeckx invariant is an immediate consequence

of (6.18) and (4.9). ✷
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PROOF OF COROLLARY 1.5. Let (M, g) be a Riemannian manifold with constant

curvature K and dimension n ≥ 3. Assertions (a) and (b) and the uniqueness assertions

are direct consequences of (a) and (b) in Theorem 6.2, setting λ = 1. To prove (c), first

we remark that when K = 0 then (Tr M, H(Tr M), J, gη) are all non-Sasakian and

that the Boeckx invariant actually does not depend on r , namely I = 1. Conversely,

assuming that the pseudo-Hermitian manifolds Tr M are all locally homothetic, we see

from (a) and (b) and the uniqueness assertions that both K > 0 and K < 0 must be

excluded. ✷
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