
 

DRO  

Deakin Research Online, 

Deakin University’s Research Repository  Deakin University CRICOS Provider Code: 00113B 

A classifier graph based recurring concept detection and prediction approach 

Citation:  

Sun, Yange, Wang, Zhihai, Bai, Yang, Dai, Honghua and Nahavandi, Saeid 2018, A classifier 

graph based recurring concept detection and prediction approach, Computational 

intelligence and neuroscience, vol. 2018, Article ID: 4276291, pp. 1-13. 

 

DOI: http://www.dx.doi.org/10.1155/2018/4276291 

 

 

 

   

© 2018, The Authors 

Reproduced by Deakin University under the terms of the Creative Commons Attribution Licence 

 

 

 

 

 

 

Downloaded from DRO:  

http://hdl.handle.net/10536/DRO/DU:30111145 

 

http://www.dx.doi.org/10.1155/2018/4276291
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/10536/DRO/DU:30111145


Research Article

A Classifier Graph Based Recurring Concept Detection and
Prediction Approach

Yange Sun ,1,2 Zhihai Wang ,1 Yang Bai,1 Honghua Dai,3 and Saeid Nahavandi4

1School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
2School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
3Deakin University, Melbourne, VIC 3125, Australia
4Institute for Intelligent Systems Research and Innovation, Deakin University, Waurn Ponds, VIC 3220, Australia

Correspondence should be addressed to Zhihai Wang; 13112074@bjtu.edu.cn

Received 27 October 2017; Revised 15 January 2018; Accepted 19 April 2018; Published 7 June 2018

Academic Editor: Christian W. Dawson

Copyright © 2018 Yange Sun et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It is common in real-world data streams that previously seen concepts will reappear, which suggests a unique kind of concept dri�,
known as recurring concepts. Unfortunately, most of existing algorithms do not take full account of this case. Motivated by this
challenge, a novel paradigm was proposed for capturing and exploiting recurring concepts in data streams. It not only incorporates
a distribution-based change detector for handling concept dri� but also captures recurring concept by storing recurring concepts
in a classier graph. �e possibility of detecting recurring dri�s allows reusing previously learnt models and enhancing the overall
learning performance. Extensive experiments on both synthetic and real-world data streams reveal that the approach performs
signicantly better than the state-of-the-art algorithms, especially when concepts reappear.

1. Introduction

In recent years, with the technological advance, a grow-
ing number of applications produce large amounts of data
streams at high speed. Examples include sensor networks,
spamltering systems, tra�c control, and intrusion detection
[1, 2]. More formally, a data stream S is a potentially
unbounded, ordered sequence of instances, which arrive
continuously at high-speeds.

One of the biggest challenges in data stream learning is
to deal with concept dri� [3–5], i.e., the underlying concept
may dri� dynamically over time. Concept dri� frequently
occurs in the real world. For example, in recommend systems,
user consumption preferences may change over time due to
fashion, economy, and so on and weather prediction models
may change according to the seasons. Such changes lead to
a drastic drop in classication performance. A reasonably
useful classier should have the capability to recognize and
respond to such changes accordingly and accurately. �is
study focuses on the topic of developing classier learn-
ing systems for mining data streams in dynamic environ-
ments.

Concept dri� can be divided depending on their speed,
into sudden and gradual dri�s [4]. Sudden concept dri�
is characterized by large amounts of changes between the
underlying class distribution and the incoming instances in
a relatively short amount of time. Gradual concept dri� can
take a very large amount of time to see a signicant change in
di�erences of underlying class distributions between the old
instances and the incoming instances. In fact, no matter what
type of change occurs, the model should be able to track and
adapt to changes accordingly.

It is common that in real-world data streams previously
seen concepts may reappear in the future. For example,
weather prediction models change according to the seasons
and a popular topic may appear in a social network during
the time of the year (i.e., festivals or elections) [4, 6]. �is
demonstrates a unique kind of dri�, known as recurring
concepts [6]. For example, news reading preference of a user
may change over time. A user can have di�erent choices on
mornings, evenings, weekdays, and weekends. In addition, a
usermight search for astrology articles in the beginning of the
year and nancial articles at the beginning of each quarter.
Unfortunately, only few approaches take recurring concepts
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Figure 1

into consideration [6–8]. In the situation where concept may
recur, the classication models which have been used in the
past may apply to the future use. However, most existing
papers on dri� detection neglect this phenomenon and tend
to take the concept which occurs a�er a dri� as a new one.

If a concept reappears, the previously learnt classiers
should be reapplied; thus the performance of the learning
algorithm can be improved. �is study focuses on the
problem of recurring concepts. Two crucial problems will be
addressed: (1)How to detect the recurring concepts. (2)How
to e�ectively adapt when a recurring concept is detected.

Due to the fact that dri� detection can capture changes
in data streams timely and then update the predictive model,
the predictive model can maintain high accuracy. Following
these critical motivations, an e�cient scheme is designed
to deal with the above issues. �e key contribution of our
algorithm is threefold:(1) A Dri� Detection Method named Distribution-
Based Detection Method (DBDM) is introduced aiming at
addressing the rst issue. It detects changes by comparing
the distribution of data in di�erent time windows based on
Bernstein inequality.(2) An algorithm named the Recurrent Detection and
Prediction (RDP) approach is introduced targeting on solving
the second problem. It stores concepts which present previ-
ously occurred concepts with a graph model.(3)�e performance comparison results of the proposed
algorithms evaluated on a variety of datasets demonstrated
that our method is both stable enough on the data streams
with gradual concept dri�s and �exible enough to adapt e�ec-
tively to sudden concept dri�s and the recurring concepts
problem.

�e rest of the paper is as follows. Section 2 reviews
the related work. In Section 3, we discussed the basic ideas
of the presented algorithms in detail. Section 4 provided
the experimental results tested on both real and synthetic
datasets followed by analysis and discussions. In the last
section, we draw conclusions and discussed future work.

2. Related Work

In this section, rst, some relevant concepts will be intro-
duced, then, several related algorithms will be reviewed,
and nally, based on these previous works, the original
contributions of the paper will be summarized.

2.1. Basic Concepts and Notations

De	nition 1 (data streams). Let S be an innite d-dimensional
data stream� = {(�1, �1) , (�2, �2) , . . . , (��, ��) , . . .} . (1)

Each instance is a pair (xt, yt), where xt is a vector of attribute
values arriving at the time stamp t and yt is the class label of
xt.

De	nition 2 (concept dri�). �e term concept dri� can be
formally dened as any scenario where the joint probability,
which represents data distribution, changes over time, i.e.,	�(��, ��) ̸= 	�+1(��, ��) [9].
De	nition 3 (sudden concept dri�). As shown in Figure 1(a),
sudden concept dri� means that the distribution of data will
be changed directly to a new one in a relatively short time.

De	nition 4 (gradual concept dri�). As shown in Figure 1(b),
gradual concept dri� means that the probability of the old
data distribution will decrease and the probability of a new
distribution will increase during a very large amount of time
to see a signicant change.

De	nition 5 (recurring concept dri�). As shown in Fig-
ure 1(c), a recurring concept dri� occurs when the instances
from a period k are generated from the same distribution as
a previously observed period Pk(xi, yi) = 	�-�(xi, yi).
De	nition 6 (classier graph). A classier graph is a graph
whose nodes are stored with distinct classiers derived from
a given stream data. Each node in a classier graph stores
a classier; directed link represents a dri�; weight of a link
represents dri�ing times.

2.2. Handling Concept Dri
 in Data Streams. Approaches
to cope with concept dri� can be divided into two main
categories: passive and active approaches [5, 10]. �e rst
approach adapts a learner at regular intervals without con-
sidering whether changes have really occurred, and it tracks
changes blindly and updates the model continuously with-
out requiring explicit change detection, while the second
approach only makes adjustment when a dri� occurs.

Active approaches typically require change detection
modules. Gama et al. [11] presented a Dri�DetectionMethod
(DDM)which detects change bymonitoring the classication
error rate. Baena-Garcia et al. [12] introduced a detection
algorithm called Early Dri� Detection Method (EDDM)
which has a better performance in the scenario of gradual
change. Adaptive Windowing (ADWIN) [13] adopted a
sliding window to store instances recently read and divides
the window into two subwindows to monitor changes in the
subwindows. EWMA for Concept Dri� Detection (ECDD)
was introduced by Ross et al. [14], which uses exponen-
tially weighted moving average charts to monitor the error
rate. Sakthithasan et al. [15] proposed an algorithm named
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SeqDri� which adopts reservoir sampling to manage the
memory and improve the detection sensitivity in the case of
slow gradual change.

Ensemble classiers are one of the most popular passive
approaches, and many active approaches based on ensemble
are available in the literature. Streaming Ensemble Algorithm
(SEA) [16] is one of the earliest solutions which adopt an
ensemble strategy to address concept dri�. It makes nal pre-
diction using a simple majority voting. Accuracy Weighted
Ensemble (AWE) [17] is similar to SEA. It decides the weight
of base leaner according to the classication accuracy of
the learner on test datasets. Dynamic Weighted Majority
algorithm (DWM) [18] is an ensemble based on the weighted
majority mechanism and each classier corresponds to a
weight which can change dynamically. Online Coordinate
Boosting (OCBoost) [19] is an online boosting algorithm,
which adopts online boosting strategy to achieve a better
performance. Diversity for Dealing with Dri�s (DDD) [20]
is a novel ensemble method which maintains ensembles with
di�erent levels of diversity.

While active approaches, such as change detection, work
quite well in coping with sudden concept dri�, passive
approaches work better for gradual dri� which is neverthe-
less more di�cult to detect. In order to react to di�erent
types of concept dri�s immediately, some approaches try
to utilize both passive and active techniques to aid learn-
ing in nonstationary environments, which seek to combine
the best elements of both passive approaches and active
approaches.

As we pointed out earlier it is very common in real-world
data streams that previously seen concepts will reappear.
�is suggests a unique kind of concept dri�, known as
recurring concepts. However, none of the aforementioned
approaches take the problem of Recurring Concept Dri�s
into account. �e concept of Recurring Concept Dri�s has
been introduced by Widmer et al. In [8], Katakis et al.
presented a framework to detect recurring contexts. In this
framework, batches of instances are mapped into concep-
tual vectors and stream clustering is used to group these
conceptual vectors into di�erent clusters. �en incremental
classiers are trained for every cluster. When a new batch
of instances arrives, it was assigned into an existing clus-
ter or a new cluster is created for it. Gomes et al. [21]
introduced a data stream learning system which exploited
context information to add and delete classiers in the
ensemble to improve existing ensemble approaches to deal
with concept dri� and recurring concept. Abad et al. [22]
devised a framework to solve the issue of recurring concept
in spam ltering. �e framework handles the context which
is related to concept dri�. Gonçalves et al. [23] presented
a framework named Recurring Concept Dri�s (RCD) to
handle recurring concept dri�. In the framework, the new
classier is created when new concept occurs and a group
of instances corresponding to the new concept is stored.
When a new dri� is detected, RCD compares the incoming
instances with the previous ones to validate whether the
two sets of instances come from the same distribution. If
they are from the same distribution, the previous classier is
reused.

3. Learning Recurring Concept from
Classifier Graph

In this section, a novel change detection paradigm based on
the distribution between two subwindows will be introduced
rst, and then an internal classier graph empowered dri�
detection mechanism will be presented in detail.

3.1. Change Detection Problem. Let W1= (xt+1, . . ., xt+n)
denote reference window, let W2 = (xt+n+1, . . ., xt+2n) repre-
sent current window, let �̂�1 and �̂�2 be the average value of
W1 and W2, and let �W1 and �W2 be their expected value.
In fact, the underlying distribution of data is unknown and
a test statistic based on sample means needs to be adopted
by the change detector. �is is accomplished by carrying out
statistical tests that veries whether the classication error or
class distribution remains constant over time. �e problem
of change detection in data streams is to determine the null
hypothesis H0 against alternative hypothesis H1 as follows:

0 Pr (������̂�1 , �̂�2 ����� ≥ �) ≤ �
1 Pr (������̂�1 , �̂�2 ����� ≥ �) > �

(2)

where � ∈ (0, 1) is a condence value, while � is a function of�when test statistics are used tomodel the di�erence between
the means of instance in two windows. �e change detection
raises a change alarm, when the di�erence is greater than a
threshold.

3.2. Distribution-Based Change Detection Using Bernstein
Inequality. In this paper, a Distribution-Based Detection
Method (DBDM) was presented by comparing the distri-
bution of data in di�erent time windows. �e two-window
paradigm is exploited by comparing error rate of the classi-
ers extracted from old and recent data. A correct prediction
can be considered to be 1 and incorrect prediction to be 0. In
the change detection, windows contain simple information
(bits or numbers); thus the change tests are really simple.
�e sliding windowW was partitioned into two equal length
subwindows: a le� subwindowW1 and a right subwindowW2
with means �1 and �2, respectively. Whenever the amount
of new data reaches m, the boundary between the new data
and the data arrived before it is taken as a check point. �en
every check point is traversed to check whether the di�erence
between the mean value of the data in the le� subwindow of
the check point and that of the right subwindow is greater
than a threshold.

�e key to the detection method is the calculation of the
threshold�.�e inequalities which are o�en used to depict the
di�erence between two distributions areHoe�ding inequality
[24], Cherno� inequality [25], and Bernstein inequality [26].
Among them, the Hoe�ding inequality is widely used in pre-
vious research. However, the Hoe�ding inequality neglects
the e�ect of variance, which leads to imprecise results in
the case of small variance. Bernstein inequality associates
expected value with variance. For this reason, a more precise
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threshold can be obtained by using Bernstein inequality. It is
dened as follows:

Pr(����������
1�
�∑
�=1
�� − ��

���������� ≥ �)
≤ 2 exp( −��22�2 + (2/3) � (� − �))

(3)

where�1, �2, ⋅ ⋅ ⋅, �� are independent random variables,�� ∈[�, �], �� is the expected value, and �2 is the variance.
�e probability of capturing concept dri� at a certain

check point is no more than �, which can be expressed as
shown in

Pr [�����̂1 − �̂2���� ≥ �] ≤ � (4)

Applying Boole’s inequality, (4) can be converted into

Pr [�����̂1 − �̂2���� ≥ �] ≤ Pr [�����̂1 − ����� ≥ $�]
+ Pr [�����̂2 − ����� ≥ (1 − $) �] (5)

where k is the proportion of data among the le� and right side.
Apply Bernstein inequality on the RHS of (5):

Pr [�����̂1 − �̂2���� ≥ �]
≤ 2 exp( −�1 ($�)22�12 + (2/3) $� (� − �))
+ 2 exp( −�2 [(1 − $) �]22�22 + (2/3) (1 − $) � (� − �))

(6)

where �12 and �22 represent variances. By substituting a and
c with 0 and 1 in (6), we obtain

Pr [�����̂1 − �̂2���� ≥ �] ≤ 2 exp( −�1 ($�)22�12 + (2/3) $�)
+ 2 exp( −�2 [(1 − $) �]22�22 + (2/3) (1 − $) �)

= ��
(7)

It is worth noting that formulation of the optimization
problem for determining k is based on asymptotic behavior
and so that k’s value is approximate. Equating the two terms
in expression yields

�1�1 = �2�2 (8)

Let �� in (7) be equated to the user-assigned � and set the
two exponents to be equal. We have

� = 4 exp( −�1 [(1 − $) �]22�12 + (2/3) (1 − $) �)
= 4 exp( −�1 [(1 − $) �]22 (�1�12/�2) + (2/3) (1 − $) �)

(9)

We have equated � to the le� exponential term in (7)
instead of the right one to get �. We have

� = 13�1$ (ln
4� + √(ln 4�)

2 + 18�1�12 ln 4�) (10)

We set �	
����� and �����, and then �	
����� and �����
can be calculated. When the di�erence of the mean values is
greater than �	
�����, meaning that a dri� has been triggered.
And when di�erence of the mean values is greater than �����,
we conrm that the concept has been changed.

In DBDM, before an actual change point is detected
multiple check points need to be detected. In multiple testing
problems, as the number of hypotheses being tested increases,
the likelihood of incorrectly rejecting a null hypothesis
increases. Most of the existing algorithms adopt Bonferroni
correction [27] to avoid the problem. However, Bonferroni
correction is less e�ective when there are a large number of
tests. For this reason, we adopt the error correction factor
based on Šidák correction [28]. �� is modied according to

�� = 1 − (1 − �)1/√� (11)

where n denotes the number of hypotheses. �e pseudocode
is presented in Algorithm 1.

3.3. Recurrent Detection and Prediction Approach. In this
section, we design a novel triggered rebuild approach named
Recurrent Detection and Prediction (RDP) approach that
uses a weighted directed graph to predict which previously
occurred concept is the most likely to recur when a new
concept dri� is detected.

In RDP, the recurring concepts and corresponding
instances will be stored. Directions and weights of the
arrows indicate the transformation relation of the concepts
stored in graph. Whenever the change detection reaches
the warning level, a set of instances will be stored and a
new classier will be trained. When the state is transformed
into dri�, verication will be carried out to see whether
the latest stored instances and instances which have been
stored in graph are same. If they are drawn from the
same distribution, the current concept will be regarded as
a recurring concept. �en the stored instances in classier
will be utilized in order to replace the current classier.
Otherwise, we regard that a concept has occurred. �en a
new classier is trained and the set of instances are in a
graph.

As dened in classier graph, each node stores a classier
and a set of instances used to induce the classier. When
concept dri�s occur, one will be added to the weight of the
arrow whose to-node is the new concept and the from-node
is the concept occurring before the dri�. And next time
when a dri� is detected, classier graph can be employed to
predict which previously occurred concept is the most likely
to recur this time. �e algorithm is illustrated in detail with
an example as Figures 2–5.

As shown in Figure 2, provided that the current concept
is concept 1, we can detect concept dri� a�er a period of
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Algorithm 1: Distribution-Based Detection Method
Input: S: data stream, m: size of block, �	
�����, �����;
Output: �agWarning;(01) begin(02) �agWarning = false;(03) for each instance in S do(04) numInstance++;(05) if numInstance % m == 0 then(06) for each check point Pi do(07) compute mean values �1 and �2;(08) compute ������ and ��	
����� using Šidák correction;(09) compute ����� and �	
�����;(10) if |�1 − �2| > ����� then(11) delete instances which are on the le� side of Pi;(12) if |�1 − �2| < 0 then(13) return true;(14) break;(15) end if(16) if |�1 − �2| > �	
����� then(17) �agWarning = true;(18) end if(19) end if(20) end for(21) return �agWarning;(22) end.

Algorithm 1: �e pseudocode of DBDM.

concept 1

concept 2

concept 3

concept 4

concept 5

2

2

1

4
1

5

Figure 2: Classier graph diagram.

time. Because the arrow directed from concept 1 to concept
3 has the maximum weight among the arrows whose from-
node is concept 1, we assume that concept 3 recurs this
time. If it is false, we choose the arrow whose weight
is the second maximum. �e procedure will be repeated.
If all arrows whose from-node is concept 1 which does
not recur this time, then the node which is not the one
of to-node of concept 1, i.e., concept 5, will be checked
to see whether it is a recurring concept. �ere are three
cases:(1) Concept 2, concept 3, or concept 4 recurs this time.
We assume that concept 2 recurs, and then we add the weight
of the arrow from concept 1 to concept 2, as shown in Figure 3.

concept 1

concept 2

concept 3

concept 4

concept 5

2

3

1

4
1

5

Figure 3: Concept 2 recurs.

(2) As shown in Figure 4, concept 5 is the recurring
concept. An arrow will be added from concept 1 to concept
5. (3)When a new concept 6 occurs, a node will be created
and an arrow will be added from concept 1 to concept 6, as
shown in Figure 5.

Let G represent the graph, V is the set of vertexes in
G, vexnum denotes the serial number of vertexes in G, Cn

is a new classier which applies to the new concept, Vk.C
represents the previous classier of Vk. Bn represents a set of
instances which corresponding to new concept, and p is the
order of the old concept inG.�e pseudocode of RDP is listed
in Algorithm 2.
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concept 1

concept 2

concept 3

concept 4

concept 52
1

4

5

2

1

1

Figure 4: Concept 5 recurs.

concept 1

concept 2

concept 3

concept 4

concept 5

2

2

1

4

5

concept 6

1
1

Figure 5: New concept occurs.

4. Experiment Results and Analysis

�e algorithms were carried out with help of MOA (Massive
Online Analysis) (Version: MOA Release 2017.7) [29]. MOA
is a so�ware environment for implementing algorithms
and running experiments for online learning. All of the
experiments were performed on an Intel Core i3-2120 CPU
@ 3.3GHz with 8GB of RAM running Windows 7.

To evaluate the performance of the proposed algorithms,
a series of experiments were carried out. Two main sets of
experiments are presented:

Experiment 1 aims to verify the fact that the performance
of the proposed change detection in di�erent dri� scenarios.

Experiment 2 is set to compare the performance of the
RDP with other state-of-the-art approaches.

4.1. �e Analysis of DBDM. In the rst experiment, the
performance of DBDM is compared against the following
algorithms: DDM [11], EDDM [12], and ECDD [14] in terms
of the false positive counts. In DBDM, we set ����� = 0.1,����� = 0.1 and the size of block is 500. In ECDD, we set
ARL0=1,000 and : = 0.2.

We generated four datasets. Each has 200,000 instances
which were drawn from a stationary Bernoulli distribution
and themean value of the Bernoulli distribution is set to 0.05,

Table 1: Average false positive counts on stationary Bernoulli
distribution.

0.05 0.1 0.3 0.5

DDM 1.89 0.76 0.29 0.19

EDDM 35.56 36.3 14.42 9.38

ECDD 166.34 157.3 154.01 0.11

DBDM 3.39 0.95 0.05 0.03

Table 2: Average false positive counts on sudden concept dri�.

mean value increment 0.04 0.09 0.29 0.49

DDM 11.93 10.06 8.34 8.7

EDDM 46.00 45.14 32.63 25.17

ECDD 173.81 169.55 168.07 91.43

DBDM 4.99 3.76 7.69 9.77

Table 3: Detection delays on an abrupt dri�.

mean value increment 0.04 0.09 0.29 0.49

DDM 3823.96 1817.97 419.66 300.92

EDDM 1758.95 759.96 221.06 148.59

ECDD 528.61 497.99 522.97 426.8

DBDM 529.29 235.64 200 200

0.1, 0.3, and 0.5, respectively [13]. To make the experimental
more reliable, the algorithmswere carried out on each dataset
for 10 times and then calculated the mean.

Table 1 shows that the false positive count of DBDM is
lower than EDDM and ECDD, but it is higher than DDM. It
also demonstrates that the false positive count of DBDM is
reduced from 3.39 to 0.03 with the increase of the mean value
of Bernoulli distribution.

�en, we compared the performance of detectors under
sudden concept dri� scenario. We generated four datasets of
200,000 instances drawn from a Bernoulli distribution. �e
rst 100,000 instances were drawn from stationary Bernoulli
distribution whose mean value was 0.01. And the mean of the
last 100,000 instances was raised to 0.05, 0.1, 0.3, and 0.5 for
the four datasets separately.

Table 2 shows that the false detection of DBDM is the
lowest when the change of the mean is small. However, the
false positive rate of DBDM is increased with the increase of
the mean value.

Table 3 shows the average detection delays under sudden
concept dri�. In general, the detection delays decrease with
the increase of the mean value. �e detection delay of
DDM is higher when the mean value increment is low, and
then it decreases rapidly. �e detection delay of EDDM is
high when the mean value increment is 0.04, and then it
decreases gradually. At the beginning, the delay of ECDD
is lower than DDM and EDDM, and then it drops slightly.
However, the delay of ECDD increases when the mean
value of increment is 0.29. �e detection delay of DBDM
is lower and it has a downward trend. �is is due to the
fact that the management of the recurrent change detection
mechanism is capable of reusing previous concepts and gains
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Algorithm 2: Recurrent Detection and Prediction
Input: S: data stream, max: the maximum number of nodes in G;
Output: G;(01) begin(02) create a graph G= Null;(03) for each instance ins in S do(04) DBDM(ins);(05) if current state is Warning then(06) store ins in Bn;(07) train Cn for later use;(08) end if(09) else if current state is Dri
 then(10) for each arrow in G whose from-node is p(11) choose the arrow which from-node is Vk with the maximum weight;(12) if compare (Bn, Vk.instances) then(13) Cn = Vk.C;(14) clear(Bn);(15) else(16) create a new node to store Bn and Cn;(17) if vexnum >max then(18) delete one node in G;(19) insert new node into G;(20) Cn replace the current classier;(21) end if(22) end if(23) end for(24) else(25) clear Bn;(26) end if(27) end for(28) return G;(29) end.

Algorithm 2: �e pseudocode of RDP.

the better performance in di�erent situations, particularly
under concept dri� environments.

Finally, we investigated the performances of the four
detection methods in the scenario of gradual change. When
dri� happens incrementally, the change is not obvious.
�erefore, we mainly focus on detection delay and false
negative. Detection delay is the distance between the instance
at which the change is detected and the instance at which the
change really occurs. In the experiment, we generate a dataset
contains 1,000,000 instances. �e rst 998,000 instances are
stable, and the mean value is 0.01. �en mean values of the
last 2,000 instances of the four datasets rise with a di�erent
slope separately. �e slopes are 0.0001, 0.0002, 0.0003, and
0.0004. �e false negative counts are as shown in Table 4.
�e false negative counts of ECDD and DBDM are 0. And
the false negative counts of DDM and EDDM decrease with
the increase of the slope.

�edetection delays are demonstrated inTable 5. It can be
seen that DDM and EDDM are not good at detecting gradual
dri�. ECDD is rather high, although it reduces a little with
the increase of the slope. DBDM is high at the beginning,
but it reduces obviously with the increase of the slope. It
demonstrates that DBDM is superior to other methods. It
is partly because the management of the recurrent change

Table 4: Average false negative counts on a gradual dri�.

Slope 0.0001 0.0002 0.0003 0.0004

DDM 0.75 0.58 0.51 0.32

EDDM 0.98 0.97 0.91 0.83

ECDD 0 0 0 0

DBDM 0 0 0 0

Table 5: Detection delays on a gradual dri�.

Slope 0.0001 0.0002 0.0003 0.0004

DDM -- -- -- --

EDDM -- -- -- --

ECDD 523.55 508.5 515.58 509.25

DBDM 702 454 330 328

detectionmechanism is capable of reusing historical concepts
and achieving the better performance in this scenario.

4.2. Comparative Performance Study. �is part demonstrates
the experimental results with regard to the e�ectiveness and
e�ciency of the proposed method.
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Table 6: Description of the nine datasets.

Dataset Instances Attributes Dri� type Noise

HyperPlane 1M 10 gradual 5%

LED 1M 24 sudden 15%

Random Tree 1M 10 recurring 0%

SEA 1M 3 sudden recurring 10%

Elist 1, 500 913 recurring -

Spam 9, 324 850 gradual -

Usenet 5, 931 658 unknown -

Covertype 581K 53 unknown -

Gas Sensor 13, 910 128 unknown -

Table 7: Characteristics of Elist.

1-300 300-600 600-900 900-1200 1200-1500

Medicine + -- + - +

Space -- + -- + --

Baseball -- + -- + --

4.2.1. Datasets. In the second experiment, we adopted four
synthetic and ve real-world datasets. �e datasets are sum-
marized in Table 6.

Synthetic Datasets. In the experiment, the synthetic
datasets contain three types of concept dri�: gradual, sudden,
and recurring concept dri�.

HyperPlane dataset is represented by the set of points x

that satisfy∑�=1 ?��� = ?0, where x� is the ith coordinate of x.
Two classes are distinguishing in the following way: instances

for which ∑�=1 ?��� ≥ ?0 are labeled positive and instances

for which ∑�=1 ?��� < ?0 are labeled negative. Dri�s was
introduced by changing each weight attribute ?� = ?� + d�,
where � is the probability that the direction of change is
reversed and d is the change applied to every instance. �is
generator was adopted to create a dataset contains 1,000,000
instances with gradual dri�s by the modication weight ?�
changing by 0.001with each instance, and 5%noisewas added
to streams.

LED dataset is to predict the digit displayed on a seven-
segment LEDdisplay.�eparticular conguration of the gen-
erator used for the experiment produces 24 binary attributes,
17 of which are irrelevant. Concept dri� is simulated by
interchanging relevant attributes. We generated a stream of
1,000,000 instances with sudden concept dri�s and 15% of
noise.

Random Tree dataset is generated by Random Tree gen-
erator and it contains 1,000,000 instances and 10 attributes.
It has four recurring concepts which evenly distributed
throughout the 1,000,000 instances.

SEA dataset consists of three attributes, where only two
are a relevant attributes. All three attributes have values
between 0 and 10. �e points of the dataset are divided
into four blocks with di�erent concepts. In each block, the
classication is done using f 1 + f 2 ≤ @, where f1 and f2
represent the rst two attributes and @ is a threshold value.
�emost frequent values are 9, 8, 7, and 9.5 for the data blocks.

It contains 1,000,000 instanceswith suddendri�s reappearing
every 250,000 instances and 10% of noise.

Real-World Datasets. Real-world stream environment
conceptual changes have unpredictability and uncertainty
which can better verify the performance of the algorithm.

Emailing list (Elist) contains a stream of emails on
various topics which are shown to the user one a�er another
and are marked as interesting or junk. It is composed of
1, 500 instances with 913 attributes and is divided into 5
periods every 300 instances. At the end of each period,
the user’s interest in a topic changes in order to simulate
the occurrence of concept dri�. �us, the transformation
between two periods is a signal of dri�. �e dataset can be
obtained at http://mlkd.csd.auth.gr/concept dri�.html. �e
characteristics of Elist are presented in Table 7, where (+)
means an interested email and (--) indicates a spam.

Spam dataset represents the scenario of gradual concept
dri� and is based on the Spam Assassin Collection [8]
available in http://spamassassin.apache.org/. It consists of 9,
324 instances with 500 attributes.

Usenet dataset simulates a news ltering system with the
presence of concept dri�s relative to the change of interest
of a user over time [8]. �e dataset contains 5,931 instances
representing documents collected from the 20 Newsgroups.
It is available at http://www.liaad.up.pt/kdus/products/data-
sets-for-concept-dri�.

Covertype dataset fromUCI archive [30] contains 581,012
instances, 54 attributes, and no missing values. �e aim is to
predict the forest cover type based on cartographic variables.
It can be obtained at http://moa.cms.waikato.ac.nz/datasets/,
and then we simulated the dataset into streams by the MOA
generators.

Gas Sensor Dri� Dataset also from UCI archive contains
13,910 measurements from 16 chemical sensors utilized in
simulations for dri� compensation in a discrimination task
of 6 gases at various levels of concentrations. �e dataset was
gathered within January 2007 to February 2011 (36 months)

http://mlkd.csd.auth.gr/concept_drift.html
http://spamassassin.apache.org/
http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift
http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift
http://moa.cms.waikato.ac.nz/datasets/
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Table 8: Comparison of classication accuracy (%).

AWE EB DWM OCBoost RCD RDP

HyperPlane 86.98 (1) 78.79 (4) 75.21 (5) 74.81 (6) 85.64 (2) 84.24 (3)
LED 59.94 (5) 53.48 (6) 69.49 (1) 62.65 (4) 67.65 (2) 66.89 (3)
Random Tree 65.17 (4) 66.53 (3) 61.25 (5) 53.67 (6) 67.53 (2) 68.89 (1)

SEA 72.01 (6) 77.60 (5) 85.21 (1) 83.89 (3) 81.45 (4) 84.65 (2)
Elist 54.08 (5) 65.36 (3) 55.07 (4) 51.45 (6) 67.89 (2) 75.59 (1)

Spam 67.27 (6) 70.13 (4) 78.79 (1) 72.79 (2) 69.19 (5) 71.36 (3)
Usenet 61.21 (6) 79.58 (1) 62.76 (5) 63.47 (4) 70.78 (3) 72.23 (2)
Covertype 73.24 (3) 66.86 (6) 70.63 (4) 69.63 (5) 78.53 (2) 81.69 (1)

Gas Sensor 56.45 (6) 57.07 (5) 64.30 (2) 59.45 (4) 62.36 (3) 65.59 (1)

Average Rank 4.67 4.11 3.11 4.44 2.78 1.89

Table 9: Comparison of time consumption (Cpu seconds).

AWE EB DWM OCBoost RCD RDP

HyperPlane 13.47 (1) 14.40 (2) 59.01 (5) 153.08 (6) 29.21 (3) 35.35 (4)
LED 20.98 (5) 31.36 (6) 10.51 (1) 12.43 (3) 19.98 (4) 11.24 (2)
Random Tree 37.42 (3) 38.18 (4) 49.53 (5) 78.13 (6) 31.42 (2) 30.24 (1)

SEA 36.41 (5) 44.56 (6) 20.01 (2) 13.87 (1) 26.41 (4) 24.05 (3)
Elist 17.36 (2) 33.45 (5) 50.21 (6) 22.23 (4) 20.11 (3) 7.02 (1)

Spam 81.43 (4) 63.01 (2) 85.23 (5) 86.36 (6) 60.43 (1) 80.25 (3)
Usenet 20.21 (2) 26.69 (3) 30.21 (5) 30.78 (6) 28.01 (4) 16.69 (1)

Covertype 26.41 (4) 13.43 (2) 36.06 (5) 41.56 (6) 6.41 (1) 14.67 (3)
Gas Sensor 86.57 (3) 90.12 (4) 97.79 (6) 96.41 (5) 80.12 (2) 71.21 (1)

Average Rank 3.22 3.56 4.44 4.78 2.67 2.11

in a gas delivery platform facility situated at the Chemo
Signals Laboratory in the Bio Circuits Institute, University of
California San Diego.

4.2.2. Comparative Study. We compared RDP with ve
ensemble-based methods: Accuracy Weighted Ensemble
(AWE), Ensemble Building (EB), Dynamic Weighted Major-
ity (DWM), Online Coordinate Boosting (OCBoost), and
Recurring Concept Dri�s (RCD). AWE is the best-known
representative of block-based ensembles for data streams.
Similar to AWE, EB constructs a subset of classiers from
sequential data chunks and then are used in the ensemble.
DWM is based on the weighted majority algorithm, which
maintains an ensemble of classiers and each classier corre-
sponds to a weight which can change dynamically. OCBoost
is an online boosting algorithm. RCD is a framework to deal
with recurring concept dri�.

�e performance of the analyzed algorithms can be
evaluated with respect to accuracy, time e�ciency, memory
usage, and F1-measure. �e results are shown in Tables 8–11.
F1-measure represents a harmonic mean between recall and
precision. �e calculation equation is as follows:

F1 = 2 × Re ��AA × Pr B�CDCE�
Re ��AA + Pr B�CDCE� (12)

(1) In terms of accuracy, as shown in Table 8, RDP
makes the overall best performance on most of datasets.
Specically, RDP demonstrates signicantly the best results

on the data steams with recurrent concept dri� (Random
Tree and Elist). On the dataset with gradual concept dri�
(HyperPlane), the block-based ensemble AWE is the best,
followed by EB. Moreover, DWM seems to be the most
accurate in the streams with sudden changes (LED and SEA).
On the real-world datasets (Covertype and Gas Sensor), RDP
clearly outperformed the other algorithms. For all of datasets,
RDP is able to signicantly boost the performance by using
the recurrent change detection.(2) Concerning run time, as expected, online classier
like OCBoost requires the most time for classication, fol-
lowing by DWM, and RDP is the least time-consuming. �is
is partly because the addition of change detectionmechanism
o�ers quicker reactions to sudden and recurring concept dri�
compared to other methods. For this reason, RDP is able to
capture changes much more e�ciently and adapt to di�erent
kind of dri�s immediately. Also, notice that AWE and EB did
not perform as well as RDP due to the fact that they had to
wait to accumulate instances into a batch before learning.(3) Analyzing the values in Table 10, it can be observed
that online ensemble DWM and OCBoost require the least
memory storage, following by RDP. It is due to the fact that
DWM and OCBoost only update weights of classiers a�er
each incoming instance without storing data. �e memory
consumption of AWE and EB is more than RCD and RDP.
It is partly because of the fact that RCD and RDP maintain
a pool of historical concepts which are checked for reuse.
For RDP, we may observe a marginal increase in memory
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Table 10: Comparison of memory consumption (MB).

AWE EB DWM OCBoost RCD RDP

HyperPlane 25.98 (5) 28.79 (6) 10.21 (1) 13.81 (2) 13.90 (3) 16.24 (4)
LED 29.90 (5) 39.90 (6) 20.34 (4) 2.65 (1) 13.78 (3) 6.89 (2)
Random Tree 45.17 (5) 78.53 (6) 18.28 (2) 34.07 (4) 23.07 (3) 10.89 (1)

SEA 412.01 (6) 343.30 (5) 36.89 (1) 68.65 (2) 73.12 (3) 78.21 (4)
Elist 80.35 (5) 89.45 (6) 13.60 (1) 34.82 (2) 44.48 (4) 42.58 (3)
Spam 25.98 (6) 24.79 (5) 20.01 (3) 22.36 (4) 4.81 (1) 16.24 (2)
Usenet 39.90 (6) 23.78 (5) 22.24 (4) 2.65 (1) 20.24 (3) 16.89 (2)
Covertype 45.17 (5) 78.53 (6) 10.20 (1) 23.07 (3) 10.89 (2) 26.25 (4)
Gas Sensor 412.01 (5) 543.30 (6) 410.21 (4) 376.89 (3) 326.07 (2) 308.65 (1)

Average Rank 5.33 5.67 2.33 2.44 2.67 2.56

Table 11: Comparison of F1-measure.

AWE EB DWM OCBoost RCD RDP

HyperPlane 0.157 (1) 0.097 (2) 0.068 (6) 0.079 (5) 0.086 (4) 0.094 (3)
LED 0.118 (6) 0.156 (5) 0.280 (1) 0.262 (3) 0.245 (4) 0.279 (2)
Random Tree 0.451 (3) 0.345 (4) 0.221 (5) 0.207 (6) 0.477 (2) 0.489 (1)

SEA 0.089 (6) 0.127 (5) 0.141 (4) 0.189 (3) 0.247 (1) 0.235 (2)
Elist 0.098 (3) 0.079 (4) 0.069 (5) 0.058 (6) 0.156 (2) 0.224 (1)

Spam 0.027 (6) 0.313 (1) 0.169 (4) 0.079 (5) 0.248 (2) 0.216 (3)
Usenet 0.039 (5) 0.033 (6) 0.078 (1) 0.047 (3) 0.057 (2) 0.043 (4)
Covertype 0.120 (5) 0.127 (4) 0.136 (3) 0.073 (6) 0.147 (2) 0.169 (1)

Gas Sensor 0.046 (4) 0.037 (6) 0.055 (3) 0.045 (5) 0.047 (2) 0.059 (1)

Average Rank 4.33 4.11 3.56 4.67 2.33 2.00

consumption, due to the need of storing and processing
weights assigned to classiers. However, the additional cost
is practically negligible.(4) In terms of F1-measure, as shown in Table 11, RDP
obtains the overall best performance on most of datasets,
followed by RCD, and OCBoost is the worst. �is is partly
because the management of the recurrent change detection
mechanism is capable of reusing previous concepts and gains
the better performance in di�erent situations, particularly
under concept dri� environments. However, other ensemble
methods lack detection mechanisms and therefore adapt
ine�ectively to dri�s.

Figure 6 shows the accuracy on the HyperPlane, which
is devised to evaluate the ability to handle gradual dri�s. It
is found from Figure 6 that the trend of all algorithms is
basically the same. Among them, AWE is the best, followed
by RCD, OCBoost is the worst. �e advantages of RDP are
not obvious. �e reason is the fact that the block-based
ensemble classier AWE is designed to cope mainly with
gradual concept dri�s.

Figure 7 demonstrates the accuracy on the Random Tree,
which is designed to evaluate the ability to handle sudden
concept dri�s. As can be seen, RDP is the best, followed
by RCD, EB and AWE perform almost identically, with
DWM being slightly less accurate, and OCBoost is the worst.
Whenever a concept dri� occurred, the accurate rates of
all the algorithms will undergo instantaneous �uctuations
except RDP, which maintains a high, stable accuracy and
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Figure 6: Accuracy on the HyperPlane.

su�ered the smallest accuracy drops.�ismight be attributed
to the addition of dri� detector which could capture concept
dri�s promptly and construct a new classier to handle this
type of dri�.

Figure 8 depicts the accuracy changes on the Elist. It
can be observed that the accuracy curves of all algorithms
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are with varying degrees of volatility, which indicates that
concept dri� may exists in the dataset. Notice the sudden
drops of all methods at dri� time points (a�er 300, 600, 900,
and 1,200 instances).However, RDPmanages to recover faster
in all cases exploiting and updating older models. RDP is
the most accurate one, followed by the RCD. Unfortunately,
DWM and OCBoost perform poorly on this dataset and
the curves of them almost identically, while the accuracy
curve of RDP is relatively stable, subjecting to data concept
dri� minimal impact on real data, which showed that the
algorithm had better adaptability for this environment. �is
is partly because the management of the recurrent change
detection mechanism is able to reuse historical concepts
and achieve the better performance in di�erent situations,
particularly under concept dri� environments.
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Figure 10: A critical di�erent diagram for all classiers against each
other.

Figure 9 shows the F1-measure changes on theCovertype.
An interesting nding is that the curve of OCBoost su�ered
the most dramatic �uctuation. Apart from these, the F1-
measure of RDP and RCD is relatively stable on this dataset.
RDP gained the best performance on this dataset. It is also
indicates that the algorithm has superior adaptability to the
real stream environment.

�e average rank of classication accuracy of RDP on
9 synthetic and real-world data streams wins all other
classiers. To extend the analysis, nonparametric Friedman
test was carried out for comparing multiple classiers over
multiple datasets [31]. �e null hypothesis for the test is
that there is no di�erence between the performances of
all the tested algorithms. Moreover, in case of rejecting
this null hypothesis, we employ the Nemenyi test [32] to
verify whether the performance of our method is statistically
di�erent from the remaining algorithms. �e critical di�er-
ence diagram shown in Figure 10 tells that our method is
signicantly better than AWE and OCBoost.

To summarize, RDP is superior to the other three from
the following aspects: (1) It is capable of constructing a
satisfactory model for handling both sudden and gradual
concept dri�s and has been specically built to deal with
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recurring concepts. (2) Compared to other ensembles, our
method can achieve better performance and is robust against
various noise levels and di�erent types of dri�.

5. Conclusion and Future Work

In this study, we focus on the investigation of Recurring
ConceptDri�s, a special subtype of concept dri�s that has not
yet drawn enough attention from the research community. A
novel method intending to handle recurring concept based
on the change detection method using classier graph was
proposed. �e approach of detecting recurring dri�s which
allows reuse of previously learnt models enhanced the learn-
ing performance on most datasets. Extensive experiments
on synthetic and real-world datasets have validated that
the proposed approach not only outperforms the existing
popular methods in the adaptation to Recurring Concept
Dri�s, but also adapts well even in di�erent concept dri�ing
scenarios.

In our ongoing and future research, we will explore an
e�ective procedure which will eliminate redundant classiers
without decreasing the ability to deal with recurring concepts
and work toward developing classier graph based e�ective
practical dynamical learning mechanism.
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