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Abstract: Detecting intrusions from the supervisory control and data acquisition (SCADA) systems is
one of the most essential and challenging processes in recent times. Most of the conventional works
aim to develop an efficient intrusion detection system (IDS) framework for increasing the security of
SCADA against networking attacks. Nonetheless, it faces the problems of complexity in classification,
requiring more time for training and testing, as well as increased misprediction results and error
outputs. Hence, this research work intends to develop a novel IDS framework by implementing
a combination of methodologies, such as clustering, optimization, and classification. The most
popular and extensively utilized SCADA attacking datasets are taken for this system’s proposed
IDS framework implementation and validation. The main contribution of this work is to accurately
detect the intrusions from the given SCADA datasets with minimized computational operations and
increased accuracy of classification. Additionally the proposed work aims to develop a simple and
efficient classification technique for improving the security of SCADA systems. Initially, the dataset
preprocessing and clustering processes were performed using the multifacet data clustering model
(MDCM) in order to simplify the classification process. Then, the hybrid gradient descent spider
monkey optimization (GDSMO) mechanism is implemented for selecting the optimal parameters
from the clustered datasets, based on the global best solution. The main purpose of using the
optimization methodology is to train the classifier with the optimized features to increase accuracy
and reduce processing time. Moreover, the deep sequential long short term memory (DS-LSTM) is
employed to identify the intrusions from the clustered datasets with efficient data model training.
Finally, the proposed optimization-based classification methodology’s performance and results are
validated and compared using various evaluation metrics.

Keywords: supervisory control and data acquisition (SCADA); intrusion detection system (IDS);
multifacet data clustering model (MDCM); artificial intelligence; gradient descent spider monkey
optimization (GDSMO); deep sequential long short term memory (DS-LSTM)

1. Introduction

Supervisory control and data acquisition (SCADA) [1,2] is a software application
system extensively utilized in many industrial sectors to monitor, control, and analyze
manufacturing units. Due to its increased efficiency and performance, SCADA is utilized
worldwide in different fields and industries to facilitate proper industrial operations.
Additionally, SCADA systems [3–5] are mainly used to monitor, control, and automate
the industrial processes by collecting the data from remote units and equipment, such
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as human machine interfaces (HMI), programmable logic controllers (PLC), and remote
terminal units (RTU). However, providing security to SCADA against network attacks [6,7]
is one of the most challenging and difficult tasks in the current era due to the rapid
increase in attacks. Therefore, to safeguard SCADA systems, the intrusion detection system
(IDS) has been developed to help identify harmful intrusions or attacks against networking
operations [8,9]. Additionally, it directs the attacking alerts to the network administrators in
order to ensure the security of systems. Typically, the IDS is considered as the most suitable
and alternative security approach, and it is highly preferred by many researchers [10]. In
this framework, the software program can be used to monitor and detect malicious activities,
such as breaking of protocols, interrupting the network communication/data transmission,
and data theft. Moreover, it is more suitable [11,12] for detecting both the known and
unknown attacks in the network created by internal/external attackers. However, most of
the conventional IDS approaches are not able to handle the complex nature of cyber-attacks.
Hence, ensuring the security of SCADA systems remains a challenging process.

Some of the existing works [13,14] aim to incorporate the clustering, optimization,
and classification methodologies with the IDS framework to resolve this problem. Re-
cently, machine learning and deep learning techniques are increasingly utilized by many
researchers to detect network intrusions by extracting dataset features [15]. These include
the mechanisms [16,17] of the naïve Bayes (NB), the support vector machine (SVM), logistic
regression (LR), linear discriminant analysis (LDA), the decision tree (DT), the random for-
est (RF), the multilayer perceptron (MLP), ensemble learning (EL), the deep neural network
(DNN), the recurrent neural network (RNN), and the convolutional neural network (CNN).
Yet, it faces problems [18,19] and challenges related to complex computational operations,
increased time consumption for training and testing, and a high misclassification and
error rate. Hence, the proposed work intends to implement an intelligent and hybrid IDS
framework using sophisticated optimization and classification methodologies for spotting
intrusions from SCADA IDS datasets. The novelty of this system is to group the attributes
into the form of clusters before selecting the optimal number of features for training the
classifier. The main contribution of the proposed work is to detect intrusions from the given
SCADA datasets with reduced computational complexity and increased accuracy. For
this purpose, a combination of methodologies are used to construct a simple and efficient
intrusion detection framework for ensuring the security of SCADA systems. Additionally,
the proposed objective is to implement intelligent and advanced clustering, optimization,
and classification methodologies for developing the proposed security framework.

The primary objectives of the research methodology are as follows:

• To preprocess and normalize the given IDS dataset by grouping the attributes into the
form of clusters, the multifacet data clustering model (MDCM) is implemented, which
helps to simplify the process of classification.

• To optimally select the features for increasing the efficiency of classifier training, the
gradient descent spider monkey optimization (GDSMO) mechanism is utilized, which
minimizes the time of processing and increases the convergence rate.

• To exactly spot the intrusions from the clustered datasets based on the optimal set of fea-
tures, the deep sequential long short term memory (DS-LSTM) technique is employed.

• To assess the performance of the proposed GDSMO-DSLSTM-based IDS framework,
various evaluation measures have been utilized, and the obtained results are compared
with other recent IDS approaches.

The remaining units of this paper are segregated into the following: some of the con-
ventional clustering, optimization, and classification techniques used to increase SCADA
systems’ security are reviewed with their advantages and disadvantages in Section 2. The
working methodology of the proposed system is illustrated with its overall flow and al-
gorithmic representations in Section 3. The performance analysis of the proposed IDS
framework is validated and compared by using various evaluation metrics in Section 4.
Finally, the overall paper is summarized with its future scope in Section 5.
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2. Related Works

This section reviews some of the conventional approaches used for developing an
IDS in SCADA systems. Additionally, it investigates the benefits and limitations of each
mechanism based on its characteristics and working operations.

Ref. [20] implemented a deep learning model for detecting intrusions in SCADA
systems, where the network-based cyber-attack primitives were highly concentrated. Addi-
tionally, it mainly aims to extract the features and salient temporal patterns of individual
packets by using the convolutional neural network (CNN) algorithm. [21] presented a
comprehensive review of various IDS methodologies for increasing the security of SCADA
systems. The primary factor of this work was to analyze the different types of methodolo-
gies used for detecting the attacks, which include the following types: intrusion detection
technologies, intrusion detection methodologies, and intrusion detection approaches. More-
over, an effective IDS should satisfy the following constraints:

• Accurate detection
• Improved system reliability
• Reduced false positives
• Ability to handle large dimensional datasets
• Fast processing

Ref. [22] implemented a hybrid multilevel (HML) IDS mechanism incorporated with
the nearest neighbor rule algorithm for detecting industrial attacks. The main purpose of
this work was to exactly detect the anomalies with reduced false positives and an increased
detection rate. Here, three different feature selection mechanisms have been analyzed and
compared for improving the dimensionality of features. In addition to that, the Bloom
filtering approach was utilized for categorizing the normal network patterns and anomalies
by constructing the hash lookup table. The key advantages of this work were optimal
performance and minimal resource consumption. Yet, it faced the problems of complex
analysis, as well as the inability to handle different types of attacks. Ref. [23] developed
an anomaly-based IDS (Ab-IDS) for spotting cyber-attacks in SCADA systems. This work
mainly aims to identify malicious packets in the network with reduced system disturbances
and network traffic. For validating the performance of this approach, two different IDS
security tools, such as Snort and Bro, have been utilized.

Ref. [24] employed a long short term memory (LSTM) classification technique for
detecting intrusions in the SCADA system. This work mainly aimed to identify temporal
uncorrelated attacks by analyzing the specific features from the given dataset. It includes
nearly 19 different types of features, such as port number, sequence number, traffic type,
threshold value, speed, register data, etc. Typically, LSTM is a kind of deep learning-based
classification technique that helps to predict accurate labels for given problems. Here, the
many-to-many (MTM) and many-to-one (MTO) architectures have been developed for
improving the performance of attack detection. Still, it has limits, such as the problems of
increased time consumption for forming the hidden layers, and complexity in handling
the large data. Ref. [25] presented a novel intrusion detection framework for identifying
malicious activities in SCADA systems. This paper analyzed the performance and efficiency
of two different and popular IDS technologies, such as Snort and Suricata, for categorizing
the types of intrusions. Moreover, it investigated some of the security challenges in SCADA
systems, which includes the following: lack of security in communication, inefficient data
training, authentication, and controlling.

Ref. [26] deployed an auto-encoder-based network IDS for locating critical attacks
in SCADA systems based on the 17 distinct data features. Here, the distributed network
protocol 3 (DNP3) has been utilized for ensuring reliable communication in the network.
In addition to this, hyper-parameter optimization was performed in this work for training
the auto-encoder based on the hyper-parameters. Additionally, the effectiveness of this
model has been validated and compared based on the measures of accuracy, precision,
recall, and false positives [15]. The benefits of this work were minimized error value and
processing time due to the hyper-parameter tuning. Ref. [27] employed a feed-forward
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neural network (FNN) mechanism for identifying correlated and uncorrelated attacks with
ensured performance outcomes. Here, the omni attack detector has been developed for
distinguishing the different types of attacks. The detection performance of this work could
be enhanced based on the features of communication traffic and threshold value. Yet, it
has the drawbacks of reduced scalability, reliability, and real-time monitoring was not
possible in this system. Ref. [28] presented a comprehensive analysis of various machine
learning techniques used for detecting intrusions in SCADA networks, which include the
mechanisms of the support vector machine (SVM), the random forest (RF), the J48 classifier,
the naïve Bayes (NB), and the decision tree. The key factor of this work was to select the
most suitable technique used for increasing the performance of IDS. Based on this study, it
was identified that the random forest classifier technique outperforms the other techniques
with reduced error rate and false positives.

Ref. [29] implemented an elephant herding optimization (EHO)-based recurrent neural
network (RNN) classification technique for detecting intrusions in IoT-SCADA systems.
Here, the Caesar ciphering model integrated with the elliptic curve cryptography mech-
anism was utilized for improving the security level of SCADA systems. The primary
advantages of this work were increased detection accuracy, security, and reduced training
time. Ref. [30] introduced a new SCADA framework for industrial applications with en-
sured security and reliable data communication. This work mainly intends to analyze the
major risk factors that could affect the performance of SCADA systems. Here, some of the
common characteristics, such as data base injections, communication, and prioritization of
tasks have been investigated for improving the performance of SCADA systems. Moreover,
the detailed vulnerability assessment test has been conducted for validating the detection
efficiency of intrusion detection and classification. Ref. [31] examined the performance of
various machine learning classification approaches, such as SVM, RF, DT, logistic regres-
sion, NB, and KNN for developing an efficient SCADA-IDS. For this analysis, the online
real-time traffic data has been utilized, while the training and testing assessments were
performed for attack identification and categorization.

Ref. [32] introduced a new framework named as the Dnp3 intrusion detection preven-
tion system (DIDEROT) for increasing the security of SCADA systems. Here, the attack
detection was performed based on the analysis of network topology, and the developed
framework was used to mitigate both the anomalies and DNP3 cyber-attacks. Moreover,
it includes the modules of preprocessing, training and prediction, in which the data pre-
processing could be performed based upon min-max scaling, normalization, and robust
scaling. After that, the machine learning classification methodology was implemented
to train the preprocessed data to detect the anomalies. The key benefit of this work was
that it was capable of operating in both NIDS and HIDS. Ref. [33] developed a biased
intrusion scheme for increasing the security of SCADA systems, which comprises the
phases of optimization, classification, and security. Here, the modified GWO technique was
implemented to analyze the features of data in order to sort the malfunctions. Then, the
entropy-based ELM technique was utilized to detect the intruders based on the parameters
of date, time, and file location. Finally, a hybrid ECC technique was employed to select
the trusted routing path [34] for securing the information against the attackers. Ref. [35]
aimed to identify the potential breaches and vulnerabilities in the SCADA systems by
providing some recommendations to ensure the security of network. Here, the different
types of overflow vulnerabilities, such as stack-based, multiple buffer, heap-based, multiple
heap-based, multiple stack-based, and buffer overflows could be investigated with the
strategy of attacks and interruptions. Ref. [36] employed a chicken swarm optimization-
based deep CNN technique for detecting cracks on the concrete structures. The main
purpose of this work was to analyze the structural condition of concretes for identifying
the damages of cracks, spalling, exposure, and rebar buckling. Here, group statistical
evaluation metrics have been used to validate the results of this scheme. Ref. [37] utilized a
GA-based CNN technique for detecting the concrete cracks with increased accuracy. Here,
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the hyper-parameter optimization [38] could be performed for tuning the parameters of
learning rate, number of layers, and optimization function.

According to this review, it is studied that the existing works are highly concentrating
on developing the IDS frameworks with the data clustering, optimization, and classification
approaches. Yet, this approach faces the problems and challenges related to the following:

• Inability in handling large datasets
• High false positives and error outputs
• Misclassification results
• Requires high time consumption for training data
• Follows complex computational operations for classification

Hence, the proposed work aims to develop an advanced and intelligent optimization
-based classification methodology for developing the intrusion detection framework in
SCADA systems.

3. Proposed Methodology

This section presents the working methodology of the proposed IDS system used for
detecting intrusions from the SCADA systems. The primary objective of this work is to
accurately spot the intrusions from the IDS datasets by using a combination of clustering,
optimization, and classification methodologies with reduced computational complexity
and time consumption. For accomplishing this process, a multifacet data clustering model
(MDCM), gradient descent spider monkey optimization (GDSMO), and deep sequential
long short term memory (DS-LSTM) have been implemented. The novel contribution of
the proposed system is to select the optimal features from the clustered dataset based on
the best fitness value for detecting and categorizing the type of intrusions with an efficient
data training model. Here, the SCADA IDS datasets have been taken as the inputs for
processing, which comprises some irrelevant attribute information, random values, and a
missing field of attributes. Hence, it must be preprocessed and clustered to improve the
quality of input datasets, because the unbalanced dataset can affect the performance of IDS
with increased misclassification results and error values. So, the proposed work intends to
utilize the MDCM technique for normalizing and clustering the data attributes of the input
dataset, which helps to improve the efficiency and accuracy of classification. After that, the
GDSMO mechanism is implemented for optimally selecting the most-suited features from
the clustered dataset, based on the best fitness value. Here, the main advantages of using
the GDMO technique are as follows: it efficiently identified the best global optimal solution
with minimum iterations, increased convergence rate, and was fast in processing. Moreover,
the DS-LSTM mechanism is employed to detect the intrusions from the desired datasets by
using the set of optimal features. This is because it supports the aim of efficiently training
the model of classifier with reduced time consumption and increased accuracy. Finally, the
classifier produces the predicted label as whether normal or intrusion.

The working flow and methodology of the proposed IDS in SCADA systems is shown
in Figure 1, which involves the following modules of operations:

• Data preprocessing and clustering
• Segmentation
• Feature Optimization
• Attack Prediction

3.1. Data Preprocessing and Clustering

At first, the input dataset preprocessing and normalization processes have been per-
formed for balancing the attributes by filling the missing values, and eliminating the
irrelevant information and random values. Additionally, dataset clustering is one of the
most essential operation that needs to be accomplished for segmenting the dataset into
the group of attribute information in the form of clusters. This is because the large and
unbalanced datasets are highly difficult to process, and they also affects performance of
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classification with increased error values and false positives. Hence, this work aims to
implement an advanced clustering technique, named as the multifacet data clustering
model (MDCM), for normalizing and clustering the original input datasets, which helps
to improve the performance of the classifier. The key factors of using this technique are
reduced detection time, increased speed of processing, and classifier accuracy. This stage
includes the following stages:

• Attribute normalization
• Distance computation
• Clustering
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Here, the attribute normalization is mainly performed for standardizing the data
values by extracting the relevant features, where the data is normalized between the values
of 0 to 1 as shown in the following equation:

f ′v =
fv −Min (DS)

Max (DS)−Min (DS)
(1)

where, f ′v indicates the normalized feature value, Min (DS) and Max (DS) denote the
minimum and maximum values of the dataset DS, respectively, and the feature value of
fv ∈ DS. Then, the distance computation is performed to estimate the similarity between
the multiple features of the data, which is computed according to the minimum distance
and increased similarity value. Consider the input dataset having two objects with N
number of attributes as DSi = { fv1, fv2 . . . fviN}. and DSj =

{
fv1, fv2 . . . fvjN

}
. After that,

the correlation between the data is estimated based on the formation of a covariance matrix
as illustrated in the equation below:

d
(

DSi, DSj
)
=
√
(DSi − DSi)

SCM−1
(

DSi − DSj
)

(2)

where, d(.) indicates the distance function, and CM is the generated covariance matrix.
Moreover, the estimated distance function is mainly used to compute the similarity of
multi-features in the dataset. Consequently, the symmetry similarity matrix m×m has been
constructed according to the closeness of data objects as illustrated in the equation below:

0 d(DS1, DS2) . . . d(DS1, DSn)
d(DS2, DS1) 0 . . . d(DS2, DSn)

...
... . . .

...
d(DSn, DS1) d(DSn, DS2) . . . 0

 (3)

Furthermore, the best clustering effects has been obtained by using the following
Equation (4):

δ = ∑N
j=1 ∑

DSi∈Cj

∣∣∣∣DSi − Cj
∣∣∣∣2 (4)

where, δ indicates the clustering result, and Cj denotes the center of the j-th cluster. Based
on the minimum distance value, the clustering dataset has been generated, which is used
for further operations, such as optimization and classification.

3.2. Gradient Descent Spider Monkey Optimization (GDSMO)

After preprocessing, the optimal number of features are selected from the clustered
dataset based on global fitness function by using the proposed hybrid Gradient Descent
Spider Monkey Optimization (GDSMO). The conventional SMO technique can easily
fall into the problem of local optimum, hence it could not be suitable for all kinds of
applications. Hence, the proposed work intends to incorporate the gradient descent (GD)
with SMO technique, which efficiently avoids the local optimum problem by adding the
fraction of past weight update with the current weight update value. Additionally, it
acts like a simulated annealing algorithm, where the randomness is hosted to avoid the
local minimum of optimization. In this technique, the parameters are initialized with the
random values, and the derivatives are computed to adjust the weight value according to
the objective function.

The main purpose of using this technique is to select the best features with a reduced
number of iterations, increased convergence rate, and speed of processing. Additionally, it
is a technique inspired by a stochastic optimization mechanism, which helps to efficiently
reduce the learning time of the classifier [39]. Typically, the increased number of features
can degrade the performance of classification with an increased time consumption and
misprediction rate. Hence, it is most essential to optimally select the best suited features in
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order to train the data model of a classifier for intrusion identification and classification.
Here, the parameter tuning is performed for simplifying the process of classification, due
to the fact that it is more suitable for solving the complex multi-objective optimization
problems. In this technique, the local iterative search is enabled for calculating the functions
having a local minimum. Consider that the multivariate function M(x) is distinctive from
the neighboring points k, and that M(k) is decreased with the negative gradient of (k, G(k)),
denoted as the gradient descent. Then, the next position P of the gradient corresponding to
the current position k is illustrated as follows:

P = k−ω∇M(k) (5)

where, ω indicates the weight factor. The function M(k) > M(P) must be satisfied to
confirm the sufficient level of ω. Consequently, the sequence of attributes s0, s1, s2 . . .
and t0, t1, t2 . . . are considered with an arbitrary point s0, and the local minimum value is
computed as follows:

M(ti) = ρ(si − ti)
2 + δ(ti − ti+1)

2 + δ(ti − ti−1)
2 (6)

t′i = ti + 2ρ(si − ti) + 2δ(ti+1 − ti − 2ti)
2 (7)

Based on the step function, the expected local point is optimally identified with
improved convergence. This optimization algorithm performs the following operations for
computing the best fitness value:

• Initialization
• Local Leader Selection
• Global Leader Selection
• Learning module
• Decision module

During initialization, there are E number of spider monkeys which have been initial-
ized, in which each monkey has the set of the G dimensional vector as Bij(i = 1, 2, 3 . . . E),
where Bij indicates the i-th spider monkey B at the j-th direction. This is represented
as follows:

Bij = Bmnj + rand (0, 1)
(

Bmxj − Bmnj
)

(8)

where, Bmnj and Bmxj are the minimum and maximum limits of the spider monkey Bij,
and the function rand (0, 1) indicates the random value lies in the range of 0 to 1. After
initialization, the local leader is selected from the group of local members, and the fitness
is computed according to its new position. If the estimated fitness value is greater than
the new fitness value, the spider monkeys have updated their position as shown in the
equation below:

Bhij = Bij + rand (0, 1)
(

LPvj − Bij
)
+ rand(−1, 1)

(
Brj − Bij

)
(9)

where, Bhij is the new position of the spider monkey, LPvj indicates the v-th local group
leader with dimension j, and Brj denotes the random r-th spider monkey with dimension j,
r 6= i. Subsequently, the global leader is elected based on the experience, and during this
stage, all spider monkeys have to update their positions. Then, the experience of both local
and global leader members are determined as follows:

Bhij = Bij + rand (0, 1)
(
GPj − Bij

)
+ rand(−1, 1)

(
Brj − Bij

)
(10)

where, GPj indicates the global leader with dimension j and random index of j ∈ {1, 2 . . . dn}.
Then, the positions of all spider monkeys (Bi) have been updated according to the prob-
ability value of Pbi. This value can be determined with respect to the fitness value and,
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based on this, the best global leader candidate is selected using the probability value as
shown below:

Pbij =
Fi

∑n
i=1 Fi

(11)

where, Pbij indicates the estimated probability function, and Fi is the fitness value of the
i-th spider monkey. Furthermore, the learning phase has been executed with the local and
global leaders. During this process, the spider monkey having the highest fitness value
is considered as the global leader of all spider monkeys, and its position does not update.
Similar to that, the local leader has been selected from each group of members, and its
position is also does not update. During the decision making module, the group members
have to update their positions once the local limit reaches the threshold value, as shown in
the equation below:

Bhij = Bij + T(0, 1)×
(
GPj − Bij

)
+ T(0, 1)×

(
Bij − LPvj

)
(12)

Similar to that, the global leader could split the population into small number groups,
until it reached the maximum number of splits. If its position is not updated, all groups
are integrated into a single group. Based on the optimal solution, the final best subset of
features have been selected for improving the accuracy of classification. These selected
features are further utilized for training the classifier that helps to increase the overall
accuracy of intrusion detection and classification system. The algorithmic procedure of the
proposed IDS is presented in Algorithm 1.

Algorithm 1 Gradient Descent Spider Monkey Optimization (GDSMO)

Input: Initial set of population si(a ≤ i ≤ m), transaction probability τ, and switching probability αp;
Output : Best optimal solution Opta(i);

Step 1 : At first, the objective function O(s) is constructed with the set of s = (s1, s2 . . . sd)
T ;

Step 2 : Initialize the set of populations of k number of spider monkeys si with 1 ≤ i ≤ k, and its switching probability αp ∈
[0, 1] with the maximum number of iterations;
Step 3 : While (l < Maxitr) do.
Randomly select the spider monkeys for computing the fitness function by using Equations (5)–(7);

Verify the value of Mi = O
(

sl+1
i

)
for computing the fitness value;

While the fitness of si is not at (l < Itrmax) do
Split the entire set of population si with 1 ≤ i ≤ n into g number of groups;
//Local and global leader phase
Update the position of monkeys and global leader as shown in Equations (8)–(10);
//Learning phase
Select the best global leader based on the probability as defined in Equation (11);
Update the position of global & local leaders, and compute the fitness value for the leaders;
Group members can update their position by using Equation (12);
Itr = Itr + 1;

End;
Step 4 : If (Mi > Mj) then
Mj ← Mi ; //Replace the old solution with the new solution;
End if;
Step 5 : If (rand [0, 1] < αp) then
Re-initialize the entire population with the group members;
Obtain the global best solution;
End if;
Step 6 : If (Mi < Mmin) //Old solution is replaced with the new solution

Opta(i) = si;
Mi = Mmin; //Arrange the most feasible solutions for determining the current best solution;Increment the count l by 1;
Return the best optimal solution as Opta(i);

End;
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3.3. Deep Sequential Long Short Term Memory (DS-LSTM) Classification Model

In this stage, the selected optimal number of features have been utilized by the classifier
for training the model. Here, the deep sequential long short term memory (DS-LSTM)
mechanism is employed to identify the intrusions from the SCADA dataset, based on the
optimal number of features. It is a kind of machine learning classification mechanism and
is more suitable for solving the complex prediction problems. The hyper-parameters play a
vital role in the deep learning classification techniques, because they have a great impact
on determining the performance of a classifier. In the existing works, the hyper-parameter
tuning is performed in the deep learning models based on the random and grid search, but
it is not more efficient. Hence, the proposed work aims to utilize an optimization technique
for tuning the hyper-parameters. Typically, optimizing the hyper-parameters is one of the
crucial processes, so it is required for deep understanding of the underlying model. Hence,
the proposed work utilizes an optimization model for optimizing the hyper-parameters
of a classifier, which helps to obtain improved performance results. Then, the RMSprop
optimizer has been used to optimize the value of the hyper-parameters, which helps to
obtain an increased training and testing accuracy. Here, the main purpose of optimizing
the hyper-parameters is to increase the training and testing accuracy of classifier. In the
proposed system, the different types of hyper-parameters used in the classification are
as follows: learning rate, number of epochs, hidden layers, and batch size. The primary
advantages of using this technique are reduced time consumption for training and testing,
increased accuracy, detection rate, and minimized misclassification rate. In the proposed
system, the parameter tuning process [40] has been performed by using the optimization
technique that helps to efficiently improve the detection rate of proposed IDS. During
this process, the optimal set of features, learning model, and label are taken as the inputs,
and the predicted label is produced as the classified output. Initially, the deterministic
rules ∆Dr(x) are computed according to the logical vector σ and featured data Opta(i), as
shown below:

∆Dr(x) = k′v(netv(x)(τ −Optai(x))) (13)

After that, the feature map has been extracted by applying the convolutional operation
across two set of data as shown below:

cv = Optai(x) + (∆Dr(x) + Optai(x)) (14)

Based on the value of target vector, the trail vector is computed by using the
following model:

Tav
i,j =

{
cv

i,j i f ClaL == 1
∆Dv

i,j else
(15)

where, Tav
i,j indicates the trail vector, ClaL is the classified label, and cv

i,j is the convolutional
vector. According to the weight value, the dropout factor is estimated for the v-th target
vector, in which the neurons are randomly selected with respect to the specialization
function as shown below:

TU(x) =
1
2

(
x−

n

∑
x=1

∂ ω′x Tav

)
(16)

where, TU(x) is the training data, ∂ indicates the dropout factor, ωx
′ denotes the weight

value, and Tav is the target vector. Consequently, the memory cells are updated with the
forward pass as shown below:

mc
x = TU(x)� gx + k′v(netv(x))� mc

x (17)



Energies 2022, 15, 3624 11 of 24

where, mc is the memory cells, and gx comprises both the feature map and feedback.
Subsequently, the obtained feature values are passed to the sigmoid layer of the LSTM,
where the distributed probability is estimated for each class as shown below:

DiPsd(CO) =
eCd

U

1 + eCd
U

(18)

where, DiPsd is the distributed probability of sigmoid function, CO denotes the output
class, and Cd

U indicates the output value with d-th class. Then, the binary cross entropy is
estimated for analyzing the disparity across the definite segments that are used to attain
the probability distribution function as shown below:

Pl =
v

∑
i=1

D
(

Ci
U

)
a log

(
DiPsd

(
Cd

U

))
(19)

At last, the output predicted label is obtained as follows:

CO = CU(DiPsd ≤ 1) (20)

Then, the RMSprop optimizer has been used to optimize the value of the hyper-
parameters, (as showing in Algorithm 2) which helps to obtain an increased training and
testing accuracy.

Algorithm 2 Deep Sequential Long Short Term Memory (DS-LSTM) Classification

Input: Optimal set of features Opta(i), learning model, and Label CU ;
Output: Classified label CO;
Step 1: Compute the deterministic rules ∆Dr(x) with respect to the logical vector σ and
featured data Opta(i) by using Equation (13);
Step 2: Estimate the feature map based on the convolutional operation as shown in
Equation (14);
Step 3: Compute the trail vector according to the target vector by using Equation (15);
Step 4 : Based on the obtained target vector and weight value, the dropout factor ∂ is
estimated as shown in Equation (16);
Step 5 : Consequently, the memory cells mc are updated with the feature map and feedback
value as represented in Equation (17);
Step 6 : The distributed probability DiPsd function is computed for each class of data by
using Equation (18);
Step 7: Compute the binary cross entropy for the definite segments as shown in Equation (19);
Step 8 : Finally, the output classified label CO is predicted as represented in Equation (20);

4. Results and Discussions

This section evaluates the results of the proposed GDSMO-DSLSTM intrusion detec-
tion system using various performance measures. First, the different types of SCADA IDS
datasets such as CSE-CIC-IDS 2018, NSL-KDD, BoT-IoT, and ICS network traffic datasets
have been considered to validate this scheme’s performance. Then, the results of both
conventional and proposed intrusion detection methodologies are validated and compared
by using various performance measures such as accuracy, precision, F1-score, true posi-
tive rate (TPR), false positive rate (FPR), detection rate, and false acceptance rate (FAR).
Table 1 shows the attacking details of the CSE-CIC-IDS 2018 dataset, which comprises
the different types of attacks related to bot, DDoS, DoS, brute force, and injection. Then,
its corresponding confusion matrix and ROC analysis have been evaluated by using the
proposed GDSMO-DSLSTM system, as shown in Figures 2 and 3, respectively. Similarly,
the dataset description with the attacking details, confusion matrix, and ROC analysis
for the BoT-IoT dataset is presented in Table 2, Figures 4 and 5, correspondingly. Then,
the NSL-KDD dataset is also described with its features, confusion matrix, and ROC in
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Figures 6–8. These evaluations show that the proposed intrusion detection system could
efficiently predict the attacks of the given datasets with increased TPR.
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Table 1. CSE-CIC-IDS 2018 dataset.

Attack Types Size

Benign 736,521
Bot 143,010

DDoS-LOIC-UDP 7085
DDoS-LOIC-HOIC 1,082,293
DDoS-LOIC-HTTP 296,084

DoS-GoldenEye 30,585
DoS-Hulk 90,051

DoS-Sloworis 13,475
SSH-Bruteforce 94,237
FTP-Bruteforce 193,360

Infiltration 209
Bruteforce-Web 268
Bruteforce-XSS 117
SQL-Injection 53

Table 2. BoT-IoT dataset.

Category Type of Attack Flow Count

Benign Benign 9543

Information gathering Service scanning 1,463,364
OS Fingerprinting 358,275

DDoS attack
DDoS TCP 19,547,603
DDoS UDP 18,965,106

DDoS HTTP 19,771

DoS attack
DoS TCP 12,315,997
DoS UDP 20,659,491

DoS HTTP 29,706

Information theft
Key logging 1469
Data theft 118

Total 73,370,443
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4.1. Simulation Analysis

For validating the performance of the proposed security mechanism, various measures
such as accuracy, FPR, TPR, F1-score, and recall are computed, and the results were obtained
by using the MATLAB simulation tool. Figure 9 shows the accuracy and TPR of the
proposed optimization-based classification methodology concerning various iterations.
Similar to that, Figure 10 estimates the F1-score and FPR of the proposed mechanism for
the different number of operations. Figure 11a,b show the proposed mechanism’s TPR,
FPR, accuracy, and F1-score under varying iterations. According to these evaluations,
it is analyzed that the proposed technique provides increased accuracy, F1-score, TPR,
and reduced FPR values with a reduced number of operations. Consequently, the overall
performance of the proposed system is validated and tested for the given datasets, as
shown in Figure 12.
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Then, the FAR and detection rate of the proposed techniques are validated for the
different types of datasets, as depicted in Figures 13 and 14, respectively. To assess the
improved performance rate of the proposed classification technique using F1-score, recall
and accuracy measures are shown in Figure 15. The obtained results state that the proposed
technique provides improved performance results for the all the IDS datasets.
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4.2. Comparative Analysis

Table 3 and Figure 16 compare the conventional [41] and proposed intrusion detection
and classification methodologies for the CSE-CIC-IDS 2018 dataset, based on the measures
of accuracy, TPR, FPR, and F1-score. Typically, the efficiency of any detection and classifica-
tion system is evaluated using these measures. Additionally, the overall performance of the
IDS approach significantly depends on the accuracy of detection. Therefore, the accuracy,
TPR, FPR and F1-score have been increasingly used to validate security systems’ detection
efficiency. These measures are computed by using the following models:

Accuracy =
TP + TN

TP + TN + FP + FN
(21)

Precision =
TP

TP + FP
(22)

Recall or TPR =
TP

TP + FN
(23)

F1− score =
2TP

2TP + FP + FN
(24)

FPR =
FP

FP + TN
(25)

where, TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
The evaluation shows that the proposed GDSMO-DSLSTM outperforms the other tech-
niques with increased accuracy, TPR, F1-score, and reduced FPR, because the clustering-
based optimization and classification processes help obtain an improved performance
during the detection of intrusions from the datasets. Table 4 and Figure 17 validate and
compare the existing and proposed machine learning-based classification techniques used
to detect intrusions in the SCADA systems based on accuracy, TPR, FPR, and F1-score. The
obtained results also depicted that the proposed GDSMO-DSLSTM technique improves
performance value over the other methods. This is because the clustering and optimal
parameter tuning help to precisely locate the intrusions from the datasets based on the
global fitness value. Moreover, the performance of detection depends on the quality of
the input dataset, hence, the attribute normalization helps to increase the quality of data.
Specifically, the multifacet clustering splits the preprocessed into a group of chunks, which
is more helpful to process the dataset for classification.
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Figure 16. Performance analysis of existing and proposed classification approaches using the CSE-
CIC-IDS 2018 dataset.
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Table 3. Comparative analysis between existing and proposed mechanisms using the CSE-CIC-IDS
2018 dataset.

Methods Accuracy TPR FPR F1-Score

Logistic Regression 92.2 76.7 0.46 76.7
LDA 88.2 64.8 0.70 64.8

Decision Tree 99.4 98.2 0.03 98.2
NB 91.7 75.1 0.49 75.1

SVM RBF 84.1 52.3 0.95 52.3
SVM Linear 80.2 40.6 1.18 40.6

Random Forest 99 97 0.05 97
MLP 90.9 72.8 0.54 72.8

Ada Boost 84.6 53.8 0.92 53.8
Quadratic Discriminant Analysis 72.2 1.66 1.66 1.66

Dense DNN 98.4 95.4 0.09 95.4
Dense DNN Tanh 96.5 89.7 0.20 89.7

Proposed GDSMO-DSLSTM 99 99.3 0.18 98.5

Table 4. Analysis based on accuracy, TPR, FPR, and F1-score.

Methods Accuracy TPR FPR F1-Score

ABOD 94.4 100 10.1 94.2
Isolation Forest 93.8 99.9 11.1 93.7

LOF 94.4 100 1.01 94.2
Auto Encoder 95.14 100 0.96 95.33

GDSMO-DSLSTM 98.8 100 0.85 98Energies 2022, 15, 3624 21 of 26 
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Figure 17. Comparison between existing and proposed classification techniques based on the mea-
sures of accuracy, TPR, FPR, and F1-score.

Table 5 and Figure 18 compare the conventional [42] proposed intrusion detection and
classification techniques based on accuracy, detection rate, and F1-score, where the SCADA
network dataset has been utilized to assess the results. Typically, the detection rate and
accuracy are the essential parameters used for validating the proficiency and concert of
security systems. Here, the detection rate is used to determine how accurately the IDS can
identify the attacks from the datasets with increased speed and reduced time consumption.
Based on the evaluations, it is perceived that the proposed GDSMO-DSLSTM technique
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provides increased accuracy, detection rate, and F1-score values compared to the other
methods, which shows the overall improved performance rate of the proposed system.

Table 5. Accuracy, detection rate, and F1-score of existing and proposed classification techniques
using the SCADA network dataset.

Techniques Accuracy Detection Rate F1-Score

Decision Forest 99.72 94.12 80.26
Boosted Decision Forest 99.77 93.14 84.67

Decision Jungle 99.79 93.97 85.08
Cyber physical model 99.79 99.78 98.7

Proposed GDSMO-DSLSTM 99.8 99.85 99.8Energies 2022, 15, 3624 22 of 26 
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Figure 18. Comparative analysis between existing and proposed techniques using the SCADA
network dataset.

Table 6 and Figure 19 compare the existing [43] and proposed deep learning techniques
used to develop the IDS frameworks, based on the false acceptance rate (FAR) measure.
Both datasets, such as CSE-CIC-IDS 2018 and BoT-IoT, have been taken for validation and
comparison. Similarly, the detection rate of existing and proposed deep learning models
are compared using these datasets, as shown in Table 7 and Figure 20. According to these
evaluations, it is observed that the proposed GDSMO-DSLSTM provides a reduced FAR
and increased detection rate for both datasets, when compared to the other techniques. This
is because the proposed optimization technique supports the training the deep learning
classifier with the best optimal features, which avoids an increased FAR of classification.

Table 6. Comparative analysis between the existing and proposed deep learning techniques based
on FAR.

Techniques CSE-CIC-IDS 2018 BoT-IoT

DNN 1.3 1.45
RNN 1.2 1.2
CNN 1 1.1
RBM 1.12 1.135
DBN 1.11 1.12
DBM 1.11 1.115
DA 1.10 1.11

GDSMO-DSLSTM 0.9 0.95
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Figure 19. FAR of existing and proposed deep learning mechanisms for both the CSE-CIC-IDS 2018
and BoT-IoT datasets.

Table 7. Comparative analysis between the existing and proposed deep learning techniques based on
detection rate.

Techniques CSE-CIC-IDS 2018 BoT-IoT

DNN 95 97.5
RNN 98 97.5
CNN 98 97.5

RF 92.5 92.5
NB 82 80

SVM 93 90
ANN 90 89

GDSMO-DSLSTM 98 97
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Figure 20. Detection rate of existing and proposed deep learning mechanisms for both the CSE-CIC-
IDS 2018 and BoT-IoT datasets.
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Table 8 and Figure 21 compare the precision, recall, and f1-measure of both existing [27]
and proposed classification techniques using the omni-attacks dataset. The precision and
recall measures are generally used in all classification and detection application systems
to assess the classifier’s performance and efficiency. Based on these results, it is evident
that the proposed GDSMO-DSLSTM technique provides increased precision, recall, and
f1-measure values compared to the other methods. Furthermore, the optimal parameter
tuning attains improved performance outcomes over the different classifiers.

Table 8. Precision, recall and f1-measure of existing and proposed classification techniques.

Methods Precision Recall F1-Measure

FNN 88 89.2 87.4
LSTM 99.54 99.01 99.27

Ensemble Learning 99.76 99.57 99.68
GDSMO-DSLSTM 99.8 99.8 99.85

Energies 2022, 15, 3624 24 of 26 
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Figure 21. Comparative analysis based on precision, recall, and f1-measure.

5. Conclusions

This paper presents a classy multifacet clustering-based optimization and classification
methodology for detecting intrusions from the SCADA systems. The main contribution
of this work is to develop an intelligent IDS framework by using the fusion of methods
for obtaining an increased detection accuracy, reduced false positives, error rate, and
complexity. The most popular IDS datasets have been utilized to implement and validate
the proposed security system. The dataset normalization and preprocessing operations
have been performed to eliminate irrelevant attributes and balance the data. Consequently,
the MDCM technique is applied to group the attributes into the form of clusters based
on the distance value. The main purpose of implementing the clustering technique is to
simplify the process of intrusion detection and classification with an increased speed of
processing. Then, the GDSMO technique is employed to optimally select the best features
for training the classifier model, which helps reduce the time taken for dataset training and
testing. The switching probability, weight value, and fitness value have been computed
during this process for selecting the optimal parameters to improve the classification.

Moreover, the DS-LSTM-based deep learning classifier is deployed for spotting the
intrusions from the clustered datasets based on the optimal set of features. The primary
advantages of using this technique are reduced time consumption for training and testing,
increased accuracy and detection rate, and minimized misclassification rate. Finally, the
performance of the proposed GDSMO-DSLSTM-based IDS is validated and compared with
the recent state-of-the-art models by using the measures of accuracy, precision, recall, F1-
score, FAR, and detection rate. The evaluation states that the proposed GDSMO-DSLSTM
technique outperforms the other approaches with improved performance values.
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In future, the proposed work can be enhanced by developing a secured communication
medium for protecting the SCADA systems from internal and external threats. Additionally,
the major properties such as integrity, scalability, intrusion tolerance, and self-healing can
be satisfied by designing an effectively secured SCADA architecture.
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