
152 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.8, NO.2 November 2014

A Client-Side Cloud Cache Replacement
Policy

Thepparit Banditwattanawong 1 and Putchong Uthayopas 2 , Non-members

ABSTRACT

To deliver data-centric cloud computing ser-
vices heavily relies on data networks between cloud
providers and consumer premises. The continuous
and rapid growth of data hosted in external private
clouds accelerates downstream network-bandwidth
saturation and public cloud data-out overspends.
The consumer-initiated replication of cloud data to
consumer locality is a solution and known as client-
side cloud caching. This paper presents the core
mechanism of the cloud caching, called Cloud cache
replacement policy. Simulations shown that 1) Cloud
saved network bandwidth, data-out charge and data
loading time; 2) even Clouds performance minima
outperformed three well-known web cache replace-
ment policies across all performance metrics for al-
most all test cases; 3) Cloud importantly attain opti-
mal hit and byte-hit ratios without sacrificing one to
the other.

Keywords: Cloud Computing, Cloud Cache, Cache
Replacement Policy, Cost Saving Ratio, Window
Size, Contemporaneous Proximity

1. INTRODUCTION

Network scalability, economy and responsiveness
are the principal requirements of data-intensive cloud
computing. In presently digital cultures, data has
been proliferating in various forms such as instant
messaging texts, high definition images and voices,
massively streaming videos and SaaS applications.
Not only WWW and social media contents but also
big data (e.g., archive of videos gathered via ubiq-
uitous information-sensing devices) have been hosted
in cloud and being shared in a distributed fashion
in an unprecedented volume. These will lead to
several problems from a consumer standpoint; the
bandwidth saturation of network connection between
external cloud and consumer premise, increases in
external-private-cloud data-out charge imposed by

Manuscript received on July 12, 2013 ; revised on December
6, 2013.
Final manuscript received December 23, 2013.
1 The author is with School of Information Technology,

Sripatum University, Bangkok, Thailand., E-mail: thep-
parit.ba@spu.ac.th
2 The author is with Computer Engineering Department,

Faculty of Engineering, Kasetsart University, Bangkok, Thai-
land., E-mail: pu@ku.ac.th

public cloud provider (such as [1], [2] and [3]) and
long-delayed cloud service responsiveness.

While allocating more organizational budget in
long term is a possible solution to these problems,
cloud economy is however questionable. Improving
both cloud scalability, economy and service respon-
siveness simultaneously can be attained instead by
deploying client-side cloud cache system, which is lo-
cated nearby the consumer premise, such as Amazon
CloudFront [4].

The cloud cache basically inherits the capabil-
ity of traditional forward web caching proxy since
cloud data is also delivered by using the same set
of HTTP/TCP/IP protocol stack as in WWW. Un-
avoidably, an issue in WWW caching is also inherited
that is caching entire remote data in local cache is not
economically plausible, thus cache replacement policy
is also mandatory for cloud cache.

This paper presents a cache replacement policy,
Cloud (named so for its intended application do-
main), along with a set of technical and economical
performance results and findings based on half- and
one-month HTTP traces.

2. RELATED WORK

Reference [4] has originally proposed Cloud strat-
egy as an early attempt of client-side cloud cache re-
placement policy, and evaluated its performance by
using short 5 day traces. In [6], we have made the
minor algorithm enhancement of Cloud and extended
its performance investigation by using 15 day traces
in conjunction with 5 day traces. The 15-day results
has led to an important finding in the realm of hetero-
geneous multicomputer caching that is Cloud could
deliver optimal byte-hit and hit performances at the
same time. In [7], a new set of even longer one-month
traces was used in comparison with 15-day traces to
observe Clouds behaviors in longer runs. This was
to ensure its performance practicality and stability
in more realistic environments to provide user confi-
dence in employing cloud caching services. The main
finding in [6] was also affirmed by the one-month re-
sults. Moreover, both performance maxima and min-
ima of Cloud were presented in comparison with three
well-known strategies, LRU, GDSF and LFUDA [8],
which are all supported by popular Squid caching
proxy [9]. This paper incorporates [5-7] with better
content clarification.

We have investigated a number of other web cache



A Client-Side Cloud Cache Replacement Policy 153

replacement policies in terms of their characterizing
parameters as follows.

2.1 Object Size, Loading Cost and Access Fre-
quency

A number of policies surveyed in [8]: LRU, LFU-
DA, EXP1, Value-Aging, HLRU, LFU, LFU-Aging,
-Aging, swLFU, SLFU, Generational Replacement,
LRU*, LRU-Hot, Server-assisted cache replacement,
LR, RAND, LRU-C, Randomized replacement with
general value functions, including policies ARC [10],
CSOPT [11], LA2U [12], LAUD [12], SEMALRU
[13] and LRU-SLFR [14] do not parameterize object
sizes. If big objects are requested frequently but of-
ten evicted by these policies (as blind to object sizes),
caching proxy will have to frequently reload the big
objects from their original servers. Therefore, object-
size ignoring schemes permit the poor economies of
data-out charges.

Another group of policies surveyed in [8]: GDSF,
LRU-Threshold, LRU-Min, SIZE, LOG2-SIZE, PSS,
LRU-LSC, Partitioned Caching, HYPER-G, CSS,
LRU-SP, GD-Size, GD*, TSP, MIX, HYBRID, LNC-
R-W3, LUV, HARMONIC, LAT, GDSP, LRU-S, in-
cluding LNC-R-W3-U [15], SE [16], R-LPV [17], Min-
SAUD [18], OPT [19], LPPB-R [20], OA [21], CSP
[22], GA-Based Cache Replacement Policy [23], im-
proved GD* [24] and SzLFU(k) [25] consider object
sizes in such a way that replacing bigger objects first,
thus not aiming for cost-saving performance. The
other policies LRV [7], M-Metric [8], NNPCR-2 [26]
and Bolot and Hoschkas [27] favor bigger objects like
Cloud. In particular, LRV supports the factorization
of object size, downloading latency or loading cost
but only one of them at each time; M-Metric allows
bigger objects to stay longer in cache but does not in-
corporate loading cost parameter; NNPCR-2 applies
neural network to decide the evictions of small or big
objects but the perceptron does not input monetary
cost parameter to control data-out charge; Bolot and
Hoschka’s policy replaces bigger objects first but ig-
nores spatial locality by not considering access fre-
quencies and does not support the nonuniform costs
of object downloadings.

2.2 Access Recency

All known policies prioritize the recencies of object
requests either implicitly or explicitly. By implicitly,
every policy always accepts a newly loaded missing
object (i.e., the most recently used object) into cache
rather than rejects it. By explicitly, several poli-
cies such as LRU, LRU-Threshold, SIZE, LRU-Min,
EXP1, Value-Aging, HLRU, PSS, LRU-LSC and Par-
titioned Caching parameterize elapsed times since the
last requests to objects. Cloud policy explicitly re-
gards the recency property of objects in its model.

2.3 Object Loading Latency

Several policies: GD-Size, GDSF, GD*, improved
GD*, GDSP, HYBRID, LAT, LUV, MIX, LNC-R-
W3, LNC-R-W3-U, LRU-SLFR and GDSP take ob-
ject loading latencies into account. All of them re-
place objects with shorter latencies first. Cloud pol-
icy also follows such a design approach.

2.4 Object Expiration

Very rare policy considers object expiration.
LA2U, LAUD, improved GD* and LNC-R-W3-U re-
place frequently updated objects first. The former
three do not describe how update frequencies are
derived. The last policy estimates update frequen-
cies from changes detected in HTTP’s ‘Last-Modified’
header fields; however, if frequently updated objects
are seldom requested, updated ‘Last-Modified’ val-
ues will be rarely perceived by the policies resulting
in underestimated update frequencies. This problem
can be solved by using explicit expiration times or
TTL as in Bolot and Hoschka’s policy even though
this parameter had not yet been implemented in their
presented empirical studies.

To recap, no explicit policy aims for cloud comput-
ing paradigm for either of two main reasons. First,
they evict big objects to optimize hit rates rather
than byte-hit and delay-saving ratios, which are im-
portant to the scalability of cloud-transport infras-
tructures and cloud computing services. Second, they
are not optimized for cloud data-out charges, thus fail
to improve consumer-side cloud economy.

3. CLOUD CACHE REPLACEMENT POL-
ICY

Designing cache replacement policies for cloud
cache systems requires the new perspective of prob-
lem understanding to establish design goals, which
truly suites cloud computing paradigm.

3.1 Design Goals

The design goals of Cloud policy would be de-
scribed in terms of standard performance metrics bor-
rowed from the realm of traditional web caching and
newly invented as follows.

• Cloud aims for optimal byte-hit ratio: As described
earlier, the scalability of cloud network infrastruc-
ture is vital due to the continual and rapid growth
of data in cloud computing era that is reinforced by
at least the two recent emergences of social media
contents and big data.

• Cloud aims for cost-saving ratio: Cost-saving ra-
tio is an economical performance metric originally
proposed in [4]. As mentioned formerly, public
cloud providers charge the volume of data trans-
ferred out of their cloud infrastructures down to
consumer premises. This incurs financial difficulty



154 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.8, NO.2 November 2014

for consumers in meeting cost-effectiveness, accept-
able pay-back period, or even a break-even point.

• Cloud aims for improving delay-saving ratio: Cloud
computing paradigm is heavily network-driven be-
cause both enterprise data and services must be
made available to users through the network. It is
intolerable for cloud consumers to experience unre-
sponsive SaaS owing to unpredictable or congested
network connectivity.

It should be worth to clarify why hit rate is not in-
cluded in the designs goal of Cloud unlike those found
in the classic world of web caching. Date back to
the pre-broadband communication era, fetching even
small data object was delayed due to slow Internet
connection. It was unacceptable for users to experi-
ence such delays on every request. For this reason,
the web cache replacement policies had been opti-
mized for hit rate to serve small objects as fast as
possible [8, 28]. However, these days with globally
available large-bandwidth network infrastructures, it
is perceived that loading remote small objects is fast
as if they were loaded from user locality. This fact
has advocated several present enterprises to overlook
the employment of web caching proxies. In other
words, hit rate is considered no longer important for
the broadband era. This evolutionary phenomenon
also applies to cloud computing network infrastruc-
tures, and therefore Cloud excludes hit rate from its
design goals.

3.2 Design Rationales

Cloud strategy mandates several parameters to
make the efficient decisions of cached object replace-
ments. The utilizations of the parameters is justified
one by one as follows.

• Cloud strategy relies on contemporaneous proxim-
ity principle [29], which combines both spatial lo-
cality and temporal affinity together. Thus, Cloud
parameterizes both the access frequency and re-
cency of objects. Popular objects and most recently
used objects are preserved in cache.

• One of the problems that cloud consumers experi-
ence for now is the loadings of big objects through
IaaS, PaaS and SaaS take long time, whereas the
loadings of small objects are no longer a problem in
current broadband era as mentioned earlier. There-
fore, Cloud parameterizes object size by favoring
big objects in cache and evicting small ones. By
retaining big objects in cloud cache, the bandwidth
congestion of cloud transport infrastructures could
be alleviated.

• Economy is highlighted as the major benefit of
cloud computing paradigm. By solely avoiding the
repeated loadings of big objects might not optimize
data-out charges. If an enterprise employs multiple
public cloud providers offering the different pricing
rates of data-out charges, small objects can be more
expensive than big ones. To control economical as-

pect, Cloud parameterizes data-out charge rate by
preserving expensive objects in cache.

• Responsiveness becomes more important charac-
teristic to cloud services as they are run via the
network while consumers expect their qualities of
services comparable to those of local applications.
Cloud parameterizes data loading latency by re-
placing fast loaded objects before slowly loaded
ones in cache.

• When objects in cache become stale or nearly ex-
pire, they remain fewer chances to get accessed.
Thus, Cloud parameterizes the remaining lifespans
of objects by evicting those expired or nearly stale
from cache.

Cloud policy functions as follows. Whenever Cloud
cache replacement mechanism is activated, Cloud
first formulates a cluster of in-cache least-recently-
used objects as many as instructed either by a win-
dow size parameter or the size of a newly missing
object if the window size yields smaller total object
size than the missing object. Cloud policy also cal-
culates a profit for each object inside the cluster by
using Eq. (1). For an object i,

Fig.1: Cloud Algorithm.



A Client-Side Cloud Cache Replacement Policy 155

profiti = si · ci · li · fi · TTLi (1)

where si is the size of i, ci is data-out charge rate for
loading i, li is latency in loading i, fi is the access
frequency of i, and TTLi is the remaining lifespan
of i. An object with least profit is first evicted from
cache. This eviction decision process is repeated on a
next least profitable object in the cluster until gaining
enough room in cache that fits the missing object.
The detailed pseudo code of Cloud algorithm is shown
in Fig. 1.

3.3 Algorithmic Practicality

As for the time complexity analysis of Cloud illus-
trated in Fig. 1, the statements that take significant
part in processing time are: Replicating cd into ecd
takes O(N); the first do-while loop takes O(NlogN)
as the window size can be set via the preceding if-
then statement to as many as N, removing each object
from ecd is O(logN) just like adding each object into
oc; the second do-while loop has the worst-case run-
ning time of O(NlogN) because the number of evicted
objects is bounded by N, while removing each object
from oc takes O(logN) and deleting an object from cd
is O(logN). The other statements are all identically
O(1). Therefore, the algorithm is O(NlogN). In other
words, Cloud strategy can be implemented.

4. PERFORMANCE EVALUATION

4.1 Input Data Sets

In the realm of client-side caching, simulation was
a popular method for performance assessment as done
in almost all of the related works. Hence, HTTP
trace-driven simulations were conducted using four
traces provided by [30] that represent two different
user-community behaviors (for result crosschecking
purpose): 31-day BO trace gathered from user com-
munity in Boulder from 16th August to 15th Septem-
ber 2012 and 31-day NY trace collected from user
community in New York from 16th July to 15th Au-
gust 2012. The other two 15-day traces will be de-
scribed later.

Each of these raw one-month traces was prepro-
cessed to extract only the object references of 50 most
popular domain names (emulating the total number
of intranet domains administrated within the first au-
thor’s university). Omitting this preprocessing step
means that a single consumer organization owns an
impractically large number of domain names hosted
on its cloud(s). The extracted references reflected
both WWW and cloud service requests to, for ex-
ample, Facebook, Youtube, and Twitter SaaSes as
well as Mediafire and 4shared IaaSes. The WWW
requests were not excluded as the majority of them
were found to go to cloud-hosted web servers. We

Table 1: Characteristics of simulated traces.
Feature

BO NY

15 days 31 days 15 days 31 days

Total
352,224 639,187 639,199 1,311,880

requests

Total

requested 2,294,688,191 4,149,211,314 6,499,655,874 17,067,821,671

bytes

Total

unique 181,624 323,979 290,851 593,365

objects

Max. bytes

1,386,970,321 2,262,144,480 4,791,008,825 10,801,010,237
of total

unique

objects

thus regarded the entire preprocessed traces as cloud
service request streams. Furthermore, unused fields
were removed, and object expiration time was ap-
pended as a new field to every reference inside all the
traces. These field values were figured out by using
the following heuristic rules based on an assumption
that object creators set objects’ expiration times de-
liberately.
• Rule 1: By scanning down all references within a
trace in timestamp order, object expired immedi-
ately once its size was found changed.

• Rule 2: As long as the size of object remained un-
changed, its lifetime was extended to its last re-
quest as appeared in a trace.

• Rule 3: Object apparent only once throughout a
trace expired suddenly after its use. (This object
tends to be a kind of dynamic one, which is by
default not cached by Squid. Thus, this rule is
defined so.)
In practice, the expiration value can be retrieved

from ‘Expires’ or ‘max-age’ field inside HTTP pro-
tocol header [31]. All references representing dy-
namic object requests were not excluded from the
traces during the preprocessings to reflect actual per-
formances against all types of requests. (That is why
our performance results were not so high, unlike some
of the related works.)

Once the one-month BO and NY traces had been
preprocessed, the references belonging to the first 15
days of each trace were duplicated into a new trace
resulting in a 15-day BO trace and a 15-day NY trace.
This allows objects in both 15-day traces to have
maximum one-month lifespans (as a result of apply-
ing the heuristic rules to the one-month traces) rather
than merely 15 days. This makes the heuristic rule
3 more practical for static objects. The preprocess-
ing results are characterized in Table 1. Notice that
the last feature must be the maximum bytes (of total
unique objects) since the sizes of several unique ob-
jects were found to change over a reference stream in
each trace.

4.2 Performance Metrics

The three standard metrics [8, 28] in the world of
traditional web caching were used for cloud cache per-
formance measurements. They are defined as follows.



156 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.8, NO.2 November 2014

For an object i,

byte− hit ratio =

∑n
i=1 sihi∑n
i=1 siri

(2)

delay − saving ratio =

∑n
i=1 lihi∑n
i=1 liri

(3)

hit− rate =

∑n
i=1 hi∑n
i=1 ri

(4)

where si is the size of i, hi is how many times a
valid copy of i is found in cache, ri is the total number
of requests to i, and li is the loading latency of i from
cloud.

In addition to the standard metrics, a new metric
cost-saving ratio was used to capture the economical
performances of all the simulated strategies. In par-
ticular, cost-saving ratio measures how much loading
monetary cost can be saved by serving the valid copies
of requested objects from local cache. For an object
i,

cost− saving ratio =

∑n
i=1 cisihi∑n
i=1 cisiri

(5)

where ci is the data-out charge rate for loading i
from cloud. This metric is particularly useful for hy-
brid cloud where organization employs multiple cloud
providers, which might charge data-outs based on dif-
ferent pricings. Notice that in a uniform cost model
(described in next sub-section), the value of ci in Eq.
(5) is identical for all objects, thus can be eliminated
and resulting in Eq. (2). This means that cost-saving
ratio is absolutely equal to byte-hit ratio in uniform
cost model. In fact, economy is accepted as the core
benefit of cloud computing, therefore this metric is
helpful for future cache replacement strategies aiming
for cloud computing for demonstrating their economi-
cal performances, which are highly of cloud consumer
interests.

4.3 Cost Models

To demonstrate economical performances based on
Eq. (5), there can be two cost models to be used in
simulations. One is a uniform cost model in which
all the 50 domains are assumed to be hosted on the
same public cloud provider, thus the same data-out
charge rate was applied uniformly across all requested
objects. The other is a nonuniform cost model in
which the 50 domains were assumed to be hosted on
two or more public cloud providers probably for risk
management, which is critical to some types of busi-
nesses (e.g., hospitals, stock trading and air trans-
portation control) so that different charge rates were
associated with the domains. Objects fetched from
the same domain were always charged at the same
rate. Nonuniform cost-based performance results are

not presented here but can be found in [5] and [6].

4.4 Window Size Parameter

An algorithmic parameter significantly influencing
all performance aspects of Cloud is the window size.
Both optimal and worst window sizes were used in
simulations and determined by extensively trial-and-
error experiments. In particular, optimal window size
was tuned for a maximum byte-hit ratio (or cost-
saving ratio) for each certain trace and cache size us-
ing the uniform cost model. Since different window
sizes were found to yield identical maximum byte-hit,
the smallest window size was selected as the represen-
tative value of optimal window size due to requiring
less CPU time. Optimal window sizes yield perfor-
mance maxima, whereas worst window sizes produce
performance minima and were tuned towards mini-
mum byte-hit ratios based on the uniform cost model.

Table 2 shows the optimal window sizes (wso) and
the worst window sizes (wsw) used for the simula-
tions. The cache sizes are presented in percent of
the maximum bytes of total unique objects of the
15-day traces shown in Table 1. This means that
the simulated cache sizes were fixed to absolute ones
and used to serve request streams beyond the first
15 days (i.e., the one-month trace durations). This
emulated realistic condition in which cache size in
practice cannot grow without limitation in propor-
tion to the maximum bytes of total unique objects,
requested throughout a cloud cache’s entire running
period, which can be several years. Infinite cache size,
which enables cachings without cache replacement at
all, was also simulated against each trace to show
performance upper bounds. The infinite cache size
for each trace must be set to at least the maximum
bytes of total unique objects of each trace shown in
Table 1.

By looking at Table 2, one finding can be drawn
early: both optimal and worst window sizes were not
proportional to cache sizes.

Table 2: Window sizes used for Cloud policy simu-
lations.

Cache BO NY
size (of 15 days 31 days 15 days 31 days
first 15

wso wso wso wso wso wso wso wso
days)

10% 500 25,000 8,000 35,000 2,000 100 1,000 60,000

20% 1,300 40,000 8,000 60,000 5,000 100 8,000 100

30% 100 60,000 8,000 5,000 500 80,000 3,500 100

4.5 Results and Discussions

First, let us consider the simulation results in four
performance metrics using one-month BO and NY
traces shown in Fig. 2 and Fig. 3, respectively, of
Cloud in comparison with LRU, GDSF and LFUDA
strategies. (To accommodate the differentiation of
the presented performance values among the sim-
ulated policies, the Y-axis minimum values of all



A Client-Side Cloud Cache Replacement Policy 157

Fig.2: Performance results using 31-day BO trace.

graphs in Fig. 2 to 5 are not bounded to zero.)

• They demonstrate that Cloud produced against the
other three strategies the optimal byte-hit, cost-
saving and delay-saving performances for all the
cache sizes. Optimal hit rates were also delivered
by Cloud when using 20% and 30% cache sizes for
both traces and 10% cache size for BO trace. It
should be noted that across 20% and 30% cache
sizes Cloud delivered perfectly stable performance
maxima in all metrics very close to those of infi-
nite cache size. This substantiates a very promising
client-side cloud caching as a service. The results,
however, came out at the price of trial-and-error
tuning of the optimal window sizes, shown in Ta-
ble 2.

• At 20% and 30% cache sizes, Cloud also performed
best not only in byte-hit metric but also hit-rate
one. Achieving the superior hit and byte-hit ratios
simultaneously leads to a groundbreaking finding:
it is not always that a replacement policy trades
off byte-hit ratio against hit rate. Because Cloud
tends to remove smaller objects, this finding con-
tradicts the conventional rule of thumb in tradi-
tional web caching: ”Strategies that tend to remove
bigger objects improve the hit-rate but decrease the
byte-hit-rate” [8]. Another finding that places an
objection to the rule of thumb is that a policy re-
moving smaller objects could actually improve hit
rate. These are probably because Cloud strategy

Fig.3: Performance results using 31-day NY trace.

not only relies on object sizes but also several other
input parameters. The other finding supported by
the rule of thumb is that a policy preserving bigger
objects enhanced byte-hit ratio.

• Even the Cloud’s performance minima in terms
of byte-hit, cost-saving and delay-saving ratios
also outperformed the other policies throughout all
cache sizes. The hit-rate minima were rather un-
predictable in the rank using 10% and 20% cache
sizes but turned out to overcome all the other poli-
cies using 30% cache size
Now, let us compare the one-month results shown

in Fig. 2 and 3 with the shorter 15-day results shown
in Fig. 4 and 5.
• It can be seen across all cache sizes that the ideal,
maximum and minimum performances of Cloud
based on the BO and NY traces in terms of byte-
hit, cost-saving and delay-saving ratios improved
in longer runs whereas the hit rates decreased. In
particular, deploying Cloud in BO community for
one month instead of 15 days increased byte-hit
and cost-saving performance maxima by 0.01617 to
0.01620 depending on the cache sizes and increased
delay-saving performance maxima by 0.0026 across
all cache sizes, whereas hit performance minima
decreased by 0.00648 to 0.00655 depending on the
cache sizes. On the other hand, deploying Cloud
against NY community behavior for one month in-



158 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.8, NO.2 November 2014

Fig.4: Performance results using 15-day BO trace.

stead of 15 days increased byte-hit and cost-saving
performance maxima by 0.01064 to 0.01084 de-
pending on the cache sizes and increased delay-
saving performance maxima by 0.01987 to 0.02079
depending on the cache sizes, whereas hit perfor-
mance minima decreased by 0.01309 to 0.01587 de-
pending on the cache sizes. Notice that when trace
durations were doubled, Cloud’s byte-hit and cost-
saving ratios using BO traces were more fluctuated
than NY ones, whereas the delay-saving and hit
rates using BO traces were less fluctuated than NY
ones.

• Based on the longer BO trace for all cache sizes,
the performance maxima and minima in all met-
rics except hit rate of Cloud improved. Based
on the longer NY trace, the performance max-
ima and minima in all metrics except hit rate of
Cloud also improved. This can be inferred that al-
though the absolute cache sizes used against both
one-month traces were as small as those of 15-day
traces, Cloud’s performance maxima and minima
could improve in terms of byte-hit, cost-saving and
delay-saving ratios.

• By contrasting the overall performance results,
Cloud seemed fitter for BO community than NY
one except for the delay saving performances.
It is worth to conduct the further analysis of how

much benefit of Cloud can be gained from window-

Fig.5: Performance results using 15-day NY trace.

size tuning. In other words, how maximum the per-
formance of Cloud is improved when window size
was switched from the worst values to the optimal
ones. This can be examined by measuring the widest
gaps between the maxima and minima performances
among both one-month traces and all simulated cache
sizes: the widest gaps between performance maxima
and minima can only be found in Fig. 3 and were
as much as 0.47% byte-hit ratio and cost-saving ra-
tio, 0.37% delay-saving ratio, and 0.56% hit rate. The
significances of these maximum performance improve-
ments could be translated to more meaningful infor-
mation as follows.

• The 0.47% gap of byte-hit ratio can be translated
roughly to 21.48 TB of saved data transfer per an-
num based on a representative scenario where cloud
data is transferred through 10 Gbps Metro Eth-
ernet with 50% bandwidth utilization for 8 work
hours a day, and 260 workdays per year.

• The 0.47% improvement of cost-saving ratio can be
translated to about 2,639.52 USD saved per annum
based on the representative scenario and Google
App Engine’s data-out charge rate (which is 0.12
USD/GB as of June 2013 [2]).

• The 0.37% improvement of delay-saving ratio can
be interpreted as approximately 7.7 hours per year
of saved data-transfer time based on the represen-



A Client-Side Cloud Cache Replacement Policy 159

tative scenario.

Nevertheless, actual performance improvements
might be greater or less depending on the inher-
ent characteristics of user-generated workloads (e.g.,
contemporaneous proximity, object sizes, TTLs and
loading latencies), data-out charge rates and data
transfer volumes in real environments where Cloud
policy is deployed.

5. CONCLUSION

This paper presents Cloud cache replacement pol-
icy that aims to improve cloud scalability, economy
and responsiveness. Cloud has access recency as a
priority factor for object replacement decision. Cloud
parameterizes a window size to generalize the recen-
cies of objects within a formulated object cluster. The
lowest profitable clustered objects are purged from
cloud cache.

Using proper window sizes, Cloud’s performances
boosted over LRU, GDSF and LFUDA whereas poor
window sizes degraded Cloud’s performances. A
breakthrough finding is that Cloud could attain both
high byte-hit and hit rates at the same time based on
our test cases. Another significant benefit of Cloud
against the other well-known strategies is its sta-
ble optimal performances in byte-hit, cost-saving and
delay-saving ratio metrics based on most simulated
cache sizes.

Finally, we are developing the automated discovery
mechanism of optimal window sizes for Cloud policy.

6. ACKNOWLEDGEMENT

This research is financially supported by Thai-
land’s Office of the Higher Education Commission,
Thailand Research Fund, and Sripatum university
(grant MRG5580114). The authors also thank Duane
Wessels, National Science Foundation (grants NCR-
9616602 and NCR-9521745) and the National Lab-
oratory for Applied Network Research for the trace
data.

References

[1] Amazon.com Inc. (2013). Amazon Sim-
ple Storage Service [Online]. Available:
http://aws.amazon.com/s3/#pricing

[2] Google Inc. (2013). Google App En-
gine Pricing [Online]. Available:
https://cloud.google.com/pricing/index

[3] Microsoft. (2013). Windows Azure [Online].
Available: http://www.windowsazure.com/en-
us/pricing/details/

[4] Amazon.com Inc. (2013). Ama-
zon CloudFront [Online]. Available:
http://aws.amazon.com/cloudfront/

[5] T. Banditwattanawong, “From Web Cache to
Cloud Cache,” Proceedings of 7th International

Conference in Grid and Pervasive Computing,
Hong Kong, pp. 1-15, 2012.

[6] T. Banditwattanawong and P. Uthayopas,
“Cloud Cache Replacement Policy: New Perfor-
mances and Findings,” Proceedings of 1st An-
nual PSU Phuket International Conference 2012,
2013.

[7] T. Banditwattanawong and P. Uthayopas, “Im-
proving Cloud Scalability, Economy and Respon-
siveness with Client-Side Cloud Cache,” Pro-
ceedings of 10th IEEE International Conference
ECTI-CON 2013, 2013.

[8] S. Podlipnig, and L. B?sz?rmenyi, “A Survey
of Web Cache Replacement Strategies,” ACM
Computing Surveys, Vol. 35, pp. 374-398, 2003.

[9] D. Wessels, Squid: The Definitive Guide.
O’Reilly Media Inc, 2004.

[10] N. Megiddo and D. S. Modha, “Outperforming
LRU with an Adaptive Replacement Cache Al-
gorithm,” Computer, Vol. 37, pp. 58-65, 2004.

[11] J. Jeong and M. Dubois, “Cache Replaccement
Algorithms with Nonuniform Miss Costs,” IEEE
Transactions on Computers, Vol. 55, pp. 58-65,
2004.

[12] H. Chen, Y. Xiao, and X. S. Shen, “Update-
Based Cache Access and Replacement in Wire-
less Data Access,” IEEE Transactions on Mobile
Computing, Vol. 5, pp. 1734-1748, 2006.

[13] K. Geetha, N. A. Gounden, and S. Monikandan,
“Semalru: An Implementation of Modified Web
Cache Replacement Algorithm.” Proceedings of
NaBIC. IEEE, pp. 1406-1410, 2009.

[14] S.-W. Shin, K.-Y. Kim, and J.-S. Jang, “LRU
Based Small Latency First Replacement (SLFR)
Algorithm for the Proxy Cache,” Proceedings of
the 2003 IEEE/WIC International Conference
on Web Intelligence, 2003.

[15] J. Shim, P. Scheuermann, and R. Vingralek,
“Proxy Cache Algorithms: Design, Implementa-
tion, and Performance,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 11, pp.
549-562, 1999.

[16] A. R. Sarma and R. Govindarajan, “An Efficient
Web Cache Replacement Policy,” Proceedings of
HiPC, 2003.

[17] N. Chand, R. Joshi, and M. Misra, “Data
Profit Based Cache Replacement in Mobile En-
vironment,” Proceedings of Wireless and Optical
Communications Networks, 2006.

[18] J. Xu, Q. Hu, W.C. Lee, and D. L. Lee, “Perfor-
mance Evaluation of An Optimal Cache Replace-
ment Policy for Wireless Data Dissemination,”
IEEE Transactions on Knowledge and Data En-
gineering, Vol. 16, pp. 125-139, 2004.

[19] L. Yin, G. Cao, and Y. Cai, “A Gener-
alized Target-Driven Cache Replacement Pol-
icy for Mobile Environments,” Proceedings of



160 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.8, NO.2 November 2014

IEEE/IPSJ International Symposium on Appli-
cations and the Internet, 2003.

[20] K. Kim and D. Park, “Least Popularity-
Per-Byte Replacement Algorithm for A Proxy
Cache,” Proceedings of Parallel and Distributed
Systems, 2001.

[21] K. Li, T. Nanya, and W. Qu, “A minimal access
cost-based multimedia object replacement algo-
rithm,” Proceedings of Parallel and Distributed
Processing Symposium, 2007.

[22] P. Triantafillou and I. Aekaterinidis, “Web Proxy
Cache Replacement: Do’s, Don’ts, and Expecta-
tions,” Proceedings of International Symposium
on Network Computing and Applications, 2003.

[23] Y. Chen, Z.-Z. Li, and Z.-W. Wang, “A GA-
based Cache Replacement Policy,” Proceedings
of Machine Learning and Cybernetics, 2004.

[24] K. Li; H. Shen, “An Improved GreedyD-
ual Cache Document Replacement Algo-
rithm,” Proceedings of Web Intelligence 2004
IEEE/WIC/ACM International Conference,
2004.

[25] H. Wang; J. Peng; Y. Wu; H. Feng, “SzLFU(k)
Web cache replacement algorithm,” Proceedings
of IEEE Region 10th Conference on Computers,
Communications, Control and Power Engineer-
ing, 2002.

[26] H. ElAarag and S. Romano, “Improvement of
The Neural Network Proxy Cache Replacement
Strategy,” Proceedings of the Spring Simulation
Multiconference, 2009.

[27] J.-C. Bolot and P. Hoschka, “Performance En-
gineering of The World Wide Web: Application
to Dimensioning and Cache Design,” Computer
Networks and ISDN Systems, Vol. 28, pp. 1397-
1405, 1996.

[28] A. Balamash and M. Krunz, “An Overview of
Web Caching Replacement Algorithms,” IEEE
Communications Surveys and Tutorials, Vol. 6,
No. 2, pp.44–56, 2004.

[29] T. Banditwattanawong, S. Hidaka, H.
Washizaki, and K. Maruyama, “Optimiza-
tion of Program Loading by Object Class
Clustering,” IEEJ Transactions on Electrical
and Electronic Engineering, Vol. 1, No. 4, pp.
397–407, 2006.

[30] National Laboratory for Applied Network Re-
search. (2012). Weekly Squid HTTP Access Logs
[Online]. Available: http://www.ircache.net/

[31] R. Fielding, J. Gettys, J. Mogul, H.
Frystyk, L. Masinter, P. Leach, and T.
Berners-Lee. (1999).Hypertext Transfer
Protocol - HTTP/1.1 [Online]. Available:
http://www.ietf.org/rfc/rfc2616.txt

Thepparit Banditwattanawong re-
ceived B.E. from King Mongkut’s Insti-
tute of Technology Ladkrabang, Thai-
land and M.E. from Asian Institute
of Technology, Thailand. He obtained
Ph.D. in Informatics from The Graduate
University for Advanced Studies, Japan.
He was a founder and leader of a na-
tional project Thailands IPv6 testbed
at National Electronics and Computer
Technology Center. He is currently an

assistant professor and an assistant director of Ph.D.IT. pro-
gram at Sripatum university. His main areas of research inter-
ests include cloud computing and distributed computing.

Putchong Uthayopas received his
bachelor and master degree in electri-
cal engineering from Chulalongkorn Uni-
versity in 1984 and 1988. He received
master and PhD in computer engineer-
ing from University of Louisiana in 1994
and 1996 accordingly. His research in-
terest is in cluster computing, grid and
cloud computing system and tools. He
published more than 130 refereed pub-
lication in conferences and Journals.

Putchong Uthayopas is a co-founder of the Thai National Grid
project. In 2012, he received a distinguish computer engineer
award in system integration from the Engineering Institute of
Thailand.


