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Objective. To develop and validate a risk assessment model for the prediction of the acute exacerbation of idiopathic pulmonary
fibrosis (AE-IPF) in patients with idiopathic pulmonary fibrosis (IPF). Methods. We enrolled a total of 110 patients with IPF,
hospitalized or treated as outpatients at Xuzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of
Chinese Medicine from July 2012 to July 2020. Of these, 78 and 32 patients were randomly assigned to training and test groups,
respectively. The risk factors for AE-IPF were analyzed using logistic regression analysis, and a nomographic model was
constructed. The accuracy, degree of calibration, and clinical usefulness of the model were assessed with the consistency index
(C-index), calibration diagram, and decision curve analysis (DCA). Finally, the stability of the model was tested using internal
validation. Results. The results of logistic regression analysis showed that a history of occupational exposure, diabetes mellitus
(DM), essential hypertension (EH), and diffusion capacity for carbon monoxide (DLCO)% predicted were independent risk
factors for AE-IPF prediction. The nomographic model was constructed based on these independent risk factors, and the C-
index was 0.80. The C-index for the internal validation was 0.75, suggesting that the model had good accuracy. The decision
curve indicated that for a threshold value of 0.04–0.66, greater clinical benefit was obtained with the AE-IPF risk prediction
model. Conclusion. A customized AE-IPF prediction model based on a history of occupational exposure, DM, EH, and DLCO%
predicted provided a reference for the clinical prediction of AE-IPF.

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive
interstitial lung disease characterized by severe pulmonary
tissue fibrosis without a known pathogenesis; the mean sur-
vival time after diagnosis is 2–3 years[1]. The occurrence
and development of IPF is related to epithelial cell injury,
the proliferation of fibroblasts, inflammatory response, and
extracellular matrix deposition [2, 3]. The pathologic feature
of IPF is usual interstitial pneumonia (UIP). Unexpected
respiratory failure, known clinically as the acute exacerbation
of IPF (AE-IPF), usually occurs in a proportion of patients
with IPF [4–6].

AE-IPF was first reported in 1984. Yoshimura et al.
briefly reported the symptoms and mortality rate of AE-IPF
and identified the efficacy of a large dosage of glucocorticoids
[7]. It was not until 2002 that the terminology of AE-IPF was
officially acknowledged in the clinical consensus of intersti-
tial lung diseases.

Although multiple retrospective studies have reported on
the incidence and mortality rate of AE-IPF, a consensus has
not been reached. This can be attributed to the different study
designs, inconsistent standards for disease diagnosis, few
cases, and loss of patients to follow-up [8]. In a retrospective
study of 461 IPF cases, AE-IPF was identified as the major
cause for the deterioration of IPF, accounting for 55.2% of
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the cases. In another study, the incidence of AE-IPF was
14.2% and 20.7% at 1 and 3 years after IPF, respectively [9].
The median overall survival of AE-IPF patients was only
2.2 months; of these patients, 50% died during hospitaliza-
tion and 40% died in the ICU (mortality rate > 90%) [9].

Currently, there are no effective therapies for the treat-
ment of AE-IPF. Internationally acknowledged suggestions
include supportive nursing and glucocorticoid treatment
which aim to alleviate symptoms and rectify hyperemia;
however, the effects of these strategies are limited [10].
Therefore, it is pertinent to construct a risk assessment model
to evaluate the risk factors for AE-IPF in patients with IPF. A
wealth of literature has documented that inheritable factors,
air pollution, seasonal factors, partial deterioration in lung
function (assessed via forced vital capacity (FVC), diffusion
capacity for carbon monoxide (DLCO), 6min walking test,
and St. George’s respiratory questionnaire), pulmonary arte-
rial hypertension, and coronary artery disease may all
increase the risk for AE-IPF [11]. However, a model for the
prediction of AE-IPF is lacking. Consequently, in this study,
multivariate logistic regression analysis was used to identify
high-risk factors for AE-IPF, in order to analyze the degree
of risk, construct a simple prediction model, and provide an
effective tool for the prediction of AE-IPF.

2. Patients and Methods

2.1. Patients. Patients with IPF who were hospitalized in or
visited Xuzhou Traditional Chinese Medicine Hospital Affil-
iated to Nanjing University of Chinese Medicine from July
2012 to July 2020 were enrolled in the present study. In total,
110 patients were included; 78 patients were selected for the
construction of the risk analysis model, and the remaining
32 patients were used to test the model. For patients with
multiple hospitalizations or visits, the data from the first
hospitalization or visit were adopted. The patients pro-
vided written informed consent for inclusion in this study,
and the study was approved by the Ethics Commission of
Xuzhou Hospital of Traditional Chinese Medicine (ID:
XZTCM2018LSY-013).

2.2. Diagnostic Criteria. Patients with IPF were confirmed
based on clinical features, imaging data, and medical history
according to the diagnostic criteria for IPF (2011) which
included the following: (1) interstitial pneumonia with
known etiology (family or occupational exposure, desmosis,
and drug dependency) and (2) HRCT-indicated UIP or sus-
pected UIP symptoms [12]. The diagnostic criteria for AE-
IPF were as follows: (1) past or present IPF, (2) development
or occurrence of deteriorative acute dyspnea within 1 month,
(3) newly formed bilateral frosted glass shadow or consolida-
tion shadow at the original reticular shadow or beehive-like
shadow UIP via thoracic HRCT, and (4) deterioration of dys-
pnea that could not be explained by heart failure or liquid
overload [13].

2.3. Data Collection. Clinical data were obtained from the
medical history of the patients during hospitalization and
the follow-up visits. The data included the following: (1)
patient characteristics, such as age, sex, occupational history,

and history of smoking; (2) complications, such as diabetes
mellitus (DM), essential hypertension (EH), coronary heart
disease (CHD), cerebral infarction (CI), hypothyroidism,
gastroesophageal reflux disease (GERD), and obstructive
sleep apnea-hypopnea syndrome (OSAHS); (3) lung function
test indices, such as Forced Vital Capacity (FVC)% predicted
and diffusing capacity for carbon monoxide (DLCO)% pre-
dicted; and (4) medical treatment, including N-acetylcysteine
(NAC), pirfenidone (PFD), glucocorticoid (GC), and acid-
inhibitory drugs.

2.4. Statistical Analysis. All clinical data are shown as count
(%) and were analyzed with R version 3.6.3 (R Foundation
for Statistical Computing, Vienna, Austria). The Caret pack-
age in R was used to randomly assign the 110 patients to the
training and test groups in a ratio of 7 : 3 (78 cases and 32
cases, respectively). Information on the training group was
subjected to multivariate logistic regression with the odds
ratio, 95% confidence interval, andpvalue as characteristics;
a p value of <0.05 was considered statistically significant. Fac-
tors describing statistical significance were used to construct
the nomogram using the “rms” program to create a predic-
tion model. To test the accuracy of the prediction model,
we used the “rms” program to calculate the consistency index
(C-index). The degree of calibration was evaluated by con-
structing a calibration curve; the closer the calibration curve
of the prediction model to the standard curve, the better
the consistency of the prediction model. The area under
curve (AUC) value of the model was calculated to predict
the degree of discrimination of the prediction model, with a
higher AUC value representing a higher degree of discrimi-
nation. By quantifying the net benefits of the probability of
different threshold values in the array, decision curve analysis
(DCA) was used to determine the clinical usefulness of the
nomogram. Finally, an internal validation method was used
to test the stability of the prediction model; the “rms” pro-
gram package was used to calculate the C-index and AUC
value for the 32 patients with IPF in the test group.

3. Results

3.1. Patient Characteristics. In total, 110 patients with IPF,
treated as inpatients or outpatients between July 2012 and
July 2020, were enrolled in the present study. In the training
group (78 cases), there were 16 patients with AE-IPF
(20.51%), while in the test group (32 cases), there were four
patients with AE-IPF (12.50%). All the patients’ clinical data,
including demographic and clinical characteristics, compli-
cations, lung function, and medication, are presented in
Table 1.

3.2. Analysis of Risk Factors for AE-IPF. The clinical data of
the training group were entered into the multivariate logistic
regression model to obtain the coefficients of the correspond-
ing characteristic variables. Among the variables, a history of
occupational exposure (p < 0:01), DM (p < 0:01), EH
(p < 0:01), and DLCO%-predicted lung function (p < 0:05)
were identified as the risk factors for AE-IPF (Table 2).
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3.3. Nomography of AE-IPF Risk. Based on the results of the
logistic regression, we determined the predictive factors for
AE-IPF. To facilitate the estimation of the risk for AE-IPF,
we screened the four characteristic variables and then con-
structed a nomographic risk prediction model. Each vari-
able was scored on a scale, and the range of the total
score was 0–220. The total score on the AE-IPF risk axis
represents the probability of AE-IPF. The higher the score,
the higher the risk that a patient with IPF will develop
AE-IPF (Figure 1).

3.4. Assessment of the Degree of Calibration for the Risk
Prediction Model of AE-IPF. We constructed calibration
curves to facilitate the assessment of the degree of calibration
of the risk prediction model of AE-IPF. As shown in Figure 2,
the x-axis represents the predicted risk for AE-IPF, and the y
-axis represents the realization of AE-IPF. The bidiagonal
dotted line represents the prediction of an ideal model, and
the solid line represents the realized prediction capacity.
The closer the dotted line is to the bidiagonal line, the greater
the prediction capacity. The results of the present study
showed a preferable consistency between the nomographic
model and the ideal model.

3.5. Assessment of the Accuracy of AE-IPF Risk Prediction. To
test the accuracy of the model, we first calculated the C-index.
An ROC curve indicates that the predictions are close to
random guesses. Meanwhile, when an ROC curve is plot-
ted, we can use AUC to measure the performance of the
predictor. We then calculated the AUC value of the model
and constructed an ROC curve [12]. Based on the calcula-
tion, the C-index was 0.80, suggesting good accuracy of
the model. As shown in Figure 3, the AUC of the ROC
curve was 0.77, suggesting good accuracy of the AE-IPF
risk prediction model.

3.6. Internal Validation of the Model for AE-IPF Risk
Prediction. To further evaluate the stability of the AE-IPF risk
prediction model, we calculated the C-index and AUC values
of the 32 patients with IPF in the test group using the internal
validation group. The C-index value was 0.75, and after con-
structing the ROC curve to calculate the AUC value for fur-
ther validation, the AUC value was 0.70 (Figure 4).
Therefore, both the C-index and AUC confirmed the good
stability of the AE-IPF risk prediction model.

3.7. Clinical Net Benefit. DCA was used to evaluate whether
the prediction model could improve clinical decision-
making. The decision curve of the prediction model is shown
in Figure 5. The y-axis indicates the net benefit, and the x
-axis represents the probability of the threshold value. The
black solid line represents no intervention, at which the net
benefit is zero. The black dotted line represents the interven-
tion, and the net benefit is an oblique line with a negative
slope. The blue solid line represents the realized profits of
the AE-IPF risk prediction model. The decision curve

Table 1: Patient characteristics of the training and test groups.

Characteristic
Training group

(n = 78)
Verification group

(n = 32)
AE-IPF 16 (20.51) 4 (12.50)

Demographic and clinical characteristics

Gender

Male 48 (61.54) 18 (56.25)

Female 30 (38.46) 14 (43.75)

Age

≤60 9 (11.54) 4 (12.50)

61-65 11 (14.10) 2 (6.250)

>65 58 (74.36) 26 (81.25)

Occupational 8 (10.26) 3 (9.38)

Smoking 16 (20.51) 4 (12.50)

Comorbidities

DM 17 (21.79) 3 (9.38)

EH 7 (8.97) 6 (18.75)

CHD 10 (12.82) 4 (12.50)

CI 11 (14.10) 5 (15.63)

GERD 11 (14.10) 6 (18.75)

Hypothyroidism 4 (5.13) 1 (3.13)

OSAHS 3 (3.85) 0

Lung function

FVC% predicted

>75 16 (20.51) 4 (12.50)

50-75 47 (60.26) 24 (75.00)

<50 15 (19.23) 4 (12.50)

DLco% predicted

>55 19 (24.36) 6 (18.75)

35-55 41 (52.56) 20 (62.50)

<35 18 (23.08) 6 (18.75)

Drug therapy

Acetylcysteine 16 (20.51) 3 (9.38)

Pirfenidone 5 (6.41) 0

Glucocorticoid 12 (15.38) 4 (12.50)

Acid-inhibitory drugs 5 (6.41) 2 (6.25)

Abbreviations: AE-IPF: acute exacerbation of idiopathic pulmonary fibrosis;
DM: diabetes mellitus; EH: essential hypertension; CHD: coronary heart
disease; CI: cerebral infarction; GERD: gastroesophageal reflux disease;
OSAHS: obstructive sleep apnea-hypopnea syndrome; FVC: forced vital
capacity; DLCO: diffusion capacity for carbon monoxide; NAC: N-
acetylcysteine; PFD: pirfenidone; GC: glucocorticoid.

Table 2: Final regression model for the primary outcome.

Intercept β Odds ratio (95% CI) p value
Intercept -5.94 0.00 (0.00-0.23) 0.03

Occupational 5.59 267.90 (6.47-40395.40) 0.01

DM 3.76 42.76 (3.84-1227.58) 0.01

EH -4.50 0.01 (0.00-0.27) 0.02

DLCO% predicted

36-55 3.50 32.97 (1.84-2038.88) 0.04

<35 3.97 52.73 (2.22-3825.05) 0.03

Abbreviations: DM: diabetes mellitus; EH: essential hypertension; DLCO:
diffusion capacity for carbon monoxide.
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showed that the greatest clinical benefit will be obtained
from the AE-IPF risk prediction model at threshold values
of 0.04–0.66.

4. Discussion

At present, the cause of AE-IPF is unknown. Recurrent local
outbreaks of alveolar damage may lead to the progression of
IPF [14]. For some patients, recurrent outbreaks of alveolar
damage will inflict damage and worsen their condition, even-

tually leading to acute exacerbation [15]. In addition, it has
been suggested that infectious factors and some direct lung
injury can also induce the pathophysiological processes of
AE-IPF [16]. AE-IPF can occur at any stage during the pro-
cess of IPF, and AE-IPF may even occur during the relatively
stable stage of IPF [17]. Therefore, it is important to predict
the occurrence of AE-IPF. However, a reliable model for
the prediction of AE-IPF is lacking. In the present study, a
model was created to predict the risk of AE-IPF and to pro-
vide a reference for the clinical prediction of AE-IPF.

Based on the prediction model, occupational exposure is
a major risk factor for AE-IPF. Therefore, workers engaged in
ore mining, construction work, inorganic dust production,
and chemical processing and manufacturing, and those
exposed to organic dust production, are at high risk. Owing
to a lack of research, the association between occupational
exposure and a strong predisposition toward AE-IPF is
unknown. It is likely that when productive chemicals with
systemic toxicity enter the respiratory tract in the form of
aerosols or gas, they readily enter the blood flow through
the vascular bed in the lung, leading to respiratory system
damage, systemic poisoning, and AE-IPF.

In addition to IPF itself, some patients with IPF also have
other complications, which may also induce AE-IPF [18].
According to the prediction model, DM and EH are high-
risk factors for AE-IPF. It is suggested that DM is an inde-
pendent factor for the occurrence of IPF [19]. Patients with
DM usually experience aberrant lung function, mainly char-
acterized by impairments in lung ventilation, malfunctions in
lung diffusion, and abnormalities of bronchomuscular ten-
sion and respiratory muscle function [20]. It has also been
reported that the malfunction of pulmonary ventilation in
DM patients can become compounded over the course of
the disease [21]. However, it is unclear why DM leads to
IPF exacerbation. It is possible that the final metabolites of
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Figure 1: Nomogram to predict the incidence of AE-IPF. The nomogram was constructed with occupational exposure, DM, EH, and
DLCO% predicted. Abbreviations: DM: diabetes mellitus; EH: essential hypertension; DLCO: diffusion capacity for carbon monoxide.
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Figure 2: Calibration curve for the risk prediction model of AE-IPF.
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DM cause airway endothelial cell injury and abnormalities in
the airway defense mechanism, which eventually leads to the
progression of IPF. Regarding EH, the association between
EH and AE-IPF has received less attention. However, accord-
ing to the prediction model, EH is another risk factor for the
occurrence of AE-IPF. This should be proven by a large-sized
clinical trial in the future. Therefore, the treatment of IPF
requires a systematic approach, including time discrimina-
tion and the treatment of DM, EH, and other complications,
in order to optimize treatment efficiency.

Lung function measurement is an important method for
IPF diagnosis and for assessing the state of illness [22].
According to the consensus for treatment and diagnosis of
IPF issued by ATS/ERS in 2011, a ≥10% reduction in FVC

compared with the absolute value at baseline and a ≥15%
reduction in DLCO% predicted suggest a good prognosis
for IPF [23]. This highlights the significance of FVC and
DLCO% predicted in diagnosing IPF and assessing the state
of illness in IPF. Based on the prediction model, FVC is not
a notable risk factor for AE-IPF following logistic regression
analysis, whereas DLCO% predicted was an important pre-
dictor of AE-IPF. It is suggested in the 2011 guidelines that
the lung function of patients with IPF should be examined
every 3–6 months. Pulse oximetry saturation during rest
and walking in patients with IPF should also be measured
to determine the necessity of oxygen treatment.

To evaluate the accuracy of the prediction model, we first
calculated the C-index and AUC values. The C-index was
0.80, and the AUC value was 0.77, suggesting that the AE-
IPF risk prediction model has an acceptable accuracy. To fur-
ther examine the stability of the prediction model, we used an
internal validation method, by evaluating the clinical data of
the 32 patients with IPF in the test group, and then calculated
the C-index and AUC values. The C-index and AUC values
were 0.75 and 0.70, respectively. The results of the internal
validation thus suggest acceptable stability of the AE-IPF risk
prediction model.

5. Conclusion

A history of occupational exposure, DM, EH, and DLCO%
predicted were risk factors for AE-IPF as determined by the
logistic regression analysis, and the AE-IPF risk prediction
model was successfully constructed by creating a nomogram.
The nomogram could clearly and intuitively predict the
probability of IPF patients’ progress to AE-IPF, thus
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Figure 3: ROC curve corresponding to the risk prediction model of
AE-IPF. The AUC was 0.77.
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supplying a reference for clinical progression. However, the
current study was a single-center retrospective study with a
limited sample size. Therefore, the results of this study
should be confirmed in a prospective multicenter, large-
scale study. In addition, hierarchical studies of patients of
different ages or with different illness severities should also
be performed.
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