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Abstract: In type 2 diabetes, ecological and lifecourse factors may interact with the host microbiota to
influence expression of his/her genomes causing perturbation of interconnecting biological pathways
with diverse clinical course. Metformin is a plant-based or plant-derived medicinal product used for
the treatment of type 2 diabetes for over 60 years and is an essential drug listed by the World Health Or-
ganization. By reducing mitochondrial oxidative phosphorylation and adenosine triphosphate (ATP)
production, metformin increased AMP (adenosine monophosphate)-activated protein kinase (AMPK)
activity and altered cellular redox state with reduced glucagon activity, endogenous glucose produc-
tion, lipogenesis, and protein synthesis. Metformin modulated immune response by directly reducing
neutrophil to lymphocyte ratio and improving the phagocytic function of immune cells. By increas-
ing the relative abundance of mucin-producing and short-chain-fatty-acid-producing gut microbes,
metformin further improved the host inflammatory and metabolic milieu. Experimentally, metformin
promoted apoptosis and reduced proliferation of cancer cells by reducing their oxygen consumption
and modulating the microenvironment. Both clinical and mechanistic studies support the pluripotent
effects of metformin on reducing cardiovascular–renal events, infection, cancer, cognitive dysfunction,
and all-cause death in type 2 diabetes, making this low-cost medication a fundamental therapy for
individualization of other glucose-lowering drugs in type 2 diabetes. Further research into the effects
of metformin on cognitive function, infection and cancer, especially in people without diabetes,
will provide new insights into the therapeutic value of metformin in our pursuit of prevention and
treatment of ageing-related as well as acute and chronic diseases beyond diabetes.

Keywords: metformin; diabetes; mechanisms; anticancer action; infections; cognition; cardioprotection

1. Introdaction

In 2021, an estimated 537 million people or 10.5% of the world’s population were
affected by diabetes, the majority having type 2 diabetes (T2D) with major healthcare and
socioeconomic implications [1]. Pharmacological treatment plays an important role in the
prevention and treatment of T2D. Understanding the physiology of glucose homeostasis
as elegantly defined by Gerich JE is critical to understanding the mechanisms of these
glucose-lowering drugs (GLDs) [2]. Glucose and free fatty acids are the main energy
substrates essential for survival with excess energy stored as glycogen in the liver and
muscle, and triglycerides in adipose tissues. Under metabolic stress with low oxygen and
glucose supply, lactate and ketones are alternative fuels. Chronic exposure to high glucose
can lead to glucotoxicity causing dysregulation of metabolic, vascular, inflammatory, and
cell signaling pathways resulting in widespread organ damage [3].
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For survival purpose, the human body possesses a set of mechanisms to maintain
blood glucose within a narrow range of 4–8 mmol/L, irrespective of energy intake or
expenditure. Type 2 diabetes is characterized by chronic hyperglycemia due to non-
suppression of glucagon and reduced post-prandial insulin secretion, often worsened
by obesity-associated insulin resistance. During fasting, glycogen and triglyceride are
broken down to release glucose and free fatty acids, which are interchangeable through
the Randle cycle as energy source. Glucose can also be generated through gluconeogenesis
where protein can be broken down by counter-regulatory hormones, such as cortisol,
growth hormone, and catecholamines into amino acids which are then converted to glucose
to maintain energy balance. In a prandial state, insulin is released to promote glycogen and
fat storage while excess glucose is excreted through the kidney, albeit with reabsorption.
To date, all GLDs utilize some of these mechanisms to regulate blood glucose levels by
reducing energy intake, suppressing endogenous glucose production, reducing glucose
reabsorption from gut or kidney, and/or redistributing energy storage [4].

2. Metformin Pharmacology and Mechanisms of Action
2.1. Metformin Pharmacology

Metformin is currently recommended as the first-line GLD in patients with T2D [5].
This plant-derived medicinal product has been used in the treatment of T2D for over
60 years [6]. Galegine or guanidine is a chemical extracted from the herbal plant,
Galega officinalis [7]. Metformin is a synthetic guanidine with two coupled molecules
(biguanide) and additional chemical substitutions. Metformin is transported into the cell
via organic transporter-3 (OCT-3) and OCT-1. It is mainly absorbed from the upper small
intestine with an absolute bioavailability of 50–60%. The half-life of plasma level of met-
formin ranges from 0.9–2.6 h although the latter may vary with different formulations with
reports of prolonged half-life due to accumulation in other tissues such as red blood cells [8].
Metformin is excreted unchanged in the urine. Using C11 positron emission tomography,
orally administered metformin is mainly concentrated in the liver, kidneys, and bladder
with the highest concentrations detected in the liver [9] and jejunal sites [10].

Apart from its low oral bioavailability and short half-life, gastro-intestinal side effects
are not uncommon with metformin therapy. Drug delivery systems have been designed
to overcome these limitations associated with conventional dosage forms of metformin.
Development of novel formulation (e.g., microparticles, and nanoparticles) may improve
its bioavailability, reduce the dosing frequency and decrease gastrointestinal side effects
with improved effectiveness in the treatment of diabetes and, possibly, cancer [11].

In the last decade or so, there have been a large number of publications on the clinical
effects and molecular mechanisms of metformin, with the latter being elegantly summarized
in the latest review by LaMoia et al. [12]. In the present article, we aim to interpret these
molecular studies in the lens of practicing physicians and highlight the knowledge gap
in translating this evidence to clinical practice especially in areas of unmet needs, such as
cancer, infection, and cognitive dysfunction in people with or without diabetes.

2.2. Inhibition of Mitochondrial Metabolism and Endogenous Glucose Production

The primary action of metformin is mediated through its effects on mitochondrial
metabolism. Metformin with positive charges tends to accumulate within the mitochon-
dria due to the action potentials across its inner membranes. Within the mitochondria,
metformin inhibits Complex I of the electron transport chain leading to reduced oxidative
phosphorylation with decreased amount of adenosine triphosphate (ATP) as an energy unit.
The increased adenosine monophosphate (AMP) to ATP ratio activates the AMP-activated
protein kinase (AMPK) with reduced energy storage. The cellular increase in AMP inhibits
adenylate cyclase activity with reduced glucagon signaling needed for glycogenolysis to
release glucose [13]. Metformin also reduced mitochondrial glycerophosphate dehydroge-
nase (mGPD). This leads to an altered cellular redox state with reduced endogenous glucose
production including reduced conversion of lactate and glycerol to glucose and hepatic
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gluconeogenesis [14] (Figure 1). At the same time, AMPK activation increases the activity of
insulin receptors and translocation of glucose transporters (GLUT) including ubiquitously
expressed GLUT-1 and GLUT-4 expressed in muscle to promote glucose uptake in the
peripheral tissues [15].
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Figure 1. Mechanisms of metformin. The multifaceted nature of the mechanisms of metformin
targeting different organs, including liver, muscle, and gastrointestinal tract, including the microbiota,
results in glucose-lowering, anti-inflammatory, and anti-cancer effects through AMPK and non-AMPK
dependent pathways (adapted from references [16–19]).

Due to its inhibition of mitochondrial respiratory chain complex 1 which favours
anaerobic respiration, metformin may increase accumulation of lactic acid with increased
risk of lactic acidosis. However, metformin-associated lactic acidosis usually occurs within
a setting of increased production due to hypoxia with acute cardiopulmonary events or
sepsis and renal dysfunction with reduced clearance. In a non-stress situation, the pro-
duction of lactate by metformin may improve the efficiency of energy metabolism. After
donating its proton, lactic acid becomes lactate which is a more efficient cell-to-cell shuttle
for delivery of oxidative and gluconeogenic substrates. Through direct uptake and oxida-
tion of lactate produced elsewhere, metabolically active organs (such as cardiomyocytes,
liver, and renal cells) can utilize lactate for immediate use without relying on glycolysis
and endogenous glucose production [20].

Among metformin users, the incidence of lactic acidosis had been estimated to range
from 2 to 9 cases per 100,000 person-years [21] with most of these events occurring
within a setting of multi-organ dysfunction. A large body of real-world evidence sup-
ported the safety and efficacy of metformin with increasing prescription during the past
two decades [22–24]. Apart from its benefits in glucose metabolism, there is a growing
body of evidence from clinical trials and observational studies indicating that metformin
might prevent or alleviate complications and co-morbidities of T2D such as cardiovascular
diseases (CVD), chronic kidney disease (CKD), obesity, cancer, and infections including
pneumonia, tuberculosis, and, more recently, coronavirus disease (COVID-19) [25], medi-
ated by both AMPK-dependent and AMPK-independent mechanisms [26].
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2.3. Metformin and Hepatic Gluconeogenesis

There are different mechanisms through which metformin can regulate hepatic glu-
coneogenesis. In terms of transcription alteration, metformin-activated AMPK directly
downregulates expression of gluconeogenic genes. The accumulation of AMP inhibits
adenylate clyclase and reduces cyclic AMP (cAMP) level which prevents transcription of
gluconeogenic genes mediated by the cAMP-response element-binding protein (CREB). [12].
Besides, metformin inhibits mitochondrial glycerol-3-phosphate dehydrogenase-2 (GPD2)
which converts glycerol to dihydroxyacetone phosphate [12]. By inhibiting GPD2, met-
formin increases glycerol and glycerol 3-phosphate levels with reduced gluconeogenesis.
GPD2 inhibition is a redox-dependent enzyme and is part of the α-glycerophosphate shut-
tle. The latter maintains the NADH/NAD+ (nicotinamide adenine dinucleotide) ratio.
By inhibiting GPD2, metformin alters the NADH/NAD+ ratio and cytosol redox state and
inhibits gluconeogenesis from lactate and glycerol [12].

2.4. Modulation of Gut Microbiota and Inflammation

Metformin efficacy and tolerance are closely linked with the gastrointestinal phys-
iology with accumulating evidence supporting the role of gut microbiota in glucose
metabolism [27]. There are approximately 100 trillion micro-organisms, including bac-
teria, viruses, fungi, and protozoa, in the gastrointestinal tract of a typical person. While the
human genome consists of about 23,000 genes, the collective genomes of this microbiota en-
code over three million genes producing thousands of metabolites which can influence the
health and phenotypes of the host. Both animal and clinical studies indicated that different
abundance of microbiota was associated with changes in inflammatory microenvironment
and production of bile acids and short-chain fatty acids (SCFA) which could contribute to
onset and progression in T2D [28].

In clinical trials, metformin-treated patients showed increased abundance of bene-
ficial bacteria such as Akkermansia muciniphila which was negatively associated with the
risk of T2D. In a 4-month, double-blind, placebo-controlled study involving treatment-
naive patients with T2D [28], metformin treatment increased Akkermansia muciniphila,
Bifidobacterium adolescentis and Lactobacilius fermentium, and decreased Intesinibacter bartlettii
and Clostridium spp. Amongst these species, changes in Bifidobacterium adolescentis were
directly related to the dosage of metformin. In this short-term study, there was no differ-
ence in body weight, body fat, or fasting plasma insulin between placebo and metformin
although glycated haemoglobin (HbA1c) and fasting plasma glucose were reduced in the
metformin group [29]. Two other clinical trials reported similar findings where metformin
treatment increased mucin-producing Akkermansia muciniphila, and SCFA-producing mi-
crobes [30] including Butyrivibrio, Bifidobacterium bifidum, Megasphaera, and Prevotella [31].
These microbes utilized different dietary substrates to produce an array of metabolites
which can influence the host microenvironment with beneficial metabolic effects. Whilst
Bifidobacterium species had been shown to induce gene expression involved in carbohydrate
metabolism [32], Prevotella species could degrade starch [31] and metabolize fructose to
produce medium-chain carboxylic acids with improved fuel transport [33]. In a study
involving newly diagnosed patients with T2D, 3-day treatment with metformin reduced
the genus Bacteroides fragilis and increased the bile acid, glycoursodeoxycholic acid, which
might contribute to the anti-inflammatory and metabolic effects of metformin [34]. Intrigu-
ingly, metformin had been shown to lengthen lifespan of the nematode worm, Caenorhabditis
elegans, via changes in microbial folate and methionine metabolism [35].

3. Clinical Evidence for Pleiotropic Effects of Metformin

The multi-targeted actions of metformin are mediated both by the AMPK pathway
ubiquitous in all cells for energy metabolism and non-AMPK mechanisms [36]. The clinical
benefits of metformin have been reported in liver, pancreas, lungs, and gastrointestinal
tract as well as cardiovascular–renal and nervous systems (Figure 2).
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In this section, we reviewed the potential molecular mechanisms and clinical evidence
regarding the effects of metformin in closely related conditions, including cardiovascular–
renal disease, infection, cancer, non-alcoholic fatty liver disease (NAFLD), and cogni-
tive dysfunction. Figure 3 summarizes the clinical effects of metformin in different
disease conditions.
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Figure 2. Clinical benefits of metformin in multiple systems. The multi-targeted actions of metformin
are mediated both by the adenosine monophosphate activated protein kinase (AMPK) pathway and
non-AMPK pathways. In the liver, metformin reduces glycogenolysis, hepatic glucose production,
and gluconeogenesis [37]. In the lung, metformin modulates the tumor necrosis factor (TNF)-α/NF-
kB/mammalian target of rapamycin (mTOR) pathways and expression of pro-inflammatory cytokines.
In the intestines, metformin modifies gut microbiome and promotes incretin (e.g., glucagon-like
peptide 1, GLP-1) secretion with increased glucose utilization. In the nervous system, metformin
reduces amyloid plaque formation and decline of cognitive function. In the circulatory systems,
metformin improves dyslipidemia and endothelial dysfunction with reduced cardiovascular–renal
events. Metformin reduces site-specific cancer events, including prostate and liver, in part due
to amelioration of insulin resistance with reduced activation of insulin/insulin-like growth factor
(IGF-1). Metformin is eliminated by the kidney. Metformin alleviates podocyte loss, mesangial cells
apoptosis, and tubular cells senescence through AMPK-mediated signaling pathways. In chronic
kidney disease, renal fibrosis is ameliorated by metformin, mainly via AMPK activation. Reduced
glomerular filtration and tubular secretion may lead to accumulation of metformin and increased risk
of lactic acidosis, especially in stress situations [17] (adapted from reference [13]).

3.1. Putative Mechanisms of Metformin on Cardiovascular Systems

Diabetes is a major risk factor for CVD and CKD. In the 10-year follow-up analysis of
the United Kingdom Prospective Diabetes Study (UKPDS), treatment with metformin was
associated with reduced cardiovascular events and all-cause mortality [38]. The Diabetes
Prevention Program conducted in the United States of America (USA) was the largest
and longest clinical trial assessing the effects of metformin in people with impaired glu-
cose tolerance (IGT). In this study, metformin was confirmed to prevent T2D which was
translated to reduction in cardiovascular events in the post-trial period [39]. Apart from
these two large randomised controlled trials (RCTs), most of the evidence in support of
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the cardiovascular–renal effects of metformin were inferred from systematic reviews and
meta-analysis of observational studies (Table 1).
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In a meta-analysis of RCTs including 2079 patients with T2D [40], metformin use was
associated with reduced risk of cardiovascular death, myocardial infarction, and peripheral
vascular disease compared with non-use of metformin. The most consistent benefits were
observed for all-cause mortality with up to 16% risk reduction, albeit with an increased
risk of stroke by 48% [39]. In a more recent meta-analysis involving 1,160,254 patients with
T2D, metformin use was associated with decreased cardiovascular mortality (relative risk,
RR = 0.44 (95% CI: 0.34–0.57) and incidence of CVD (RR = 0.73, 95% CI: 0.59–0.90)) [41].
However, the risk association of metformin with myocardial infarction and heart fail-
ure amongst patients with T2D [42,43] was not always consistent [44], with many of
these meta-analyses and systematic reviews having low or critically low quality [25,44,45].
The heterogeneous clinical profiles, study design, and settings contributed towards these
controversies calling for more RCTs with better-defined settings, populations, and study
design, preferably with comparative drugs [44].
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Table 1. Studies on the association of metformin use with clinical events in patients with type 2 diabetes.

Author/
Year

Study
Design Region No. of

Participants
No. of
Cases

Follow-Up
(Years)

Comparations
and Outcomes

Main
Conclusion

Raee, 2017
[46] Cohort Iran 717 446 3.0

Glyburide versus metformin
All-cause mortality:
HR = 0.27, 95% CI: 0.10–0.73
Cardiovascular mortality:
HR = 0.12, 95% CI: 0.20–0.66

Compared with metformin,
glyburide was associated with
increased all-cause and
cardiovascular mortality in
patients with diabetes.

Scheller, 2014 [47] Retrospective cohort Denmark 84,756 83,528 5.0

Sitagliptin versus metformin
All-cause mortality:
HR = 1.25, 95% CI: 0.92–1.71
Incidence of CVD:
HR = 1.22, 95% CI: 0.96–1.61

Compared with metformin
monotherapy, sitagliptin
monotherapy was not associated
with increased risk of all-cause
mortality or CVD.

Roumie, 2012 [48] Retrospective cohort USA 253,690 155,025 5.5

Sulfonylurea versus metformin
CVD (acute myocardial
infarction and stroke) or death:
HR = 1.21, 95% CI: 1.13–1.30

Compared with metformin, use
of sulfonylureas was associated with
an increased hazard of CVD events
or death.

Roumie, 2017 [49] Retrospective cohort USA 131,972 65,986 0.9–1.1

Sulfonylurea versus metformin
Heart failure and
cardiovascular death:
HR = 1.32, 95% CI: 1.21–1.43

Compared with metformin,
sulfonylurea had a higher risk
of heart failure and
cardiovascular death.

Johnson, 2002 [50] Cross-sectional Canada 4183 1150 5.1

Metformin versus sulfonylurea
All-cause mortality:
OR = 0.60, 95% CI: 0.49–0.74
cardiovascular–related mortality:
OR = 0.53, 95% CI: 0.41–0.68

Metformin therapy, alone or in
combination with sulfonylurea, was
associated with reduced all-cause
and cardiovascular mortality.

Ekstrom, 2012 [51] Register-based cohort Sweden 32,152 14,696 3.9

Other-GLDs versus metformin
Incidence CVD:
HR = 1.02, 95% CI: 0.93–1.12
All–cause mortality:
HR = 1.13, 95% CI: 1.01–1.27

Metformin showed lower risk
than insulin for CVD and
all-cause mortality and slightly
lowered risk for all-cause mortality
compared with other GLDs.

Pantalone, 2012 [52] Retrospective cohort USA 23,915 12,774 2.2

Glipizide, glyburide, glimepiride
versus metformin
All-cause mortality:

- glipizide: HR = 1.64 (1.39–1.94)
- glyburide: HR = 1.59 (1.35–1.88)
- glimepiride: HR = 1.68(1.37–2.06)

Glipizide, glyburide and glimepiride
were associated
with an increased risk of overall
mortality versus metformin.
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Table 1. Cont.

Author/
Year

Study
Design Region No. of

Participants
No. of
Cases

Follow-Up
(Years)

Comparations
and Outcomes

Main
Conclusion

Charytan, 2019 [53] Clinical trails USA 4038 591 4.0

Metformin versus
non-metformin
All-cause mortality:
HR = 0.49, 95% CI: 0.36–0.69
Cardiovascular death:
HR = 0.49, 95% CI: 0.32–0.74
Cardiovascular composite:
HR = 0.67, 95% CI: 0.51–0.88
Kidney disease composite:
HR = 0.77, 95% CI: 0.61–0.98
ESKD (end stage kidney disease):
HR = 1.01,95% CI: 0.65–1.55

Metformin might be safer for use
in CKD than previously considered
with reduced risk of death and
cardiovascular events in
individuals with stage 3 CKD.

Cheng, 2014 [54] Retrospective cohort Taiwan 14,856 10,857 4.0

Metformin versus
non-metformin
Incidence stroke:
HR = 0.38, 95% CI: 0.35–0.42

Compared with non-metformin
use, metformin use was associated
with lower risk of stroke especially
in high-risk patients

Mogensen, 2015 [55] Retrospective cohort Danish 28,236 16,910 13.0

Sulfonylureas + metformin
versus metformin/ metformin + insulin
All-cause mortality:
RR = 1.81, 95% CI: 1.63–2.01
cardiovascular death:
RR = 1.35, 95% CI: 1.14–1.60
Composite endpoint (myocardial
infarction, stroke and
cardiovascular death):
RR = 1.25, 95% CI: 1.09–1.42

In combination with insulin, the use
of sulfonylureas was associated with
increased mortality compared
with metformin.

Evans, 2006 [56] Retrospective cohort UK 5617 2286 8.0

Sulfonylurea versus metformin
All-cause mortality:
HR = 1.43, 95% CI: 1.15–1.77
Cardiovascular mortality:
HR = 1.70, 95% CI: 1.18–2.45

Patients treated with sulfonylureas
only, or combinations of
sulfonylureas and metformin,
were at higher risk of adverse
cardiovascular outcomes than those
treated with metformin alone.

Sillars, 2010 [57] Retrospective cohort Australia 1271 390 10.4

Metformin–sulphonylurea
versus diet and metformin monotherapy
All-cause mortality:
HR = 0.82, 95% CI: 0.58–1.23
Cardiovascular mortality:
HR = 0.82, 95% CI: 0.53–1.27

Combination metformin–
sulphonylurea appeared to be as
safe as other blood glucose-lowering
therapies used in type 2 diabetes.
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Table 1. Cont.

Author/
Year

Study
Design Region No. of

Participants
No. of
Cases

Follow-Up
(Years)

Comparations
and Outcomes

Main
Conclusion

Morgan, 2014 [58] Retrospective cohort UK 80,999 68,139 2.9–3.1

Sulfonylurea versus metformin
All-cause mortality:
HR = 1.27, 95% CI: 1.02–1.58
MACE (adverse cardiovascular events):
HR = 0.81, 95% CI: 0.57–1.15

All-cause mortality was increased
in patients prescribed with
sulphonylureas compared with
metformin monotherapy.

Breunig, 2014 [59] Retrospective cohort USA 6271 5548 1.6

Rosiglitazone, pioglitazone
versus metformin
Incidence of heart failure:
Rosiglitazone: HR = 1.57,
95% CI: 1.15–2.15

Compared with metformin, there
appeared to be higher risk of heart
failure in patients started on
rosiglitazone but not pioglitazone

Fung, 2015 [60] Retrospective cohort Hong Kong 11,293 7493 5.0

Metformin versus
non–metformin
All-cause mortality:
HR = 0.73, 95% CI: 0.58–0.90
Incidence CVD:
HR = 0.72, 95% CI: 0.60–0.87
Incidence of coronary heart disease:
HR = 0.67, 95% CI: 0.52–0.86
Incidence of stroke:
HR = 0.75, 95% CI: 0.57–0.98
Incidence of CKD (eGFR < 30):
HR = 1.08, 95% CI: 0.84–1.38

Patients who were started on
metformin monotherapy showed
improvement in many of the clinical
parameters and a reduction in
all-cause mortality and CVD events
than lifestyle modifications alone

Note: CVD, cardiovascular disease; HR, hazard ratio; CI, confidence interval; RR, relative risk; GLDs, glucose-lowering drugs; CKD, chronic kidney disease; and eGFR, estimated
glomerular filtration rate.
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3.1.1. Metformin and Endothelial Dysfunction, Inflammation and Oxidative Stress

Pending definitive evidence on clinical outcomes, metformin has been shown to im-
prove surrogate markers of CVD, incuding endothelial dysfunction, dyslipidemia, and
systemic inflammation [38,61,62]. Metformin improves endothelial dysfunction by in-
creasing nitric oxide synthase (eNOS) with increased generation of nitric oxide (NO),
a potent vasodilator. Other mechanisms include suppression of mitochondrial complex
1, stimulation of AMPK and inhibition of apoptosis [63]. In experimental studies, AMPK
activation by therapeutically relevant concentrations of metformin (50–500 µM) increased
NO via increasing eNOS phosphorylation and eNOS interaction with heat shock protein 90
(HSP90) [64]. Metformin restores the impaired eNOS-HSP90 interaction in high-glucose
exposed endothelial cells [64]. The eNOS activating effect of metformin (250 mg/kg/d) has
also been demonstrated in endothelial progenitor cells from streptozotocin (STZ)-induced
diabetic mice [65]. Metformin further attenuates glucose-induced endothelial dysfunction
through enhancing guanosine 5′triphosphate cyclohydrolase 1 (GTPCH1) mediated eNOS
recoupling and NADPH oxidase inhibition [66]. Metformin raises the tissue concentra-
tion of hydrogen sulfide (H2S), which is a major endothelium-derived hyperpolarising
factor (EDHF) that causes vascular endothelial and smooth muscle cell hyperpolarization
and vasorelaxation by activating the ATP-sensitive potassium channels through cysteine
S-sulfhydration [67].

Metformin may exert anti-inflammatory effects and reduce oxidative stress via mul-
tiple pathways. This can occur via an AMPK-dependent inhibition of the inhibitory-kB
kinase (IKK)/IkBalpha/NF-kB [67]. Metformin also inhibits tumor necrosis factor (TNF)-α
induced gene expression of cell adhesion molecules that contribute to monocyte adhesion
which promotes atherogenesis. Acting via AMPK, metformin also exhibits epigenetic
effects and phosphorylates multiple substrates, including histone acetyltransferases class II
histone deacetylases (HDACs) and DNA/histone methyltransferase [63]. For example, met-
formin may increase Sirtuin 1 (SIRT1) activity and protect against hyperglycemia-induced
metabolic memory resulting in endothelial dysfunction [68].

3.1.2. Metformin on Blood Flow and Haemostasis

Several studies have shown favourable effects of metformin on blood flow. Metformin
increased haemodynamic responses to L-arginine, the precursor of vasodilatory NO [69].
Metformin also lowered levels of asymmetric dimethylarginine, an endogenous inhibitor
of nitric oxide synthase (NOS) in T2D. Metformin reduced platelet activity and haemostasis
with reduced clot formation [70]. In clinical studies, metformin reduced plasminogen
activator inhibitor-1 (PAI-1) with increased fibrinolysis [71], although results are not always
consistent [70]. In in vitro studies, metformin had been shown to reduce platelet activation
by reducing extracellular mitochondrial DNA (mtDNA) release [72].

3.1.3. Metformin and Kidney Disease

The occurrence of CKD in patients with T2D markedly amplified the risk of CVD [73,74].
In patients with mild to moderate CKD (stages 3a and 3b with respective estimated glomeru-
lar filtration rate [eGFR] 45–59 and 30–44 mL/min/1.73 m2), the incidence of death due to
CVD was considerably higher than that due to kidney failure, with these patients having
the double burden of CVD and end-stage kidney disease (ESKD) [75]. Metformin reduces
blood glucose without causing weight gain and hypoglycemia [76] which are conducive to
the prevention of CVD. This low risk of hypoglycemia is particularly relevant to patients
with CKD who are at high risk for both CVD and hypoglycemia which are closely associ-
ated. Despite the lack of definitive evidence from RCTs, cohort analyses, and real-world
evidence suggested neutral or beneficial cardiovascular–renal effects of metformin in pa-
tients with T2D at different stages of CKD (Table 2). These clinical findings are supported
by experimental findings where metformin use in rats with CKD prevented progression of
renal dysfunction, reduced vascular calcification, and inhibited high bone turnover with
reduced renal expression of cellular infiltration, fibrosis, and inflammation [77].
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Table 2. Cohort studies on the association of metformin use with cardiovascular–renal outcomes at different CKD stages.

Author/
Year

Study
Design

Sample
Size Comparation Duration/

Dose
Outcomes,

Hazard Ratio (95% CI)
Main

Conclusion

Whitlock, 2020 [78]
Retrospective Cohort
(2006–2017)
FU: 1.4 vs. 1.1 years

21,996
(metformin: 19,990)

metformin vs.
sulfonylurea among
patients
with T2D
(age > 18 years)

NA

All-cause mortality:
Overall: 0.48 (0.40–0.58)
eGFR ≥90: 0.38 (0.27–0.53)
eGFR 60–89: 0.42 (0.31–0.56)
eGFR 45–59: 0.92 (0.53–1.61)
eGFR 30–44: 0.85 (0.46–1.57)
eGFR <30: 1.51 (0.58–3.95)
CVD:
Overall: 0.64 (0.41–1.00)
eGFR ≥90: 0.78 (0.52–1.2)
eGFR 60–89: 0.86 (0.45–1.64)
eGFR 45–59: 0.62 (0.3–1.29)
eGFR 30–44: 0.85 (0.46–1.57)
eGFR <30: 0.56 (0.18–1.69)

Metformin use was associated with
lower risk for all-cause mortality,
cardiovascular events, and major
hypoglycemic episodes when
compared with sulfonylureas.
CKD was a significant
effect modifier
for all-cause mortality, but not for
cardiovascular events or major
hypoglycemic episodes.

Kwon,
2020 [79]

Retrospective Cohort
(2001–2016)
FU: 7.3 years

10,426

metformin vs.
non-metformin among
patients with type 2
diabetes kidney disease

Duration and dose

All-cause mortality:
Overall: 0.48 (0.40–0.58)
eGFR ≥45: 0.38 (0.27–0.53)
eGFR 45–30: 0.42 (0.31–0.56)
eGFR <30: 0.55 (0.37–0.81)
ESKD:
Overall: 0.67 (0.58–0.77)
eGFR ≥45: 0.62 (0.51–0.76)
eGFR 45–30: 0.73 (0.54–0.99)
eGFR <30: 0.87 (0.67–1.12)

Metformin usage in advanced CKD
patients, especially those with CKD
3b, was associated with reduced
risk of
all-cause mortality and incident
ESKD. Metformin did not increase
the risk of
lactic acidosis.

Charytan, 2019 [53] Retrospective analysis
in trials

4038
(591)

metformin vs.
non-metformin among
patients with diabetes and
chronic kidney disease

NA

All-cause mortality:
Overall: 0.49 (0.36–0.69)
CKD S1–3: 0.61 (0.44–0.82)
CKD S4–5: 0.83 (0.54–1.27)
CV-death:
Overall: 0.49 (0.32–0.74)
CKD S1–3: 0.59 (0.38–0.9)
CKD S4–5: 0.80 (0.46–1.39)
ESKD:
Overall: 1.01 (0.65–1.55)
CKD S1–3: 0.70 (0.53–0.92)
CKD S4–5: 0.95 (0.7–1.29)

Metformin might be safer for use in
CKD than previously considered
with reduced risk of death and
cardiovascular events in individuals
with stage 3 CKD.
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Table 2. Cont.

Author/
Year

Study
Design

Sample
Size Comparation Duration/

Dose
Outcomes,

Hazard Ratio (95% CI)
Main

Conclusion

Bergmark,
2019 [80]

Retrospective analysis in
trials (2010–2013)
FU: 2.1 years

12,156
(8971)

metformin vs.
non-metformin among
patients with diabetes and
high CV risk

NA

All-cause mortality:
0.75 (0.59–0.95)
CV-death: 0.68 (0.51–0.91)
MI: 1.08 (0.83–1.41)
Stroke: 1.07 (0.77–1.48)
Hear failure: 1.23 (0.94–1.6)

Metformin use was associated with
reduced risk of all-cause mortality,
including after adjustment
for clinical
variables and biomarkers, but not
lower rates of
the composite end point of
cardiovascular death, myocardial
infarction, or ischemic stroke.

Roumie,
2019 [81]

Retrospective Cohort
(2001–2016)
FU: 1.1 year

174,882 metformin
and sulfonylureas

users

metformin vs.
sulfonylureas NA MACE:

Overall: 0.80 (0.75–0.86)

Among patients with diabetes and
reduced kidney function persisting
with monotherapy, treatment with
metformin, compared with a
sulfonylurea, was
associated with a lower risk
of MACE.

Hung,
2015 [82]

Retrospective Cohort
(2000–2009)
FU: 2.1 years

3252
(metformin 813)

metformin vs.
non-metformin among
patients with type 2
diabetes and stage 5 chronic
kidney disease

Daily dose All-cause mortality:
1.35 (1.2–1.51)

Use of metformin in people with
type 2 diabetes and a
serum creatinine
concentration greater than 530
µmol/L was associated with an
increased risk
of all-cause mortality
compared with
non-users. Metformin use
should not
be encouraged in this patient group.

Ekstrom,
2012 [51]

Retrospective analysis in
Swedish register
(2004–2007)
FU: 3.9 years

51,675 patients with
type 2 diabetes

Metformin monotherapy vs.
other GLDs NA

All-cause mortality:
Overall: 1.13 (1.01–1.27)
Fatal/non-fatal CVD:
Overall: 1.02 (0.93–1.12)

Metformin showed lower risk vs.
insulin for CVD and
all-cause mortality,
and lower risk for all-cause
mortality vs. other GLDs

Note: FU, follow-up; GLDs, glucose-lowering drugs; MACE, major adverse cardiovascular events; and ESKD, end-stage kidney disease.
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The latest Kidney Disease Improving Global Outcomes (KDIGO) practice guideline rec-
ommended continuing use of metformin in CKD Stage 3b (eGFR: 30–44 mL/min/1.73 m2)
with dose adjustments and increasing frequency of eGFR monitoring [83]. In both the USA
and European Union (EU), according to the label, metformin can be used in CKD stage 3
(eGFR: 30–60 mL/min/1.73 m2), but not in stage 4 or stage 5. In the USA, metformin should
not be initiated in CKD stage 3b, but may be continued in patients already treated with
metformin [84]. Given the global burden of ESKD and the low cost of metformin, the safety
and efficacy of metformin use in patients with CKD stage 3b and stage 4 should be further
explored, preferably using RCT design due to a paucity of real-world data in these patients.

Metformin may protect the kidney via multiple mechanisms, such as reducing podocyte
loss, tubulointerstitial injury, and mesangial cell dysfunction. Podocyte loss is the initiat-
ing event in the development of glomerular sclerosis in diabetic kidney disease (DKD).
In animal models of T2D, metformin prevented podocyte loss via oxidative stress inhibition.
In cultured podocytes, metformin reduced apoptosis via AMPK activation and inhibition
of mTOR (mammalian target of rapamycin) activity [85]. In in vitro models, metformin
attenuated palmitate-mediated mesangial apoptosis, ameliorated oxidative stress, and
promoted autophagy. In high glucose-stimulated rat mesangial cells, metformin inhib-
ited abnormal cell proliferation via the AMPK/SIRT1/forkhead box protein O1 (FOXO1)
pathway [86]. Other studies demonstrated metformin in attenuating renal fibrosis in mice
model of DKD by altering miR-192 expression [87]. Metformin also protected human
epithelial cells against glucose-induced apoptosis by normalizing parkin protein expression
and inducing mitophagy via repressing NF-KB expression [88].

More recently, beneficial effects of metformin have been shown in renal conditions
other than DKD. Metformin was shown to inhibit cyst growth in patients with polycystic
kidney disease (PKD) due to PKD1 mutation. In a zebrafish model, metformin inhibited
cyst formation via activation of the AMPK pathway and modulated cellular events, such as
autophagy, cellular proliferation, and inflammation [89].

3.2. Metformin and Infection

Metformin was originally introduced as an anti-influenza drug and had been proposed
as an adjunct treatment in infective diseases [7]. During the current pandemic of COVID-19,
there has been renewed interest in repurposing metformin as a host-directed adjunctive
therapy to treat infections by altering the immune responses [37,90–92]. In this regard,
metformin use was associated with a lower risk of death in patients with T2D affected
by COVID-19 than their counterparts using other GLDs, especially among women with
obesity [93,94]. Other studies indicated that metformin users who developed COVID-19
infection had lower levels of interleukin-6 (IL-6) [95] and other inflammatory markers
than non-users [96]. Despite these observational data, definitive evidence from RCTs is
lacking [92].

Patients with T2D are at high risk of pneumonia and other respiratory infections
including chronic obstructive pulmonary diseases (COPD). In patients with community-
acquired pneumonia, increased neutrophil-to-lymphocyte ratios indicating a heightened
pro-inflammatory state had been associated with poor outcomes [13,97]. In a cohort of
3537 patients with T2D, long-term treatment with metformin was associated with re-
duced neutrophil-to-lymphocyte ratios, compared with sulfonylurea [98]. Previous stud-
ies reported a protective effect of metformin on pneumonia-related hospitalizations and
pneumonia-related mortality among patients with T2D [99,100]. In an observational study
of 36,990 patients aged >65 years with diabetes who were hospitalized with pneumonia,
metformin users had a lower 30-day pneumonia-related mortality (odds ratio, OR = 0.80,
95% CI: 0.72–0.88) than non-users [100]. In a prospective diabetes register involving
15,784 patients with T2D in Hong Kong, metformin use was independently associated with
lower incidence of pneumonia-related hospitalisation with a hazard ratio (HR) of 0.63 (95%
CI: 0.52–0.77) and related-mortality (HR = 0.49, 95% CI: 0.33–0.73) adjusted for multiple con-
founders [101]. In a RCT comparing metformin vs. placebo for reducing adverse metabolic
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effects of glucocorticoids, in the analysis of the adverse events, metformin-treated patients
had a lower incidence of pneumonia than the placebo group accompanied by lower levels
of pro-inflammatory cytokines [102].

Several mechanisms have been proposed for the protective effects of metformin on
pulmonary infections. In animal models of hyperoxia-induced lung injury, metformin
reduced inflammatory cytokines such as IL-6 and TNF-α [103]. In other animal studies,
metformin reduced the excessive release of neutrophil extracellular traps (NETs). The latter
are extracellular DNA with anti-microbial actions although its overproduction may cause
excessive inflammatory responses with deleterious consequences [104]. Metformin had
been advocated as adjunctive therapy to improve outcomes in patients with sepsis [105].
In patients with tuberculosis, metformin had been shown to improve T-cell immunity and
phagocytosis [106,107].

3.3. Metformin and Cancer

Diabetes, obesity, and cancer frequently coexist in part due to insulin resistance where
excessive stimulation of the insulin/insulin-like growth factor (IGF-1) pathway might
cause abnormal cell signaling and cancer growth [108]. Other epidemiological studies sug-
gested additive risk associations of glycemic variability and burden with all-site cancer and
cancer-related death in T2D [109,110]. In breast cancer cells, metformin exerted anticancer
effects by changing the metabolic milieu and reducing the circulating insulin levels by im-
proving insulin resistance with reduced insulin/IGF-I receptor-mediated phosphoinositide
3-kinases (PI3K) signaling [111].

Metformin also inhibited mTOR pathway in cancer cells by activating AMPK and liver
kinase B1 (LKB1) with reduced protein synthesis and cell growth [112]. In a systematic
review, the Signal transducer and activator of transcription 3 (STAT3) was activated through
the LKB1 and AMPK pathway which induced apoptosis in triple-negative breast cancer
cells. Metformin had also been shown to influence the “sphingolipid rheostat”, shifting
the balance away from Sphingosine-1-Phosphate towards ceramides with inhibition of cell
growth and proliferation as demonstrated in an ovarian cancer cell line. Other anti-cancer
mechanisms of metformin included increased fatty acids oxidation and reduced expression
of transcription factors, such as specificity protein (Sp)1, Sp3, and Sp4 implicated in cancer
growth [111]. Figure 4 summaries the main mechanisms for the action of metformin
and cancer.
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metformin-mediated AMPK activation in tumor growth inhibition include: (1) activation of the
tuberous sclerosis complex (TSC) with inhibition of mammalian target of rapamycin (mTOR) activity,
resulting in inhibition of protein synthesis and cell growth; (2) activation of p53 and p21 along
with inhibition of cyclins, resulting in cell-cycle arrest; (3) inhibition of lipid and sterol biosynthetic
pathways; (4) inhibition of sterol regulatory element-binding protein-1c (SREBP-1) by regulating its
expression and phosphorylation, leading to down-regulation of fatty acid synthase (FASN) and acetyl-
CoA carboxylase (ACC); (5) direct phosphorylation and inhibition of ACC; and (6) systemic effects
on multiple organs such as reducing diabetes-associated cancers by improving glucose balance with
reduced levels of growth factors such as insulin, insulin-like growth factor 1 (IGF-1) and leptin which
can initiate and promote cancer growth with progression. Metformin had also been shown to reduce
cancer events via AMPK-independent mechanisms [113,114] (adapted from reference [115,116]).

In experimental studies, metformin induced programmed cell death of cancer cells
with inhibition of cell signals, such as vascular endothelial growth factor A (VEGFA),
with reduced vascularization of tumor cells [36]. Metformin also modulated the immune
response by activating anti-tumor T-cell activity [117]. By reducing oxygen and glucose
consumption by tumor cells and increasing the intratumor oxygen levels, metformin sen-
sitized patients’ responses to programmed death-ligand 1 (PD-L1) chemotherapy [118].
By altering the epigenetic signature of tumor cells, metformin also interfered with the sig-
naling pathways that conferred chemoresistance of endometrial cancer cells and improved
treatment responses to chemotherapy [119].

A large number of observational studies suggested an association of metformin use
with reduced incidence of cancers [120]. In the Taiwan National Health Insurance Data
Survey (2000–2007) including 12,005 metformin-users and 4597 non-metformin users,
metformin use was associated with reduced risk of total, colorectal, liver and pancreatic
cancer by up to 88% [121]. In a UK retrospective cohort of 62,809 patients, metformin
monotherapy was associated with the lowest cancer risk, compared with insulin or sulfony-
lureas. Compared with metformin, sulfonylurea monotherapy was associated with a HR
of 1.36 (95%CI: 1.19–1.54) for solid tumors (breast, colon, pancreas, and prostate cancer).
The corresponding HR for combination therapy of metformin and sulfonylurea was 1.08
(95 %CI: 0.96–1.21) [122]. Other observational studies also reported low incidence of breast
cancer among long-term metformin users vs. non-users [123]. In a database of health
records from Tayside of Scotland, a comparative analysis between new metformin users
and users of other medications showed consistently lower hazard for diagnosed cancer
amongst metformin users [124].

In the Hong Kong Diabetes Register of 2658 patients with T2D free from cancer at enrol-
ment [125], metformin use was associated with reduced risk of cancer in a dose-dependent
manner. After adjusting for covariates, metformin non-users with high-density lipopro-
tein (HDL)-cholesterol <1.0 mmol/L had 5.8-fold increased hazards of cancer compared
with metformin users with HDL-cholesterol ≥1.0 mmol/L [125]. In a post-hoc analysis of
rosiglitazone-based RCTs, including the ADOPT (A Diabetes Outcome Progression Trial)
and RECORD (Rosiglitazone Evaluated for Cardiovascular Outcomes and Regulation of
Glycaemia in Diabetes) Trials [126], there was no difference in the incidence of cancers
between patients treated with metformin vs. rosiglitazone. Apart from short duration of
follow up, these studies were not powered to evaluate cancer incidence as a predefined
endpoint [127]. Of note, these retrospective studies are subject to time-related biases, in-
cluding immortal time bias and time-window bias, which might inflate the association
between metformin and reduced risk of cancer [128]. Besides, it remained plausible that
the risk differential might be due to increased cancer risk in the comparator group [129].

In a systematic review of 11 studies with accrual of 4042 cancer events and 529 cancer
deaths, the researchers reported a 31% reduction in all-cancer risk amongst metformin-users
compared with users of other GLDs (RR = 0.69, 95% CI: 0.61–0.79) [129]. The negative
association was significant for pancreatic and hepatocellular cancer, and nonsignificant
for colon, breast, and prostate cancer. On the other hand, in a pooled analysis of 9 RCTs
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including 821 patients with advanced or metastatic cancers from lung, breast, or pancreas
as primary cancers, metformin did not improve tumor-related outcomes with a pooled
OR of 1.23 (95% CI: 0.89–1.71) [130]. Similarly, metformin added to anticancer agents did
not prolong progression-free survival (HR = 0.95, 95% CI: 0.75–1.21) or actual survival
(HR = 0.97, 95% CI: 0.80–1.16) [130].

There are few RCTs that evaluated metformin with cancer as a predefined outcome
measure. In a multi-center, double-blind, placebo-controlled phase 3 trial, nondiabetic
adults who had resection of single or multiple colorectal adenomas or polyps were ran-
domised to receive metformin 250 mg daily or placebo for 1 year. After 1 year, the total
counts of polyps on colonoscopy was lower in the metformin group than the placebo group
(relative risk (RR) = 0.67, 95% CI: 0.47–0.97). The corresponding RR for adenomas was 0.60
(95% CI: 0.39–0.92) [131].

In a phase 2 randomised trial, 40 women with metastatic breast cancer positive for
estrogen receptor (ER)/progesterone receptor receiving chemotherapy were randomised to
receive metformin (n = 22, mean age, 55 years) or placebo (n = 18, mean age, 57 years) for
a mean of 151 days. The progression-free survival was 5.4 months in the metformin group
vs. 6.3 months in the placebo group with a HR of 1.2 (95% CI: 0.63–2.31). The corresponding
mean survival time were 20.2 and 24.2 months with a HR of 1.68 (95% CI: 0.79–3.55)
suggesting that metformin did not confer survival benefits in patients with advanced
disease although larger samples size and longer follow up period are needed to confirm
these observations [132].

Obesity and hormonal dysregulation play important roles in the initiation and pro-
gression of some cancer events. Despite plausible mechanisms, the effects of metformin
on hormone-responsive cancers, such as breast and endometrial cancers, remain to be
clarified [133]. To this end, the NCIC Clinical Trials Group MA.32 had initiated a 5-year
phase 3 RCT including 3649 women with early-stage breast cancer randomised to receive
metformin 500 mg twice daily or placebo [134]. In an interim analysis at 6 months, met-
formin was associated with a tendency of increased insulin sensitivity, lower body mass
index (BMI) [134], and reduced estradiol hormones vs. placebo [135].

3.4. Metformin and NAFLD

Metformin regulates cellular lipid and glucose metabolism by reducing mitochondrial
oxidative processes resulting in activation of AMPK within the liver. This is accompanied
by inhibition of de novo synthesis of fatty acids and increased β-oxidation of fatty acids
leading to reduced liver steatosis. Metformin also reduced lipid accumulation by inhibiting
differentiation of adipocytes with reduced production of adipokines [136]. In transgenic
obese (ob/ob) mice with NAFLD, metformin reduced hepatic fat accumulation and liver
steatosis and reversed hepatomegaly and abnormalities in liver enzymes [137]. In the high-
fat-diet-induced NAFLD model of nondiabetic mice, metformin prevented and reversed
liver steatosis and inflammation [138].

In the first open-label, pilot study, 20 non-diabetic patients with NAFLD were given
metformin 500 mg thrice daily for 4 months but 6 patients did not adhere to treatment and
were considered as control subjects. Insulin resistance was quantified using the euglycemic
clamp technique and liver volume measurement by ultrasound scan. Metformin reduced
the liver volume, moderately improved insulin sensitivity and normalized aminotransferase
levels in 50% of the patients. Withdrawal of metformin was accompanied by a return of
aminotransferase levels to the pre-treatment values. No changes in any of these parameters
were observed in the control patients [139].

In a subsequent clinical trial using open-label, quasiexperimental design involving
28 overweight or obese patients with non-alcoholic steatohepatitis (NASH) treated with
metformin 2000 mg daily for 12 months, the researchers reported improvement in insulin
resistance, alanine transaminase (ALT), and histology [140]. In another comparative trial
involving 34 patients with NASH treated with metformin 850 mg twice daily plus diet



Pharmaceuticals 2022, 15, 442 17 of 26

(n = 17) vs. diet alone (n = 17) for six months, the metformin group had reduction in ALT
but no effects on histology [141].

Other researchers compared metformin vs. therapies, such as thiazolidinedione (TZDs)
or vitamin E, in patients with NAFLD. In an open-label, randomised study, 55 non-diabetic
patients with NAFLD were assigned to 12-month treatment with metformin 2000 mg daily
(n = 55), vitamin E 800 IU daily (n = 28) or weight-reducing diet (n = 27). Liver enzymes and
weight loss improved in all groups with the metformin group showing the highest odds
of normalization of liver enzymes and metabolic profile. In a subgroup of 17 metformin
users with 14 being non-responders, metformin use was associated with reduction in
liver fat, necro-inflammation, and fibrosis although these results were limited by the
small sample size [142]. In another open-label RCT comparing metformin, rosiglitazone,
and combination therapy with both drugs, changes in liver enzymes and histology were
observed only in patients treated with rosiglitazone or rosiglitazone plus metformin group
but not in metformin alone group [143].

Following these initial encouraging results, subsequent double-blind placebo-controlled
trials tended to report lack of benefits of metformin in patients with NAFLD. In one such
trial, 48 patients with biopsy-proven NAFLD were randomised to receive either metformin
or placebo for 6 months followed by repeat liver biopsy. Despite the positive effects on body
weight, lipids, and glycaemic control, metformin treatment did not improve NAFLD score
based on liver transaminases. No differences were observed in parameters of liver steatosis,
assessed either histologically or by imaging [144]. Similarly, in two RCTs evaluating
metformin (1000 to 1500 mg per day) vs. placebo in children with obesity and NAFLD,
metformin did not improve liver histology, ALT and aspartate transaminase (AST) levels,
BMI or insulin resistance [145]. In the Diabetes Prevention Program, participants with
IGT randomised to metformin had lower ALT levels which was rendered non-significant
once adjusted for weight loss [146]. Based on the latest systematic review of available
data, there is insufficient evidence to support the use of metformin for relieving NAFLD or
NASH [147].

3.5. Metformin and Cognitive Function

Ageing, T2D, and cognitive dysfunction frequently coexist. Apart from metabolic and
vascular causes, Alzheimer’s disease (AD) characterized by deposition of amyloid-β (Aβ)
plaques, neuroinflammation, neurofibrillary tangles, and neuronal loss is an important
cause of dementia in patients with or without T2D. Experimental studies suggested that
metformin might prevent amyloid plaque formation via AMPK-dependent pathways [148].
In part due to its anti-inflammatory effects, metformin improved microenvironment to
promote neuro-glial cell survival and differentiation [149]. Additionally, metformin might
directly influence the functional phenotype of microglia favoring a M2 phenotype which
facilitated neural tissue repair following infarction [150]. In cultured astrocytes, metformin
increased cellular consumption of oxygen and glucose with suppressed intermediates of
amino acid and fatty acid metabolites but increased lactate production due to predomi-
nant anaerobic glycolysis. However, the clinical significance of these findings remained
uncertain [151].

In animal studies, male Wistar rats treated with metformin at a dose of 100 mg/kg/day
exhibited a reversal of scopolamine-induced cognitive impairment [152]. However, other
studies using the same rat models reported no effect of metformin-fortified diet on cognitive
function, despite improving insulin sensitivity [153]. In ischemic models, metformin
improved neuron survival in dentate gyrus of diabetic mice [154]. In a rat model of forebrain
ischaemia, metformin treatment for 7 days restored regulation of the AMPK/brain derived
neurotrophic factor (BDNF)/70-kDa ribosomal protein S6 kinase (p70S6K) pathway with
enhanced learning and memory [155].

Several observational studies investigated the effects of metformin on cognitive func-
tion [156] although many of these studies were limited by small sample size with incomplete
documentation or adjustment for confounders, such as diabetes duration, glycaemic con-
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trol, duration of metformin use, and comorbidities. One of the major confounders is the
inhibitory effect of metformin on intestinal absorption of vitamin B12, especially with
prolonged use in high dose where subclinical vitamin B12 deficiency had been associated
with cognitive decline [157,158].

In a cross-sectional study of 4160 adults with normoglycemia (n = 1856), either with
(n = 318) or without (n = 1986) metformin treatment, metformin use was associated with
higher risk of vitamin B12 deficiency (odds ratio (OR) = 1.45, 95% CI: 1.03–2.02) and
1.3 times higher risk of cognitive impairment [159]. In a cross-sectional study conducted in
Australia involving patients with AD and mild cognitive impairment [158], amongst pa-
tients with diabetes (n = 126), worse cognitive performance was associated with metformin
use (OR = 2.23, 95% CI: 1.05–4.75), which was attenuated after adjustment for vitamin B12
levels (OR = 1.75, 95% CI: 0.81–3.78). On the other hand, in the Singapore Longitudinal
Aging Study [160], the authors compared metformin use (n = 204) vs. non-use (n = 161) in
diabetes patients with cognitive impairment (Mini-Mental State Exam ≤ 23). Metformin
use was inversely associated with cognitive impairment prospectively (OR = 0.49, 95%
CI: 0.25–0.95) with the lowest risk in those treated with metformin for 6 years or more [160].

Recently, in the prospective Sydney Memory and Ageing study including 1037 community-
dwelling adults without dementia aged 70–90 years [161], participants underwent com-
prehensive neuropsychological testing every 2 years including executive function, visu-
ospatial testing, and magnetic resonance imaging of brain to assess hippocampal volumes.
Amongst 123 patients with T2D, metformin users had slower decline in global cognition
and executive function. After adjustment for age, sex, BMI, smoking, blood pressure, and
apolipoprotein E (APOE) genotypes, metformin use was associated with 81% lower risk of
incident dementia than non-users [161].

There are few interventional studies of metformin on cognitive function and dementia.
In a pilot, cross-over study including nondiabetic adults, a daily dose of 2000 mg metformin
for 8 weeks was associated with favorable effects on executive function and measures
related to learning, memory, and attention capacity [162]. In another placebo-controlled
RCT involving 52 patients with T2D and depression, 6-month treatment with metformin
was associated with improvements in cognitive function [163]. In the Diabetes Prevention
Program, 2280 participants with IGT were randomised to receive metformin, placebo or
lifestyle intervention for a mean of 2.3 years. In the 12–14 years post-randomisation period,
metformin was associated with reduced risk of diabetes and lower plasma glucose with
a neutral effect on cognitive outcomes [164]. Taken together, these results suggested that the
effects of metformin on cognitive function depend on the dose and duration of metformin
treatment. Although the overall evidence supports the favourable effects of metformin on
cognitive function, this will need to be confirmed in larger and long-term interventional
trials [165].

4. Conclusions

Type 2 diabetes is a global health challenge associated with multiple morbidities
beyond cardiovascular–renal disease. The current COVID-19 pandemic highlighted the
vulnerability of people with diabetes during acute infection due to their abnormal metabolic
and proinflammatory milieu. With better control of cardiovascular risk factors, notably
blood pressure and lipids, persistent hyperglycemia and obesity continue to give rise to
other comorbidities including NAFLD, CKD, cancer, and cognitive dysfunction. Optimal
energy metabolism is critical in maintaining cellular structure and function in any organism.
Metformin inhibits mitochondrial respiratory chain, reduces ATP supply, and activates
the AMP kinase to reduce excessive endogenous glucose production and energy storage
in the form of protein and fat. These metabolic changes can improve insulin resistance,
an important feature in type 2 diabetes. By restoring the energy balance, metformin can
improve insulin action, glucose metabolism, and energy utilization at cellular levels. With
better understanding on the pathogenetic roles of gut microbiota, there are emerging
evidence supporting interactions between unabsorbed metformin and gut microbiota in
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reducing oxidative stress and inflammation which can trigger abnormal cell cycles in the
host. These non-AMPK dependent mechanisms may contribute to the mitigating effects of
metformin on cancer, infections, and age-related conditions, although further investigations
are needed to confirm these hypotheses. Taken together, in patients with T2D, metformin
forms a safe and efficacious low-cost base therapy for individualization of other GLDs.
In patients without diabetes, the paucity of data especially RCTs limits the indications
for use of metformin despite their potential benefits. Given the already extensive use of
metformin in patients with T2D, large-scale RCTs in people without diabetes evaluating
the effects of metformin on infection, cancer, and cognitive function will provide significant
insights in our pursuit of reducing the burden of noncommunicable disease and aging-
related co-morbidities.
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