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Abstract

Background: Automatic clinical text classification is a natural language processing (NLP) technology that unlocks
information embedded in clinical narratives. Machine learning approaches have been shown to be effective for
clinical text classification tasks. However, a successful machine learning model usually requires extensive human
efforts to create labeled training data and conduct feature engineering. In this study, we propose a clinical text
classification paradigm using weak supervision and deep representation to reduce these human efforts.

Methods: We develop a rule-based NLP algorithm to automatically generate labels for the training data, and then
use the pre-trained word embeddings as deep representation features for training machine learning models. Since
machine learning is trained on labels generated by the automatic NLP algorithm, this training process is called
weak supervision. We evaluat the paradigm effectiveness on two institutional case studies at Mayo Clinic: smoking
status classification and proximal femur (hip) fracture classification, and one case study using a public dataset: the
i2b2 2006 smoking status classification shared task. We test four widely used machine learning models, namely,
Support Vector Machine (SVM), Random Forest (RF), Multilayer Perceptron Neural Networks (MLPNN), and
Convolutional Neural Networks (CNN), using this paradigm. Precision, recall, and F1 score are used as metrics to
evaluate performance.

Results: CNN achieves the best performance in both institutional tasks (F1 score: 0.92 for Mayo Clinic smoking
status classification and 0.97 for fracture classification). We show that word embeddings significantly outperform
tf-idf and topic modeling features in the paradigm, and that CNN captures additional patterns from the weak
supervision compared to the rule-based NLP algorithms. We also observe two drawbacks of the proposed
paradigm that CNN is more sensitive to the size of training data, and that the proposed paradigm might not be
effective for complex multiclass classification tasks.

Conclusion: The proposed clinical text classification paradigm could reduce human efforts of labeled training data
creation and feature engineering for applying machine learning to clinical text classification by leveraging weak
supervision and deep representation. The experimental experiments have validated the effectiveness of paradigm
by two institutional and one shared clinical text classification tasks.
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Background

The initiation of the Health Information Technology for

Economic and Clinical Health Act (HITECH Act) in 2009

has fostered the rapid adoption of Electronic Health Rec-

ord (EHR) systems at US hospitals and clinics. The num-

ber of healthcare organizations with a fully operational

EHR system has increased to 22% in 2010, compared to

17% in 2009 [1]. Large amounts of detailed longitudinal

patient information, including lab tests, medications, dis-

ease status, and treatment outcomes, has been accumu-

lated electronically and becomes valuable data sources for

clinical and translational research [2–4]. A well-known

challenge faced when using EHR data for research is that

large amounts of detailed patient information is embedded

in clinical text (e.g., clinical notes and progress reports). Au-

tomated clinical text classification, one of the popular natural

language processing (NLP) technologies, can unlock infor-

mation embedded in clinical text by extracting structured in-

formation (e.g. cancer stage information [5–7], disease

characteristics [8–10] and pathological conditions [11]) from

the narratives. Many successful clinical studies applying clin-

ical text classification have been reported, including pheno-

typing algorithms [12, 13], detection of adverse events [14],

improvement of healthcare quality [15, 16] and facilitation of

genomics research [17–20].

Clinical text classification tasks can be tackled using either

symbolic techniques or statistical machine learning [21]. Ap-

plications built based on symbolic techniques involve hand-

crafted expert rules, such as regular expressions and logic

rules, implemented in rule-based NLP tools, such as Med-

Tagger [22]. It has been shown effective in the clinical do-

main due to the clinical sublanguage characteristics [23].

However, rule-based applications can be labor expensive and

cumbersome to develop, requiring collaboration between

NLP experts and healthcare professionals, and the resultant

applications may not be portable beyond the use case for

which it is designed.

Machine learning approaches have been shown to be ef-

ficient and effective for clinical text classification tasks [24,

25]. Despite the impressive improvement in these tasks, a

successful machine learning model usually requires exten-

sive human efforts to label a large set of training data. This

problem becomes more significant in the clinical domain,

mainly due to i) the lack of publicly available clinical cor-

pora due to privacy concerns, and ii) the requirement of

medical knowledge to accurately annotate clinical text.

Therefore, popular methods for creating labeled training

data, such as crowdsourcing, are not applicable for clinical

information extraction tasks.

In the literature, researchers have utilized the weak super-

vision strategy to train machine learning models on the

weakly labeled training data created by automated methods.

Weak supervision is a simple and adaptable approach le-

veraging programmatically created weakly labeled training

sets. It is proposed primarily for relation extraction from

text, wherein a known relation from a knowledge base

(e.g. Freebase) is likely to express that relation in an input

corpus [26, 27]. Furthermore, weak supervision has been

widely applied in other common NLP tasks including

knowledge-base completion [28], sentiment analysis [29],

and information retrieval [30]. In the biomedical domain,

weak supervision has been used to augment machine learn-

ing based classifiers to identify drug-drug interactions or

medical terms from biomedical literature [31–34]. In the

clinical domain, Wallace et al. [35] proposed a weak supervi-

sion approach to better exploit a weakly labeled corpus to

extract sentences of population/problem, intervention, com-

parator, and outcome from clinical trial reports.

In addition to labeled training data creation, feature engin-

eering, which is fundamental to machine learning, also re-

quires considerable human efforts. In order to enable

machine learning methods to process raw text data, we need

careful feature engineering to transfer the raw data into fea-

ture vectors. Recently, the deep representation learning has

become popular due to its capability to represent raw data as

a high level feature vector and due to its independence from

the classification task [36]. In NLP, word embeddings are

one of the most successful deep learning technologies with

the ability to capture high-level semantic and syntactic prop-

erties of words [37–39]. Word embeddings have been uti-

lized in various clinical NLP applications, such as clinical

abbreviation disambiguation [40], named entity recognition

[41], and information retrieval [42]. Henriksson et al. [43] le-

verage word embeddings to identify adverse drug events

from clinical notes. Their experiments show that employing

word embeddings could improve the predictive performance

of machine learning methods. Both Tang et al. [44] and Wu

et al.’s [41] studies show that word embedding features out-

perform other features for clinical named entity recognition.

In addition, word embeddings help improve the relation ex-

traction, such as relations between medical problems and

treatments, relations between medical problems and tests,

and relations between medical problems and medical prob-

lems, in clinical notes [45]. However, to the best of our

knowledge, there are no clinical applications in the literature

utilizing word embeddings as features for weak supervision.

In particular, no study utilizes rule-based NLP for generating

weakly labeled training data for machine learning methods

and uses word embeddings as features. Our hypothesis is

that deep representation using word embeddings might en-

able machine learning methods to learn extra patterns from

weakly labeled training data and outperform rule-based NLP

systems used to generate the weak labels since it could then

find semantically similar words in embedding space while

these words may not be included in the NLP rules.

In this study, we propose a clinical text classification

paradigm using weak supervision and deep representa-

tion to reduce human efforts for the labeled data
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creation and feature engineering. The proposed para-

digm utilizes the rule-based NLP algorithms to automat-

ically generate weak labels for training data. We then

use the pre-trained word embeddings as deep represen-

tation features to eliminate the need of task-specific fea-

ture engineering for training machine learning models.

Since the machine learning models are trained on labels

generated by the NLP algorithm instead of human anno-

tators, this training process is called weak supervision.

To illustrate the effectiveness of the proposed paradigm,

we conducted empirical experiments on two institu-

tional case studies at Mayo Clinic: smoking status classi-

fication and proximal femur (hip) fracture classification,

and one case study using a public dataset: the i2b2 2006

smoking status classification shared task. We tested four

widely used machine learning models in the paradigm,

namely, Support Vector Machine (SVM), Random Forrest

(RF), Multilayer Perceptron Neural Networks (MLPNN),

and Convolutional Neural Networks (CNN), and the advan-

tage of word embedding features in the proposed paradigm.

Furthermore, we showed the impact of the training data size

on the performance of machine learning methods.

Methods

We here describe the proposed clinical text classification

paradigm using weak supervision and deep representa-

tion. Figure 1 illustrates the schema of the proposed

paradigm. In the first step, a rule-based NLP algorithm

is developed based on expert knowledge and experience,

and then applied on non-labeled clinical text to

automatically generate weak labels. By doing so, one can

create a large set of weakly labeled training data quickly.

In the second step, we use the pre-trained word embed-

dings to map each instance into a deep semantic vector

representation, and adopt weak supervision to train ma-

chine learning methods using the deep representations

as input and the corresponding weak labels as learning

objectives. Eventually we utilize the trained machine

learning model to extract information from unseen clin-

ical text.

In the following, we theoretically prove that training

machine learning models using weak supervision ap-

proximates training with the true labels in terms of per-

formance. We define the rule-based NLP algorithm as λ

containing m rules, i.e., λi : d {y1, y2,…, yL}, where λi, i

= 1, 2, …, m is the ith rule and d is the clinical docu-

ment, {y1, y2,…, yL} is a set of labels for the document d.

Here, for simplicity, we assume that the task is a binary

classification (i.e., λi : d {1, −1}). Suppose that each rule

is a function λi that has the probability ϕi of labeling the

document correctly, we can write the distribution of the

rule-based NLP algorithm as below:

pϕ Λ;Yð Þ ¼
1

2

Y

m

i

ϕi1 Λ¼Yf g þ 1−ϕið Þ1 Λ≠Yf g

� �

; ð1Þ

where Λ is the label output by the NLP algorithm, Y is

the true label, and each label is assumed to be uniformly

distributed.

Fig. 1 The schema of clinical text classification paradigm using weak supervision and deep representation. Note: The clipart in this figure is
designed by the authors
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Suppose that the word embedding features are gener-

ated from a mapping function f, we can write the empir-

ical loss function Lϕ(w) of using the weak labels as:

Lϕ wð Þ ¼
1

Dj j

X

d∈D

E Λ;Yð Þ�pϕ
log 1þ exp −wT f dð ÞY

� �� �

jΛ ¼ λ dð Þ
� �

þ ρ wk k2;

ð2Þ

where D is the clinical document set, |D| is the number

of documents in D, w is a parameter and ρ is a l2
regularization parameter. Similarly, we can write the loss

function of using true labels as:

L wð Þ ¼
1

Dj j

X

d∈D

E Λ;Yð Þ�p log 1þ exp −wT f dð ÞY
� �� �� �

þ ρ wk k2;

where p is the distribution of true labels. We assume

that there are m =Ο(1) rules and |D| =Ο(ϵ−2) training

data where ϵ is the parameter estimate error. According

to the mean value theorem and Cauchy-Schwarz in-

equality [46], we can derive an upper bound for the dif-

ference between the loss function using true labels (i.e.,

L(w)) and that using weak labels (i.e., Lϕ(w)), i.e.,

L wð Þ−Lϕ wð Þ
�

�

�

�≤

c wk kϵ

2

where c is a constant value. Since w generally satisfies kwk

≤
1
2ρ , the upper bound is small enough. Thus, the weak

supervision addresses the problem of lacking large labeled

training data for machine learning models without hurting

the performance of clinical text classification.

Although any machine learning method can be applied in

the proposed paradigm, we would like to investigate which

model fits better in the paradigm. In this study, we tested

four prevalent machine learning methods, namely Support

Vector Machine (SVM), Random Forrest (RF), Multilayer

Perceptron Neural Networks (MLPNN), and Convolutional

Neural Networks (CNN). SVM is a supervised learning

method that has been widely used for classification [47].

We utilized linear SVM and set the parameter C to 10 in

our experiments. RF is an ensemble of classification trees,

where each tree contributes with a single vote for the as-

signment of the most frequent class to the input data [48].

Compared to SVM, RF has high classification accuracy and

ability to model complex interactions among input vari-

ables. In our experiment, we set the number of trees in the

forest to 5 for RF. MLPNN is a class of feed-forward artifi-

cial neural networks consisting of at least three layers of

nodes: an input layer, a hidden layer and an output layer.

The architecture of MLPNN is shown in Fig. 2. As a

comparison to deep neural networks, we applied a

single-layered MLPNN, set the number of neurons to 15

and used the rectified linear unit function as the activation

in our experiments. CNN is a specific architecture of

MLPNN with deep hidden layers formed by a convolution

operation followed by a pooling operation [49]. In our ex-

periment, we used a CNN model consisting of embedding

layer, convolution layer and fully-connected layer with a

softmax function, as shown in Fig. 3. We tested filter sizes

of 128, 256, 512, and chose 128 as the filter size since it had

the best performance. We utilized the categorical cross en-

tropy as loss function, the rectified linear unit (ReLU) as ac-

tivation function, and the root mean square propagation

(RMSprop) as gradient descent optimization algorithm in

the CNN.

In addition to the large set of automatically gener-

ated labeled training data using the proposed

paradigm, we used word embeddings as a deep repre-

sentation of words to capture high-level semantic and

syntactic properties. The word embeddings used in

our experiments were trained using word2vec [50] on

a large corpus consisting of the textual clinical notes

for a cohort of 113 k patients receiving their primary

care at Mayo Clinic, spanning a period of 15 years

from 1998 to 2013 [51]. We set the dimension of

word embeddings to 100 since our previous study

shows that word embeddings with the dimension size

of 100 can best represent medical word semantics

[51]. For CNN, the pre-trained word embeddings are

directly utilized to map words into vectors in the em-

bedding layers. In order to obtain the feature of each

instance for SVM and RF, we calculated the mean of

the summation of word embeddings of words in the

instance. Specifically, given an instance d = {w1, w2, ..,

wM} where wi, i = 1, 2, …, M is the ith word and M

is the total number of words in this instance, the fea-

ture vector x of instance d is defined by:

Fig. 2 Architecture of the MLPNN model
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x ¼
1

M

X

M

i

xi; ð3Þ

where xi is the embedding vector for word wi from the

word embeddings.

To verify the strength of word embeddings in the pro-

posed paradigm, we compared the performance of word

embeddings in SVM and RF with two other popular fea-

ture representations: term frequency-inverse document

frequency (tf-idf) and topic modeling. Since the layer of

word embeddings is a component of the CNN model, this

comparison is not conducted on CNN. The tf-idf docu-

ment representation is a common term weighting scheme

in information retrieval, which has been also found effect-

ive for document classification [52–54]. It represents a

document using a vector with dimension as the vocabu-

lary size of the corpus and elements corresponding to the

tf-idf weight of each word w in the document d. Topic

modeling is a widely used semantic representation of

document features. To derive document representation

using topic modeling, we employed Latent Dirichlet Allo-

cation (LDA) [55], and set the number of topics as 100 to

be consistent with the dimension of word embeddings.

The document representation was then derived similarly

to word embeddings where xi in Eq. (3) becomes the

word-topic mixture distribution of word wi.

Precision, recall, and F1 score were used as metrics to

evaluate the performance of the proposed paradigm. All

statistical analysis was conducted using t-test at signifi-

cance level of 5% (p = 0.05).

Materials

We evaluated the effectiveness of the proposed para-

digm on two practical binary clinical text classification

case studies at Mayo Clinic: smoking status classifica-

tion and proximal femur (hip) fracture classification,

and one case study using a public dataset: the i2b2

2006 smoking status classification shared task. This

study was a retrospective study of existing records.

The study and a waiver of informed consent were ap-

proved by Mayo Clinic Institutional Review Board in

accordance with 45 CFR 46.116 (Approval #17–

003030).

Case study 1: Mayo Clinic smoking status classification

We first examined the proposed paradigm on a smoking

status classification task at Mayo Clinic with the aim of

identifying the smoking status in a clinical note, i.e.,

smoker (including current smoker and past smoker) or

non-smoker. We curated a corpus of 32,336 instances by

using the “social and behavior history” section from the

clinical notes in the Mayo Clinic EHR system [56, 57].

To evaluate the performance, we randomly sampled 475

of them to create a test dataset with the gold standard

labels manually annotated by an expert with medical

background. For the remaining 31,861 clinical notes, we de-

veloped a simple rule-based NLP algorithm, as shown in

Table 1, to extract smoking status instances. Note that the

smoking status was non-smoker if no information was ex-

tracted from a clinical note. By doing so, we created a large

weakly labeled training dataset for machine learning models.

Case study 2: Proximal femur (hip) fracture classification

In the second experiment, we evaluated the paradigm on a

proximal femur (hip) fracture classification task at Mayo

Clinic. Among fractures, proximal femur (hip) fractures are

of particular clinical interest as they are most often related to

bone fragility from osteoporosis, and are associated with

significant mortality and morbidity in addition to high

health care costs [58]. In this task, a set of 22,969 radiology

reports (including general radiography reports, computed

tomography reports, magnetic resonance imaging reports,

nuclear medicine radiology reports, mammography reports,

Fig. 3 Architecture of the CNN model

Wang et al. BMC Medical Informatics and Decision Making            (2019) 19:1 Page 5 of 13



ultrasonography reports, and neuroradiology reports,

amongst others) from 6,033 Mayo Clinic patients were used

to determine whether a proximal femur (hip) fracture could

be identified using radiology reports [59, 60]. The subjects

were aged 18 years of age or older, residents of Olmsted

County, and had experienced at least one fracture at some

site during 2009–2011. Similar to the previous experiment,

we randomly sampled 498 radiology reports as testing data

and asked a medical expert with multiple years of experi-

ence abstracting fractures to assign a gold standard to each

radiology report.

Table 2 shows the rule-based NLP algorithm for this

proximal femur (hip) fracture classification task. The rules

were developed and refined through verification with phy-

sicians and supplemented with historical rules developed

by the Osteoporosis Research Program at Mayo Clinic to

aid the nurse abstractors in proximal femur (hip) fracture

extraction. In this NLP algorithm, the fracture modifiers

must appear in the context of keywords within a sentence.

We ran this NLP algorithm on the training dataset and

obtained a weak label for each document, which was sub-

sequently used to train machine learning models. Finally,

we tested the performance on the testing dataset using the

gold standard annotated by the medical expert.

Case study 3: i2b2 2006 smoking status classification

In the third case study, we tested the proposed approach

on i2b2 2006 smoking status classification shared task

with the aim of automatically determining the

pre-defined smoking status of patients from information

found in their discharge records [61]. These five

pre-defined smoking status categories are: past smoker,

current smoker, smoker, non-smoker, and unknown, where

a past and current smoker are distinguished based on

temporal expressions in the patient’s medical records.

We utilized a total of 389 documents from this i2b2

dataset, including 35 documents of current smoker, 66 of

non-smoker, 36 of past smoker, and 252 of unknown. We

utilized the NLP algorithm in case study 1 for identifying

non-smoker and the algorithm presented in Table 3 for

current smoker and past smoker.

Results

Results of the clinical text classification paradigm

Table 4 shows the results of the proposed paradigm com-

pared with the rule-based NLP algorithms in the three

case studies. In the first two institutional case studies,

CNN achieved the best performance amongst the tested

machine learning methods, and outperformed the rule-

based NLP algorithms for both tasks with statistical sig-

nificance. The results imply that CNN is able to capture

hidden patterns from the weakly labeled training data that

are not included in the rule-based NLP algorithms. SVM

is inferior to CNN for the Mayo Clinic smoking status

classification, but comparable to CNN for the proximal

femur (hip) fracture classification. The performance of RF

is worse than CNN for both classification tasks. RF per-

forms better than SVM for the Mayo Clinic smoking sta-

tus classification while worse for the proximal femur (hip)

fracture classification. MLPNN performs worse than CNN

but is comparable to SVM and RF in both tasks. The re-

sults from both experiments show that the CNN is the

best fit in the proposed paradigm and could outperform

the rule-based NLP algorithms.

Unlike the first two institutional case studies, we ob-

serve that the proposed paradigm using four machine

learning methods is not comparable to the rule-based

NLP algorithm for the i2b2 smoking status classification

shared task. CNN is inferior to other conventional ma-

chine learning methods and SVM achieves the best per-

formance amongst the machine learning methods. The

reason might be two-fold. First, the size of i2b2 dataset

is too small for machine learning models to learn rules,

particularly for CNN which requires a large dataset,

while the NLP algorithm is developed for the task with

manual handcrafted rules based on developer’s know-

ledge and experience. Second, the dataset is imbalanced

for machine learning methods to learn latent rules for

each category. For example, only 9% of the data was in

the categories of current smoker and past smoker.

Impact of the word embedding features

The results of incorporating word embeddings or other fea-

tures are listed in Table 5. The machine learning models

Table 1 Keywords of the NLP algorithm for the extraction of smoking status

Smoker smokes?, smoked, smoking, smokers?, tobaccos?, cigarettes?, cigs?, pipes?, nicotine, cigars?, tob

Non-
Smoker

(no|non|not|never|negative)\W*(smoker|smoking|smoked|tobacco), nonsmoker, denies\W*smoking,
(tobacco|smoke|smoking|nicotine)\W*(never|no), doesn\'t smoke, 0|zero smokers?

Table 2 Keywords of the NLP algorithm for the extraction of proximal femur (hip) fracture

Keywords cervical|femoral head|neck, (trans)?cervical, (sub)?capital, intracapsular, trans(|-)?epiphyseal, base of neck, basilar femoral neck,
cervicotrochanteric, (greater|lesser) trochanter, (inter|per|intra) trochanteric

Fracture
Modifiers

(micro-?)?fracture(s|d)?, (epi|meta)physis, separation, fxs?, broken, cracked, displace(d)?, fragment
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using word embedding features perform better than those

using tf-idf and topic modeling features with statistical sig-

nificance. The reason might be that word embedding fea-

tures could alleviate the feature sparsity issues compared to

tf-idf features [62], and represent better semantics com-

pared to topic modeling features [63]. The models using

topic modeling features are better than those using tf-idf

features since topic modeling features contain semantic in-

formation of words. Since topic modeling requires prior

distributions that are always difficult to define for a given

corpus [64], its performance is usually inferior to word em-

beddings. This experiment verifies the advantage of word

embeddings used as features for machine learning models

in the proposed paradigm.

Extra patterns learned by CNN

In this section, we compare the rule-based NLP algo-

rithm with the clinical text classification paradigm using

CNN, and demonstrate that additional hidden patterns

could be captured by CNN compared to the rule-based

NLP algorithm.

In the Mayo Clinic smoking status classification task,

the information extracted by CNN and that by the

rule-based NLP algorithm is different for 7 out of 475 test-

ing cases. Among these 7 cases, CNN correctly identified

the smoking status for 5 cases (71.4%). Table 6 lists three

typical cases where the results of CNN and the rule-based

NLP algorithm are different. In Case 1, the rule-based

NLP algorithm failed due to the misspelled word “tobaco”

in the clinical note not being considered in the rules.

CNN was able to address this issue since it used word em-

bedding features that represent the misspelled word in the

neighborhood of the correct form in the semantic space [51].

The rule-based NLP incorrectly extracted non-smoker infor-

mation from Case 2 due to the pattern “no smoking”. How-

ever, the whole statement “no smoking after age XXX”

indicates a past smoker. This semantic meaning could be

captured by CNN. CNN failed in Case 3 where the

rule-based NLP algorithm correctly captured the correct

smoking status due to the rules inspired by human experi-

ence. Many physicians write clinical notes following certain

structures, which result in semi-structured clinical note, such

as “Tobacco current use: No never used any” in Case 3.

Since we were aware of this based on experts’ experience,

the rules in the NLP algorithm could handle it properly.

However, machine learning methods might focus on the pat-

tern “Tobacco current use” and thus extracted the smoking

status incorrectly.

The proximal femur (hip) fracture identified by CNN

differs from that by the rule-based NLP algorithm for 6

out of 498 testing cases. Among these 6 cases, CNN cor-

rectly identified the hip fracture status for 5 cases (83.3%).

Similar to the Mayo Clinic smoking status classification

Table 3 Keywords of the NLP algorithm for the extraction of smoking status in the i2b2 2006 shared task

Current
Smoker

(does|has|continues to) smoked?, uses tobacco, active smoker, (current|currently) (smoker|smoking), current smoker, tobacco
use\W*(yes|still using|still smoking|smokes)

Past Smoker (stop|stopped|quit|quitted|discontinued) (tobacco|smoking), (previous|prior|remote|distant|former|ex-|ex) (tobacco|smoker), stop(ped)?
smoking, tobacco use\W*(smoked|quit), smoking\W*(used|former)

Table 4 Comparison results of the proposed clinical text
classification paradigm

Mayo Clinic Smoking Status Classification

Precision Recall F1 Score

Rule-based NLP 0.91 0.91 0.91

SVM 0.80 0.79 0.80

RF 0.82 0.81 0.81

MLPNN 0.85 0.85 0.85

CNN 0.93* 0.92* 0.92*

Proximal Femur (Hip) Fracture Classification

Precision Recall F1 Score

Rule-based NLP 0.93 0.92 0.93

SVM 0.95 0.95 0.95

RF 0.93 0.93 0.93

MLPNN 0.95 0.95 0.95

CNN 0.97* 0.97* 0.97*

i2b2 2006 Smoking Status Classification

Precision Recall F1 Score

Rule-based NLP 0.91 0.89 0.88

SVM 0.86 0.84 0.84

RF 0.85 0.84 0.83

MLPNN 0.83 0.82 0.82

CNN 0.76* 0.81* 0.77*

The asterisk indicates that difference between CNN and other methods is

statistically significant

Table 5 Comparison of using different numbers of documents
in the fracture task

Mayo Clinic Smoking Status Classification

tf-idf topic modeling word embeddings

SVM 0.69 0.73 0.80*

RF 0.69 0.72 0.81*

Proximal Femur (Hip) Fracture Classification

tf-idf topic modeling word embeddings

SVM 0.85 0.91 0.95*

RF 0.77 0.92 0.93*

The asterisk indicates that difference between word embeddings and other

features is statistically significant
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task, a few typical cases are listed in Table 6 for the hip

fracture classification task. In Case 1, the rule-based NLP

algorithm failed to extract fracture information since the

NLP failed to match the pattern of the keyword “fx” and

“right femoral neck”, which occurred across sentences.

CNN has no such issue since it does not require a sen-

tence detection algorithm. Case 2 is likely a fracture in

proximal femur where a percutaneous pin has been

placed. Similar to Case 1 in the Mayo Clinic smoking sta-

tus classification task, the rule-based NLP algorithm failed

in Case 2 due to the missing fracture keyword “fracture”

in the report. Unlike the rule-based NLP algorithm that

entirely relies on the rules, CNN could correctly extract

the fracture information since the representations of these

keywords in the embedding space are semantically similar

to “fracture”. Case 3 is not describing a proximal femur frac-

ture based on the context. However, the rule-based NLP al-

gorithm matched the rules in the sentence “Fx…cervical”

and ignored the context in the middle. In contrast, CNN

could take the context into account for calculating the docu-

ment representation using word embedding features and ac-

curately determined this is not a proximal femur fracture.

The rule-based NLP algorithm correctly extracted fracture

information for Cases 4 whereas CNN failed. The reason

might be that the proximal femur fracture signal in this case

is too weak for CNN as the document only mentions the

fracture in the indication.

For the i2b2 2006 smoking status classification shared

task, CNN differs from the rule-based NLP algorithm on

21 out of 79 testing cases among which CNN only cor-

rectly identified 5 cases (23.8%). Most of these 5 cases are

non-smoker cases where CNN could detect the negation

while the NLP algorithm does not consider certain specific

rules, such as classifying “tobacco history: none” as

non-smoker. Among the 16 cases where the NLP algo-

rithm correctly identified the smoking status, 8 cases were

categorized to unknown by CNN. This may be due to a

large portion of unknown cases existing in the unbalanced

training dataset (around 65%). In addition, CNN does not

perform well on identification of cases that are small in

terms of training data size. For example, only 4 past

smoker cases in the whole dataset contain “remote

smoker” as keywords. Thus, CNN failed to classify pa-

tients with mentions of “remote smoker history” in their

clinical documents into past smokers while the NLP algo-

rithm could correctly extract it due to the rule “(previou-

s|prior|remote|distant|former|ex-|ex) (tobacco|smoker)”.

Table 7 lists some keywords in our institutional classi-

fication tasks and the selected semantically similar words

found by the deep representation method. First, we ob-

serve that the deep representation could capture similar

words regardless of morphological change. For example,

“cigar”, “cigarettes”, and “cigars” are similar words to

“cigarette”, “fx” is similar to “fracture”. More interest-

ingly, we could find misspelled words similar to the cor-

rect forms, such as “nicotene” to “nicotine”, “cervial” to

“cervical”, and “intratrochanteric” and “introchanteric” to

“intertrochanteric”. Second, the deep representation

method could find semantically similar words. For ex-

ample, “cigarette” is semantically similar to “tobacco”;

“intramedullary”, “intermedullary”, “nailing”, and “pin-

ning” are related to surgical fixation of the hip fracture;

“transtrochanteric”, “pertrochanteric”, “basicervical”, and

“intertroch” are similar to the keyword “intertrochanteric”

in terms of a description of the location of the proximal

femur. Keywords of either different morphologies or se-

mantics may not be easily identified by humans when de-

veloping a rule-based NLP algorithm.

Discussion

Application of machine learning methods to clinical text

classification tasks is hampered by the need for extensive

human efforts to create large labeled training data sets

and to conduct feature engineering [65]. The proposed

paradigm could alleviate this problem by leveraging weak

supervision and deep representation. In the weak

Table 6 Cases from the institutional classification tasks where the results of CNN and the rule-based NLP algorithm are different

Task Case
#

Text Snippets Gold Standard Rule-
based NLP

CNN

Mayo Clinic Smoking Status
Classification

1 …She is a taxi driver and she has never used tobaco products… Non-smoker X Y

2 …No smoking after age XXX… Smoker X Y

3 …Tobacco current use: No never used any... Non-smoker Y X

Proximal Femur (Hip)
Fracture Classification

1 …Indications: femur fx…Cannulated screw fixation of the right
femoral neck…

Proximal Femur
fracture

X Y

2 … Pin fixation across the proximal left femoral neck… Proximal Femur
fracture

X Y

3 Exam: Sp Cerv*2vw Flex/Ext only Indications: Fx Vertebra Cervical
Closed…

Non-Proximal
Femur fracture

X Y

4 Exam: R Major Jnt Asp and/or Inj Indications: R hip inj/marc/steroid; fx
femur neck nos closed, pain hip...

Proximal Femur
fracture

Y X

We use Y to indicate the correct extraction result and X otherwise
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supervision, the rule-based NLP algorithm was developed

to automatically assign weak labels for training data. In

the deep representation, word embeddings learned by

deep neural networks were utilized as features. We have

demonstrated that our approach can achieve high per-

formance on binary clinical text classification tasks. The

proposed approach could reduce human efforts in terms

of data annotation and feature engineering. Since there

are publicly available NLP algorithms [21] and pre-trained

word embeddings “(https://github.com/3Top/word2ve-

c-api)”, the proposed paradigm may be an easier way for

non-experts to use machine learning methods for clinical

text classification in healthcare institutions.

In the recent literature, the majority of clinical applica-

tions using weak supervision as a deep learning method

have focused on medical image data. Since weak supervi-

sion does not require manual annotation, it becomes scal-

able for annotating a large scale of local patches for a

medical image classification task. For example, Yan et al.

[66] used the pre-trained CNN to automatically label a

large set of patches for a bodypart multiclass image classifi-

cation problem. Jia et al. [67] developed a weakly supervised

learning algorithm to learn to segment cancerous regions

in histopathology images. Madooei et al. [68] used weak

supervision in a binary image classification task to

categorize blue-white structures in dermoscopy images.

Similar to our results, these studies attain performance

close to machine learning approaches with supervision. Re-

garding using weak supervision on text data, researchers fo-

cused applications on biomedical texts, such as biomedical

word sense disambiguation [69] and biomedical named en-

tity recognition [70]. Unlike our approach that leveraged

NLP algorithms, these approaches utilized external know-

ledge base to automatically generate labels. For example,

Sabbir et al. [69] used the MSH WSD dataset for weak

supervision and Fries et al. [70] used biomedical resources

like lexicons in the weak supervision. Similarly, these ap-

proaches achieved competitive performance compared to

state-of-the-art systems trained on hand-labeled data. Our

proposed approach attempts to apply weak supervision to

the clinical text data and provides a clinical text classification

paradigm.

Our study shows that deep neural networks are robust to

massive label noise and that sufficiently large training data

is important for effectively training deep neural networks,

which is consistent with a recent study in the common ma-

chine learning domain [71]. While the experimental com-

parison has shown the advantage of deep neural networks

over the conventional machine learning approaches, it may

also overestimate the performance of deep neural networks.

The reason is that the neural network methods rely on a

large training dataset and have been developed for more

complex tasks rather than binary document classification.

There is also improvement space for CNN on our clinical

text classification tasks by tuning parameters, initialization

methods and loss functions. However, it requires manual

engineering and it is not guaranteed that the optimal pa-

rameters are generalizable to a different task.

We have empirically shown that the additional rules

deep neural networks learned are based on the seman-

tically similar words identified by the deep word embed-

ding representation. These semantically similar words

could be leveraged to augment the rules of the NLP al-

gorithm in the future work. The deep representation also

found noisy words that were irrelevant to the specific

clinical text classification task. We would thus like to

study how to eliminate noisy words identified by deep

word embedding representation in the future work. In

addition, other deep representation methods, such as

character embeddings [72], are also subject to a future

study.

Evaluation of the portability of the proposed paradigm

is also an interesting topic. Since clinical practice and

workflow vary across institutions, the performance of

NLP systems varies across institutions and sources of

data [73]. An NLP system performing well in one insti-

tution might need to redesign rules according to the

sublanguage characteristic in the institutional EHR sys-

tem, which requires lots of efforts. However, machine

learning models may not need extra modification when

Table 7 Keywords for the institutional classification tasks and the corresponding semantically similar words found by the deep
representation method

Task Keyword Selected semantically similar words

Mayo Clinic Smoking Status
Classification

smoke secondhand, thirdhand, pipes, nutcrackers, cigs

tobacco cigarettes, cigarette, cigar, cigars, tobaco

cigarette cigar, hookah, tobacco, cigarettes, cigars

nicotine nicotene, nicoderm, nictoine

Proximal Femur (Hip) Fracture
Classification

fx fracture, comminuted, pinning, displaced, fractures

intertrochanteric intramedullary, nailing, pinning, intratrochanteric, introchanteric, transtrochanteric,
pertrochanteric, basicervical, intertroch

greater
trochanter

trochanters, troch, trochanteric
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switching from one institution to another as they learn

rules automatically, which may significantly reduce im-

plementation time and expenses. Therefore, the portabil-

ity of the proposed paradigm across different institutions

is an important research topic and subject to a future

study.

A few questions regarding the theory of the proposed

paradigm remains open. For example, it is not clear how

simple an NLP algorithm (i.e., how many rules) is suffi-

cient for machine learning methods and what accuracy

an NLP algorithm should have (i.e., how small should ϵ

be) to generate useful weak labels.

Limitations

The first limitation of this study is that CNN is sensitive to

the data size. One question we are interested is: do we

really need the entire dataset of 31,861 clinical notes for

training in the Mayo Clinic smoking status classification

task or that of 22,471 radiology reports for training in the

proximal femur (hip) fracture classification task? In order

to answer this question, we tested the proposed paradigm

by using different sizes of training data, namely 1000, 2500,

5000, 10,000, and 20,000. Note that these training data were

randomly sampled from the entire dataset. Figure 4 depicts

the F1 score curves of machine learning methods and the

rule-based NLP algorithms for the Mayo Clinic smoking

status classification and proximal femur (hip) fracture clas-

sification tasks. When the data size is 1000, SVM and RF

outperform CNN in both tasks. When the data size in-

creases to 5000, the performance of CNN increases dramat-

ically and becomes better than SVM and RF in both tasks.

As the data size becomes 10,000, CNN does not have much

performance gain compared to the data size of 5000, but it

outperforms the rule-based NLP algorithm for both tasks.

When the data size is 20,000, the performance of CNN is

the same as that when the data size is 10,000. The perform-

ance curves of CNN clearly show that this deep learning

method is more sensitive to the data size, while the

rule-based NLP algorithms and the conventional machine

learning methods are more resistant to the data size. This

result also explains why CNN underperforms the conven-

tional machine learning methods for the i2b2 2006 smoking

status classification shared task. We can also see that 5000

documents (about 20%) of training data might be sufficient

for CNN to learn most extraction patterns for a single con-

cept. However, how much data is sufficient for training

CNN is still an open question and needs further research.

The second limitation of this study is that the pro-

posed paradigm was shown effective for simple binary

clinical text classification tasks that aim to extract single

concepts but less effective for complex multiclass clinical

text classification tasks that aim to extract multiple con-

cepts, which is shown by the case study of i2b2 2006

smoking status classification shared task. This limitation

may be due to the small size of training data and imbal-

anced i2b2 dataset. Therefore, we will create a large

multiclass clinical text dataset to evaluate the proposed

paradigm for extracting multiple concepts in the future.

Though deep learning models have achieved the state-

of-the-art performance on several NLP tasks, the third

limitation of this study is that deep learning models in-

herently lack interpretability compared to the rule-based

algorithms. In this study, we have shown this drawback

in the error analysis. The rule-based algorithms are easy

to interpret and rules can be added or modified easily.

However, the rule-based algorithms require extensive

human efforts to develop as well as expert knowledge

and experience. As a matter of fact, researchers in the

deep learning domain have conducted preliminary work

to interpret deep models and deep representation fea-

tures. For example, Erhan et al. [74] interpreted deep

networks by visualizing the hierarchical representations

learned by deep networks. Che et al. [75] introduced a

powerful knowledge-distillation approach to learn inter-

pretable deep learning models. Therefore, we will study

the interpretability of the proposed paradigm and

Fig. 4 Comparison of using different sizes of training dataset for Mayo Clinic Smoking Status Classification (left figure) and Proximal Femur (Hip)
Fracture Classification (right figure). Note: The vertical axis represents the size of training data. The vertical axis represents the F1 score
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compare it with the rule-based algorithms for clinical

text classification tasks in the future.

Conclusions

In this paper, we proposed a clinical text classification

paradigm using weak supervision and deep representation.

In this paradigm, we first developed a rule-based NLP al-

gorithm to automatically generate labels for the training

data, and then used the pre-trained word embeddings as

deep representation features to eliminate the need for

task-specific feature engineering for training machine

learning models. Although the training data was weakly

labeled, we theoretically showed that machine learning

models trained from these weak labels could achieve simi-

lar training performance to that trained from true labels.

We validated the effectiveness of the proposed paradigm

using two institutional case studies at Mayo Clinic: smok-

ing status classification and proximal femur (hip) fracture

classification, and one case study using a public dataset:

the i2b2 2006 smoking status classification shared task.

We tested four prevalent machine learning models, i.e.,

SVM, RF, MLPNN and CNN. The results from both insti-

tutional experiments show that the CNN is the best fit in

the proposed paradigm that could outperform the

rule-based NLP algorithms. We showed that word embed-

dings significantly outperformed tf-idf and topic modeling

features in the paradigm, and that CNN could capture add-

itional patterns from the weak supervision compared to the

rule-based NLP algorithms. We also overserved two draw-

backs of the proposed paradigm. One is that CNN is more

sensitive to the size of training data than the rule-based NLP

algorithm and the conventional machine learning methods.

The other drawback is that the proposed paradigm might

not be competitively effective for complex multiclass clinical

text classification tasks, as shown by the case study of i2b2

2006 smoking status classification shared task.
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