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Abstract - This paper describes an automated layout
design technique for the gated-clock design. Two issues
must be considered for gated-clock circuits to work cor-
rectly. One is to minimize the skew for gated-clock nets.
The other is to keep timing constraints for enable-logic
parts. We propose the layout design technique to taking
these things into consideration. We developed Gated-
Clock Tree Synthesizer for the first issue, and Timing
Constraints Generator and Clock Delay Estimator for
the second. We applied it to a practical gated-clock cir-
cuit. By our technique, the clock-skew could be less than
0.2ns keeping timing constraints for enable-logic parts.

I. Introduction

Recently, the market for portable electric appliances has
grown rapidly, generating great interest in low-power design.
Gated-clock design[1] is one of the most important tech-
niques to reduce power dissipation. From our experience,
30-50% of power is dissipated on clock-lines in a logic chip.
By the gated-clock technique, power dissipated on clock-
lines including synchronous storage elements such as flip-
flops and latches, can be saved.

A number of approaches have been proposed for the
gated-clock design. Benini et al.[2] introduced the concept
of “Moore-state” on Mealy FSM(Finite State Machine).
They showed that clock supply can be stopped when a pres-
ent state lies in a Moore-state. He proposed the algorithm of
generating a locally-Moore machine and gated-clock struc-
ture on FSM. Wu et al.[3] used quaternary representation for
behaviors of signals. They proposed the method of finding a
gated clock signal instead of a normal clock signal using
Karnaugh maps, by checking quaternary value of each flip-
flop in a circuit. Téllez et al.[4] showed the algorithm for
gated-clock tree construction using CDFG(Control-Data
Flow Graph), that is a result of scheduling and allocation. A
binary clock tree is arranged according to its activity pattern
obtained from CDFG. These are the techniques of finding
enable signals, and generating gated-clock structures using

FSMs[2], extended Boolean functions[3], and CDFGs[4].
The techniques of finding enable signals are important for

the gated-clock design, however, there is another important
issue from a practical point of view. That is a timing assur-
ance method to ensure that a gated-clock circuit works cor-
rectly. There have been few proposals for such a timing
assured implementation method, and it is the very reason
why the gated-clock design is not so commonly used for
practical circuits, especially ASICs. For the gated-clock
design, timing related to enable signals and the clock-skew
must be treated carefully. If timing constraints for enable
signals are violated, irregular clock-rising at a clock-input of
some registers may occur. This causes unexpected data-
loading at the registers in the gated-clock circuit, and the
circuit works incorrectly. We propose an automated design
method to ensure such unexpected data-loading does not
occur. Two issues must be considered for the timing assur-
ance. One is to minimize the clock-skew even when there
are both normal clock buffers and gated clock buffers in
clock nets. The other is to keep timing constraints for en-
able-logic parts after placement and route.

In this paper, we propose an automated layout design
method for the gated-clock design, taking the issues men-
tioned above into consideration. For this purpose, we have
developed EDA tools named Clock Delay Estimator(CDE),
Gated-Clock Tree Synthesizer(Gated-CTS), and Timing
Constraints Generator(TCG). We have constructed a layout
flow for the gated-clock design including these tools. The
remainder of the paper is organized as follows. Section II
introduces gated-clock design style, and defines a problem
for timing issues. Section III presents the EDA tools devel-
oped for the gated-clock design. Section IV proposes the
layout flow using the EDA tools mentioned above. Section
V presents an experimental result using a practical circuit.

II. Preliminary

A. Gated-Clock Design



  By the clock-gating technique, a non gated-clock circuit
as illustrated in Fig.1(a) can be transformed into a gated-
clock circuit shown in Fig.1(b), where REG is a register, and
MUX is a multiplexer whose s-input is a control signal. In
this case, the signal ENA must satisfy the following condi-
tion, where DCREG is a don't-care condition of the register
REG.

    onset(LOAD - DCREG) c onset(ENA)
                     c onset(LOAD + DCREG)

Clock pulses are not supplied to the register, when the value
of the signal ENA is equal to zero. Power dissipated in the
register and some parts of clock-lines can be saved, when
the clock pulses are not supplied. There are two reasons why
it can be achieved. (1)By eliminating signal transitions at
inputs of registers, dynamic power dissipated in the registers
and clock nets can be saved. (2)If clock pulses are not sup-
plied to registers when DCREG = 1, the value of the registers
don’t change. So, signal transitions at transitive fanouts of
the registers can be eliminated.
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Fig.1  Example of Gated-Clock Circuit

Considering two circuits in Fig.1 from a functional(zero-
delay) aspect, both of the registers have a same function.
However, from a timing aspect timing constraints assigned
to the signal LOAD and ENA are different. Actually, tighter
timing constraints need to be assigned to the signal ENA. For
example, signal transitions at the signal ENA must not occur
when the signal CLOCK is equal to one in Fig.1(b). If such
transitions occur, the transitions are propagated to the signal

GCLK, and unexpected clock-rising or falling happens at the
clock-input of the registers REG. Some measures should be
taken to eliminate such transitions at the signal ENA.

Fig.2 shows one of the typical gated-clock design styles.
We introduce terminology used in this paper. The “enable-
logic” consists of combinational elements, and determines
whether a clock pulse should be supplied to the registers or
not. If the output of the enable-logic is equal to zero, a clock
pulse is not propagated to the clock-inputs of the registers.
An AND-gate or an OR-gate which satisfies following two
conditions is called “gated buffer”. (1)The gate is a
(transitive) fanin of a clock-input of a register. (2)One input
of the gate is an enable signal, and another is an original
clock signal. On the contrary, a buffer without gating func-
tion is called “normal buffer”. Glitches at the input of the
gated buffer should be eliminated as mention above. The
“de-glitch latch” is inserted between the enable-logic and the
gated buffer to eliminate glitches which occur in the enable-
logic. A clock signal which the gated-clock technique is
applied, is called “gated clock signal”(say GCLK), and a one
not “normal clock signal”(say NCLK).
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Fig.2    Example of Gated-Clock Design
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B. Problem Definition

  Here, we describe a sticky point for the timing assurance
on the gated-clock design. In fact, timing issues for the en-
able signal ENA in Fig.1(b) are rather complex. Signal tran-
sitions at the enable signal ENA must not occur when the
clock signal CLOCK is equal to one as mentioned above. So,
the value of the enable signal ENA must be determined after
the clock signal CLOCK falls, and before it rises. Clock-
rising at the clock-input of the gated buffer BUF is a little
earlier than that of the register REG. Let c be the delay from
the gated buffer to the register, and Ts clock cycle. To be
exact, when building timing constraints for the enable signal
ENA, c must be taken into account. For example, let {xi} be
a set of transitive fanins of the enable signal ENA, and as-
suming that each event of xi occurs when the signal CLOCK
rises. In this case, the maximum delay constraints for the



paths between each xi and ENA must be less than Ts - c, if
assuming that clock-skews of all registers are zero. It is
difficult to determine the value c adequately. The reason for
it is as follows. Gated-CTS inserts gated and normal buffers
into both of the signals CLOCK and GCLK. The number of
buffers on the signal GCLK cannot be found out till Gated-
CTS is done. So, it is difficult to determine the adequate
value c before the clock-route step. However, the timing
constraints for the enable signal are needed to execute tim-
ing-driven placement, and the placement step is an earlier
step than the clock-route. This dilemma is one problem for
the gated-clock design. To overcome the problem, we in-
troduced EDA tools named Clock Delay Estimator, and
constructed the timing assurance method.

III. EDA Tools for Gated-Clock Design

  As described before, there are two issues that should be
considered for the gated-clock design. One is to minimize
the clock-skew, and the other is to keep the timing con-
straints for the gated-clock parts. We developed Gated-
Clock Tree Synthesizer for the first issue, and Timing Con-
straints Generator and Clock Delay Estimator for the second.
In this section, we explain the features of these EDA tools.

A. Clock Delay Estimator(CDE)

First, Clock Delay Estimator determines the number of
clock buffer stages between a root driver and each clock-
input of flip-flops based on the number of flip-flops in a
circuit. Next, CDE places only flip-flops randomly on a chip.
After the placement of the flip-flops, CDE spans clock nets.
The process of spanning them consists of the following three
steps: clock planning, buffer cell placement, and global
routing for clock trees. In the clock planning step, node-
pairing is done to obtain the optimal node-pair combinations
of the minimum delay and skew. The node-pairing is per-
formed recursively in a bottom up manner, and a clock tree
is constructed. In the buffer cell placement step, buffer cells
are added to the clock tree, according to the number of clock
buffer stages obtained in the beginning of CDE. The buffer
cells are placed at ideal positions to minimize the skew.
After the clock global routing step, CDE estimates delay of
the clock nets. Then the following clock delay information
can be obtained. Each piece of the clock delay information
is shown in Fig.3.

(a) maximum and minimum delay from the root driver to the
buffers in the first stage(FIRSTSTAGE).

(b) maximum and minimum delay from the root driver to the
buffers in the last stage(LASTSTAGE).

(c) maximum and minimum delay from the root driver to the
flip-flops(FFIN).

Strategy of generating balanced clock trees is similar to

that of CTS[5]. The error between actual clock delay and
delay obtained by CDE is within 15% from our experience.
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Fig.3   Clock Delay Information

B.  Gated-Clock Tree Synthesizer(Gated-CTS)

Fig.4(a) shows an example of clock net structure before
Gated-CTS. First, Gated-CTS divides flip-flops into groups.
All flip-flops in one of the groups have a same enable signal
on their clock-lines. Flip-flops driven by a normal clock
signal constitute one group. In Fig.4(a), four groups are
created. Next, it divides the groups into clusters. The clus-
ters are generated so that the total capacitance in each cluster
can be equalized. For the benefit of clustering, the delay in
each cluster is balanced, and the skew minimized. In Fig.4,
the flip-flop group whose enable signal is E1 is supposed to
be divided into four clusters, and the group E2 two. The
group E3 and the flip-flop group driven by the normal clock
signal are supposed to be treated as clusters.

Tree construction and buffer insertion are performed, after
clustering. Gated-CTS generates a clock tree by bottom up
node-pairing stated in the explanation of CDE. Some gated
buffers have been already added to the clock net as shown in
Fig.4(a). Gated-CTS puts additional normal buffers and
duplicates gated buffers in order to balance each clock path
delay. Fig.4(b) shows the result of the tree construction and
the buffer insertion for the example of Fig.4(a). The gated
buffer controlled by the enable signal E1 is put at the first
stage. On the contrary, the gated buffer controlled by the
enable signal E2 is duplicated at the second stage. This gated
buffer cannot be put at the first stage. In general, the buffers
controlled by enable signals are placed as upstream as pos-
sible toward the root driver. There are two reasons for it.



One is to minimize the delay of enable signals, and the other
is to reduce power dissipation of clock nets.

Finally, buffer cell placement and gated-clock tree routing
is executed. Both gated and normal buffer cells are placed at
ideal positions to minimize the skew. When some cells have
already been placed at the positions, they are moved to ac-
tual positions as near ideal as possible. Then detailed routing
is performed according to clock tree topology(Fig.4(c)). At
this time, routing is performed in a bottom up manner and
delay balanced points are modified one by one.
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Fig.4  Gated-Clock Tree Synthesis

C. Timing Constraints Generator(TCG)

Timing Constraints Generator generates maximum and
minimum delay constraints for the gated-clock parts. We
explain delay constraints for the gated-clock design shown
in Fig.2. First, maximum delay constraints are required for
the enable-logic. Let S be the set of storage elements(say
Data F/F) that are fanins of the enable-logic. If the de-glitch
latch is assumed to be a flip-flop, the maximum delay value
between each element in S and the de-glitch latch is calcu-
lated by the following expression.

      HALF_CYCLE - SKEW_VALUE

HALF_CYCLE is half of the clock cycle Ts , and
SKEW_VALUE can be calculated by the result of CDE using
the following expression.

   SKEW_VALUE = MAX_FFIN - MIN_FFIN

Maximum delay constraints are also required for the AND
gated buffer. In Fig.1(b), the value of the signal ENA must
be determined before the signal CLOCK rises. Gated-CTS
adds buffers into clock nets, and it cannot be decided in
which stage gated buffers inserted before the Gated-CTS

step. It is necessary to generate the delay constraints before
the Gated-CTS step for timing-driven placement. So, we
assume the worst case, and generate the delay constraints
using the value of FIRSTSTAGE obtained by CDE. The
maximum delay constraints between the de-glitch latch and
the gated buffer are calculated by the following expression.

MAX_DELAY = HALF_CYCLE - SKEW_VALUE
            - (MIN_FFIN - MAX_FIRSTSTAGE)

There is a case of using a transparent latch for the de-glitch
instead of the flip-flop. Delay constraints for gated-clock
parts can be also generated in the same way.
  Here, we take up a subject of minimum delay constraints.
In Fig.5, the hold-time assurance for the OR gated buffer
must be considered, because the output of the data F/F is
connected to the gated buffer directly. In this case, we also
assume the worst case, and generate the minimum delay
constraints using the value of LASTSTAGE. The minimum
delay constraints between the data F/F and the gated buffer
are calculated by the following expression.

MIN_DELAY = SKEW_VALUE
          - (MIN_FFIN - MAX_LASTSTAGE)
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IV. Layout Flow for Gated-Clock Design

  We introduce a layout EDA flow using the tools de-
scribed in the previous section with a placer and a router.
Fig.6 shows our layout flow for the gated-clock design. First,
CDE estimates clock delay information based on a netlist
and die size. The gated-clock parts are supposed to be in-
corporated into the netlist. CDE creates a report related to
the clock delay before placement. The factors, FIRSTSTAGE,
LASTSTAGE, and FFIN shown in Fig.3, are calculated here.
TCG generates timing constraints for the gated-clock parts
using these factors in the CDE report. Timing-Driven
Placer[6] and Post-Placement Netlist Optimizer(PNO)[7]
assures timing constraints. Timing-Driven Placer does
placement with optimizing timing of a gated-clock circuit



based on timing constraints generated by TCG and those of
datapaths. When there exists timing violation after the
placement, PNO inserts buffers and changes cell models
called "repower" to assure the timing constraints. Next,
Gated-CTS routes clock nets and minimizes the clock-skew.
The PNO step after Gated-CTS is also needed. Gated-CTS
duplicates gated buffers as shown in Fig.4. So, the number
of fanouts of enable signals may increase. This may causes
timing violation for the gated-clock parts. PNO can repair
this timing violation. Finally, timing-driven routing[8] for
ordinary nets is executed.
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V. Experimental Result

We tested our flow on the practical logic circuit with gated-
clock structure. There are 54 thousand cells and 58 thousand
nets in the circuit. The number of flip-flops is 55 hundreds.
The layout result is shown in Fig.7. There are three clocks in
this circuit, and each clock is gated. The nets constructed by
solid lines in Fig.7 shows one clock net(CLK3). The clock
delay and skew information is shown in Table I. In Table I,
“#FFs” shows the number of flip-flops that are driven by
each clock. “Gating Ratio” is a percentage of clock-gated
flip-flops. For example, about 1050 flip-flops are driven by
gated clock signals based on CLK1, and about 1450 are
driven by the normal clock signal CLK1. “#Enables” is the
number of enable signals in the netlist. Each enable signal
has a different enable-logic. Gated-CTS could achieve a
small clock-skew value for each clock. Actually, the skew

value is less than 0.2ns and it is comparable to that of non
gated-clock circuit. Power dissipation of the gated-clock
circuit and the non gated-clock circuit is analyzed by Pro-
Power[9,10]. ProPower is a power estimator employing
probabilistic approach to calculate signal probabilities and
switching activities. The result of the power analysis is
shown in Table II. The modules from A to E have gated-
clock structure. In Table II, “Power(Non-Gated)” shows the
power dissipation of the circuit without gated-clock struc-
ture, and “Power(Gated)” shows the one with the gated-
clock structure. Large power reduction could be achieved
for these modules. “Total” means the whole chip including
mega-cells and I/Os. So, sum of 5 modules is not equal to
“Total”. About 30% power reduction could be achieved for
the whole design by clock-gating.

   

Clock #FFs Gating
Ratio #Enables Clock

Delay
Clock
Skew

CLK1

CLK2

CLK3

2504

  528

2532

42%

97%

33%

18

16

  2

2.46ns

1.79ns

2.27ns

0.18ns

0.09ns

0.13ns

Table I   Clock Delay and Skew

   

Module Power
(Non-Gated)

Power
Reduction

A

B

C

D

E

Total

    56.48

  237.42

    45.71

    52.20

    31.86

1193.54

Table II   Power Dissipation

Power
(Gated)

    19.69

144.88

11.22

16.51

10.25

828.01

65.1%

39.0%

  75.5%

68.4%

67.8%

30.6%

(mW)

VI Conclusion

  We have presented the design method including the tim-
ing-driven layout for the gated-clock design. We have de-
veloped three tools named CDE, Gated-CTS and TCG, to
assure  gated-clock circuits work correctly. Gated-CTS
minimizes the clock-skew for gated-clock nets. CDE and
TCG keep timing constraints for gated-clock parts. We have
also proposed the layout flow including these tools. By the
experiment, we could achieve 30% power reduction for the
practical circuit. The clock-skew could be less than 0.2ns,
and all of the timing constraints for the enable-logic parts
are kept.
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