
Wireless Personal Communications (2007) 43:185–200
DOI 10.1007/s11277-006-9217-4 c© Springer 2006

A Clock Synchronization Algorithm for Multihop Wireless Ad Hoc
Networks

JANG-PING SHEU1, CHIH-MIN CHAO2, WEI-KAI HU1 and CHING-WEN SUN1

1Department of Computer Science and Information Engineering, National Central University, Jhongli 32001,
Taiwan
2Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
E-mail: cmchao@axp1.csie.ncu.edu.tw

Abstract. In multihop wireless ad hoc networks, it is important that all mobile hosts are synchronized. Synchro-
nization is necessary for power management and for frequency hopping spread spectrum (FHSS) operations. IEEE
802.11 standards specify a clock synchronization protocol but this protocol suffers from the scalability problem due
to its inefficiency contention mechanism. In this paper, we propose an automatic self-time-correcting procedure
(ASP) to achieve clock synchronization in a multihop environment. Our ASP has two features. First, a faster host
has higher priority to send its timing information out than a slower one. Second, after collecting enough timing
information, a slower host can synchronize to the faster one by self-correcting its timer periodically (which makes
it becoming a faster host). Simulation results show that our ASP decreases 60% the average maximum clock drift
as compared to the IEEE 802.11 and reduces 99% the number of asynchronism in a large-scale multihop wireless
ad hoc networks.

Keywords: Clock synchronization, IEEE 802.11, multihop wireless ad hoc networks

1. Introduction

A wireless mobile ad hoc network (MANET) is formed by a cluster of mobile hosts without
any pre-designed infrastructure of the base stations. In MANETs, it is important that all mobile
hosts synchronize to a common clock. In frequency hopping spread spectrum (FHSS), syn-
chronization is required to assure all mobile hosts hopping at the same time. Synchronization
is also required to perform power management for both FHSS and direct sequence spread
spectrum (DSSS). Without such clock synchronization, mobile hosts may not wake up at the
same time and thus the power management operation may not work well [1]. A distributed
timing synchronization function (TSF) is specified in IEEE 802.11 WLAN standard [2] to ful-
fill clock synchronization in a MANET. In this synchronization mechanism, each mobile host
is responsible for exchanging timing information through the periodic beacon transmissions.
A host synchronizes its clock according to the timestamp in the beacon if the received time is
later than its own.

As the number of hosts increases, the transmission contentions uprise accordingly. As a
result, the scalability problem occurs (performance analysis can be found in Refs. [3, 4, 5]).
A scalability problem is also induced by this IEEE 802.11 standard TSF due to the bea-
con contentions [6, 7]. For a large scale MANET, beacon frames can hardly be successfully
transmitted and some hosts may not be able to synchronize with others. An adaptive timing



186 J.-P. Sheu et al.

synchronization procedure (ATSP) is proposed in Ref. [6] to solve this scalability problem.
The basic idea behind ATSP is from the observation that, in the IEEE 802.11 TSF, only later
(faster) timing synchronizes others. Thus, ATSP gives the fastest host (the host that has the
fastest timing) the highest priority to transmit beacons (by allowing the fastest node contends
to transmit beacon every beacon interval). On the contrary, slower hosts’ beacon transmission
frequencies are reduced. This reduction is achieved by allowing a slower node i contends to
transmit beacon every Imax beacon intervals, if no faster timing value is received by node i
during these Imax beacon intervals. When the system reaches a stable state, the fastest node has
a very high probability of sending a beacon successfully while the other nodes have the lowest
priority. ATSP successfully alleviate the scalability problem but in some cases, such as the
fastest mobile host leaves, some mobile hosts’ clocks may still differ from others for hundreds
of microseconds. To overcome these problems, a revision of ATSP, which is called Tiered
Adaptive Timing Synchronization Procedure (TATSP), is proposed in Ref. [7]. The basic idea
of TATSP is quickly identifying a small set of fastest nodes and giving them higher priority
to transmit beacons. Both ATSP and TATSP achieve clock synchronization for mobile hosts
and scale well in a single-hop MANET. However, these two algorithms fail to function well
when applying to a multihop MANET. The most important task of time synchronization in
a multihop MANET is to relay faster timing from faster nodes. Both ATSP and TATSP take
a long time to finish this task. For example, in a four-hop linear topology A–B–C–D where
A is the fastest host, hosts B and C are responsible of spreading the time information. For
the ATSP protocol, host A has the highest priority while host B has the lowest priority (low
priority nodes can contend to transmit every Imax beacon intervals). In such a case, host B
will have less chance to transmit a beacon and thus hosts C and D can synchronize to host A
after a long time. The TATSP protocol revises the ATSP by adopting two different Imax values.
Similar long-convergence-time problem happens in TATSP.

In this paper, we propose a clock synchronization algorithm, which is called automatic
self-time-correcting procedure (ASP), to achieve clock synchronization among mobile hosts
and hence to solve the scalability problem in a multihop MANET. Two tasks must be done to
fulfill clock synchronization in a multihop MANET: to increase the successful transmission
probability for faster hosts and to spread the faster timing information throughout the whole
network. In ASP, the first task is achieved by increasing the beacon transmission priority of a
host who has faster timing and by cutting down the priorities of the others. And then, when
some slower hosts get enough information to accomplish synchronization by themselves, their
beacon transmission priorities are increased to carry out the second task. By efficiently carry-
ing out these two tasks, the ASP mitigates the clock asynchronism occurred in IEEE 802.11
networks.

The rest of this paper is organized as follows. We review the clock synchronization pro-
tocol specified in the IEEE 802.11 standard in Section 2. Section 3 describes the details of
the proposed clock synchronization algorithm, the ASP. Simulation results are in Section 4.
Conclusions are given in Section 5.

2. Clock Synchronization of IEEE 802.11

IEEE 802.11 standards [2] specify the mechanisms of clock synchronization and power
management in media access control (MAC) layer. Each mobile host shall maintain a TSF
timer with modulus 264 counting in increments of microseconds (µs). Hosts are responsible to



A Clock Synchronization Algorithm 187

contend transmitting beacon frames periodically. The host, who wins the contention will send
a beacon frame which contains the host’s TSF timer associated with other parameters. Other
hosts adopt the received timing information only when the TSF timer is faster than their own.
Specifically, hosts are synchronized with others by the TSF value (timestamp) contained in
the beacon frames. Each host’s TSF timer is the summation of a variable offset and the host’s
clock. When a host receives a beacon and finds its own TSF timer is slower than the time-
stamp in the beacon, it will add the timing difference to its offset. The interval between beacon
frames is defined as the aBeaconPeriod, which specifies the length of a beacon interval and
is an identical value for all hosts in the MANET. In other words, time is divided into a series
of beacon intervals which are exactly aBeaconPeriod time units apart. A host will execute
the following steps at the beginning of each beacon interval to achieve beacon generation and
clock synchronization:

1. Suspend the decrementing of the backoff timer for any non-beacon transmission.
2. Generate a random delay uniformly distributed in the range between zero and twice aCW-

min × aSlotTime. (The values of aCWmin and aSlotTime are 15 and 50 µs for FHSS and
are 31 and 20 µs for DSSS.)

3. Wait for the random delay timer.
4. Cancel the random delay timer if a beacon is received from another host before the timer

has expired. If the clock information in the receiving beacon is later than its TSF timer,
adopt the value.

5. Send a beacon with the TSF timing information if the random delay timer has expired and
no beacon has arrived during the delay period.

All hosts participate beacon generation at the beginning of each beacon interval, which is
defined as the beacon generation window as shown in Figure 1. This window comprises
(2 × aCWmin +1) time slots and each station is scheduled to transmit a beacon at one of
these slots.

3. Clock Synchronization in Multihop MANETs

As mentioned earlier, to achieve clock synchronization in multihop MANETs, we have to
uprise the faster beacons’ successful transmission probability and then spread this faster timing
out. The former task is accomplished through dynamically adapting hosts’ beacon transmis-
sion frequencies, according to their own clock oscillation frequency, such that a faster host
obtains higher priority to transmit a beacon. Slower hosts, after receiving the fast beacon twice
from the same host (with the same Seq_No, which will be described later), can calculate the
exact difference between their clocks. Then, even without receiving the faster beacons, slower

Beacon Generation Window
(2 * aCWmin +1 slots)

BeaconInterval BeaconInterval

Figure 1. Beacon generation window.



188 J.-P. Sheu et al.

hosts can automatically synchronize to the faster one. These hosts whose clocks have been
corrected can then take the responsibility to spread the faster timing out. In the following, we
first describe the mechanism to increase the faster beacons’ successful transmission probability
and then present the automatic self-time-correcting procedure.

3.1. C o nt e nt i o n f o r B e acon Transmiss ion

In a MANET, hosts must attend the contention for beacon transmission and each of them has
equal probability to win the contention. To increase the number of successful faster beacon
transmission, our basic idea is to reduce the probability of a slower host to transmit the beacons.
An integer variable pi is defined as the period, counted in the number of beacon intervals, for
host i to transmit a beacon. For example, host i will try to transmit a beacon every 2 beacon
intervals if pi = 2. The setting of the pi must reflect host i’s clock such that a faster host can
transmit beacon frequently. Also, pi is related to the number of host i’s neighbors, N Bi . The
value pi should be in proportion to N Bi since a large N Bi means a beacon is vulnerable to be
collided with. We define pi as follows.

pi =
⌊(

max(1, N Bi )

max(1, N Li )

)α⌋
, α ∈ N (1)

where N is integer set and N Li is the number of host i’s neighbors who’s TSF timer is equal
to or slower than host i . The value of α is used to adjust the number of hosts to contend
for the beacon transmission. A small α induces more hosts to transmit. For example, when
N Bi = 10 and α = 1, pi will be one when N Li is more than five. That is, the hosts belong
to the faster half will attempt to transmit a beacon in every beacon interval. On the contrary,
when α = 2, pi will be one when N Li is more than seven, which means the number of hosts
that can transmit in every beacon interval is reduced. The best value of α will be selected by
simulations.

3.2. Auto m at i c S e l f - t i m e - c o rrecting Procedure (ASP)

In this subsection, we describe the ASP in detail.

3.2.1. Self-time-correcting
ASP changes a mobile host’s offset to achieve clock synchronization, which is the same as
IEEE 802.11. In addition, a host running ASP tries to obtain the clock oscillation difference
between itself and a faster host. With this information, a slower host can avoid asynchronism,
even without receiving the faster beacons, by adding the oscillation difference to its offset
periodically. A host i obtains the oscillation difference by comparing the difference of its TSF
timers to the successively received faster beacons (from the same host). Specifically, we define
Pass_Time1 as the elapsed time that a host receives two successive beacons from the same
host and Pass_Time2 as the timestamps difference between these two beacons. The oscilla-
tion difference of these two hosts’ clocks, Diff, equals to (Pass_Time2 − Pass_Time1). To
achieve self-time-correction, a slower host i should adjust its offset periodically. The interval,
ai , between each self-correction is defined as

ai = �Pass_time1/Di f f � (2)



A Clock Synchronization Algorithm 189

That is, the slower host shall automatically increase one to its offset in every ai microseconds
to keep synchronized with the faster one.

Note that, strictly speaking, we define Pass_Time2 by simply taking the elapsed time for
successively two beacons from the same host is not correct. Consider the following situation:
a host i receives the beacon transmitted by a faster host j in the first beacon interval. Next,
a host k which is far from the host i transmit a faster beacon than host j does. Thus, host j
updates its offset. In the next beacon interval, host j transmits another beacon carrying this
modified TSF timer. Unaware of the beacon transmitted by host k, host i will estimate its clock
oscillation to host j improperly. To overcome this problem, we add a 4-bit variable Seq_No
in the beacon frame to keep track of the changes of TSF timer. Whenever the offset is updated
because of a faster beacon, Seq_No is increased by one. The correct calculation of Pass_Time2
shall be taken from two beacons that is transmitted by the same host with the same Seq_No.
Note that it does no hurt for a slower host, say host A, to receive only one faster beacon with
the same Seq_No. In such a case, host A still can synchronize its TSF timer to the fast beacon
although it is incapable of doing self-correction.

To prevent the wraparound problem of Seq_No for TSF timer, the received timing infor-
mation stored in each host will be abandoned after eight beacon intervals. Sometimes, in a
multihop MANET, a host will receive more than one faster beacon in one beacon interval. Each
of these beacons causes an offset update, which consume the Seq_No quickly. For example,
three hosts A, B, and C are in line. Host B can communicate with A and C while A and C
are hidden to each other. Suppose that host A has the fastest clock among the three, which
is in turn followed by C and B. Now, host C transmits a beacon first. Host B will update its
offset and Seq_No after recognizing this faster clock. Then, in the same beacon interval, host
A (without receiving any beacon) also transmits its beacon and host B updates its offset and
Seq_No again. This example illustrates the scenario that a host may update its Seq_No more
than once in a beacon interval. That is why we cut the timeout threshold by half.

3.2.2. Data structure
Each mobile host maintains a Neighbor_Table to keep track of its neighbors and their TSF
timers. Each host should also maintain a Clock_Table to record the information of neighbors
who have faster TSF timers than its own. A Clock_Table consists of four fields: MH_Id,
Seq_No, Last_Recv_Clk, and Last_My_Clk. M H_I d is the neighbor’s identity, Seq_No is
the sequence number of the neighbor’s TSF timer, Last_Recv_Clk is the last received beacon
timestamp from the particular neighbor, and Last_My_Clk is its own TSF timer value when
Last_Recv_Clk is received. With the information in Clock_Table and Eq. (2), mobile hosts
are able to synchronize to faster clock automatically.

To make the ASP work properly, four variables are needed for each host i :

1. An integer variable Seq_No for TSF timer. This Seq_no is increased by 1 whenever the
TSF timer is changed. The maximum value of Seq_No is 15. This value is included in the
beacon frame.

2. An integer variable pi which indicates the period a host i shall attempt to transmit a beacon.
pi is calculated by Eq. (1) using the information in its Neighbor_Table.

3. A counter ci which counts for the number of beacon intervals that have elapsed since the
host i attempt to transmit a beacon last. Initially, ci is set to zero. When ci = pi , mobile
host i shall transmit a beacon and ci is reset to zero.



190 J.-P. Sheu et al.

4. An interval ai which is calculated from Eq. (2). If host i cannot synchronize automatically,
ai is set to infinity.

3.2.3. ASP operation
The operation of a host i running ASP can be formally described as follows.

Automatic Synchronization Procedure

1. In each beacon interval, host i checks whether its ci = pi . If so, host i will attempt to
transmit a beacon in this beacon interval (follow the operations of IEEE 802.11). Also, the
variable ci is reset to zero. If not, go to step 4.

2. Cancel the random delay timer if a beacon is received from other mobile host before the
timer has expired. The TSF timer information in the received beacon is recorded in host
i’s Neighbor_Table. If the timestamp in the received beacon is later than its TSF timer,
host i will synchronize to this timestamp and increase its Seq_No. Simultaneously, timing
information is recorded to Clock_Table. If the host that transmits the beacon is already in
host i’s Clock_Table, validity check (not exceeds eight beacon intervals and has the same
Seq_No) will be applied. If passed, calculate ai using Eq. 2. If mobile host i already has a
value ai , the smaller one will be selected in order to synchronize with the faster TSF timer.

3. Send a beacon out if the random delay timer has expired and no beacon has arrived during
the delay period.

4. At the end of a beacon interval, increases ci by 1.
5. Mobile host i automatically adjusts its clock offset 1µs ahead in every ai microseconds.

We use an example to illustrate how to get the interval ai . Assume that the length of a
beacon interval is 0.1 s (100,000µs). For ease to understand, we further assume that a beacon
is transmitted in the first slot of the beacon generation window and the beacon transmission
time is ignored. Suppose that there are three hosts, A, B, and C in a MANET. Hosts A and B,
hosts B and C are within each other’s transmission range but hosts A and C can not hear from
each other. Host A’s, B’s, and C’s TSF timers start with time zero and their Seq_No’s are set
to zero initially. All of these hosts claim that their clock oscillate once per microsecond. But in
reality, host A oscillates faster than host B which in turn oscillates faster than host C. Assume
that, after one beacon interval (according to host A’s clock), host A’s clock oscillates 100,000
times, host B’s clock oscillates 99,995 times and host C’s clock oscillates 99,990 times. That
is, host B’s and host C’s clocks are five and ten ticks slower than that of host A’s every beacon
interval, respectively. As shown in Figure 2, in the first beacon interval, host B successfully
transmits a beacon with timestamp and Seq_No are both zero. Since the timestamp in the
beacon is not later than their own, host A and C will not change their TSF timer.

Next, in the second beacon interval, host B transmits a beacon with timestamp
100,000 and Seq_No zero when its clock equals to 100,000. After receiving this bea-
con, host A will not modify its offset since the timestamp in the beacon is not faster
than its own. On the contrary, host C will synchronize to this timestamp and incre-
ase its Seq_No by one. Host C achieves synchronism by changing its offset to five
(timestamp in the received beacon − its own clock value = 100,000 − 99,995 =
5). In addition, timing information will be stored to host C’s Clock_Table with
M H_I d = host B, Seq_No = 0, Last_Recv_Clk = 100,000, and Last_My_Clk =
99,995.



A Clock Synchronization Algorithm 191

Figure 2. An example of beacon transmission.

In the third beacon interval, host A transmits a beacon with timestamp 200,000 and Seq_No
zero when its clock is 200,000. Host B receives this beacon at its clock value 199,990.
After receiving host A’s TSF, host B increases one to its Seq_No and adds ten (200,000 −
199,990 = 10) to its offset. This timing information is recorded with M H_I d = host
A, Seq_No = 0, Last_Recv_Clk = 200,000, and Last_My_Clk = 199,990. In
this beacon interval, host C does not receive any beacon so it transmits a bea-
con when its clock is 199,995 (TSF timer is 200,000 since its offset is set to
5 at the second beacon interval). This beacon is received by host B success-
fully. But host B will not do anything because it does not contain a faster time-
stamp.

In the fourth beacon interval, host B transmits its beacon again with timestamp 300,000
(299,990 + 10) and Seq_No 1. Similar to the second beacon interval, host A will do noth-
ing but host C will synchronize to this beacon. The offset of host C will be set to 25
(300,000 − 299,975 = 25). Also, timing information is stored to host C’s Clock_Table
with M H_I d = host B, Seq_No = 1, Last_Recv_Clk = 300,000, and Last_My_Clk =
299,975. Although host C receive two beacons from host B, host C still does not have the
automatic self-time-correcting capability since these two beacons have different Seq_No
values.

Lastly, in the fifth beacon interval, host A transmits its beacon which contains timestamp
400,000 and Seq_No zero, and is received by host B. Since it is a beacon with later time-
stamp, host B will synchronize to it by updating its offset to 20 (400,000 − 399,980 = 20) and
increases its Seq_No by one. Again, timing information is recorded with M H_I d = host A,
Seq_No = 0, Last_Recv_Clk = 400,000, and Last_My_Clk = 399,980. This is the second
beacon from the host A with the same Seq_No hence host B can calculate its interval aB for
automatic self-time-correction:

Pass_T ime1 = (399,980 − 199,990) = 199,990,

Pass_T ime2 = (400,000 − 200,000) = 200,000,

Di f f = Pass_T ime1 − Pass_T ime1 = 10, and

aB =
⌊

199,990

10

⌋
= 19,999.

That is, host B shall automatically adjusts its offset by one in every 19,999 oscillations to
synchronize with the host A.



192 J.-P. Sheu et al.

4. Simulation Results

The proposed ASP is evaluated by the ns-2 [8] simulator (CMU wireless and mobile extensions
[9]). We use 224 µs as the maximum tolerable clock drift since it is the duration, specified in
the IEEE 802.11 standard, for the PHY to hop to another frequency in FHSS. Asynchronism
happens when a host’s TSF timer is behind that of another host’s over 224 µs. It is checked in
every beacon interval. A beacon interval is 0.1 s long and the differences in accuracy of hosts’
clocks are uniformly distributed in the range of [−0.01%, +0.01%]. The number of mobile
hosts is 100, 300, or 500. Each of them is randomly located in a region of 1000 × 1000 m2

with a transmission range of 250 m. All hosts move according to the random way-point model
[10] with maximum speed 5 m/s and pause time 50 s. We simulate the DSSS environment.
Each point in the figures is the average of 10 simulation runs with simulation time 500 s (5000
beacon intervals).

In the following, we make observations from four aspects.

4.1. E ff e c t o f α

In this experiment, we investigate the effect of α to the performance of ASP by varying it
from one to five. The metric is the average maximum clock drift between every pair of hosts.
According to Eq. (1), α controls the number of mobile hosts to transmit beacon. A large α

will reduce this number. In Figure 3, when the number of mobile hosts is 100, the clock drifts
are all below 100µs for all five different α values, among them α = 5 performs the best.
When the number of mobile hosts is 300, α = 3 performs the best which is in turn followed
by α = 1, 5, 4, and 2, respectively. When the number of hosts is increased to 500, α = 3 still
outperform the others. Since α = 3 performs well in most situations, α = 3 is used in the
following simulations.

4.2. E ff e c t o f N umber of Hosts

In this experiment, we compare the performance of our ASP with IEEE 802.11 and ATSP
on different number of hosts. The metrics used here are the maximum clock drift of any two
mobile hosts and the accumulated number of asynchronisms. In Figure 4(a), where IEEE
802.11 TSF is applied over 100 hosts, the values of the maximum clock drift vary acutely. The
clock drift is over 500µs for four times and the average is 222µs for the entire simulated 500 s.

Figure 3. Effect of α.



A Clock Synchronization Algorithm 193

Figure 4. Maximum clock drift vs. simulation time.

Figure 4(b) shows the results when there are 500 hosts. It becomes worse with the average
clock drift reaching 264µs. The performance of the ATSP with 100 and 500 hosts are shown
in Figure 4(c) and (d). Apparently it is better than IEEE 802.11 TSF; however, the values of
the maximum clock drift remain high. The averages are 185 and 172µs for 100 and 500 hosts,
respectively. In contrast to IEEE 802.11 TSF and ATSP, ASP performs well as shown in Figure
4(e) and (f). In Figure 4(e), all hosts come to a stable state after simulation time 81 s. The
average clock drift is 88µs. Figure 4(f) is the result for 500 hosts. The average clock drifts is
114µs. Our ASP reduces up to 60% and 52% over the IEEE 802.11 and ATSP, respectively.

In Figure 5, we show the accumulated number of asynchronisms for different protocols.
For IEEE 802.11, in Figure 5(a), the accumulated asynchronous numbers are over 3000 for all
the three cases at the end of the simulation. Also, the number of asynchronisms is proportional
to the number of hosts because beacon collision probability is increased accordingly. The
number of asynchronisms reduced when ATSP is adopted as shown in Figure 5(b). However,
the number of asynchronisms is still proportional to the number of hosts. It is interesting
that the number of asychronisms is reduced as the number of hosts increases. We consider
it is because the fastest host is the only one who has the highest priority which can transmit
a beacon every beacon interval; all the other hosts, with the lowest priority, can contend to
transmit a beacon every Imax beacon intervals (Imax = 10 in this experiment). More hosts
in the network means that there are more chances to relay the fastest timing in each beacon



194 J.-P. Sheu et al.

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400 450 500

Time (s)

Time (s)

Time (s)

ATSP n=100
ATSP n=300
ATSP n=500

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

ASP n=100
ASP n=300
ASP n=500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r 

of
 A

sy
nc

hr
on

is
m

N
um

be
r 

of
 A

sy
nc

hr
on

is
m

N
um

be
r 

of
 A

sy
nc

hr
on

is
m

IEEE 802.11 n=100

IEEE 802.11 n=300

IEEE 802.11 n=500

(a)

(b)

(c)

Figure 5. Accumulated number of asynchronisms vs. simulation time.

interval, thus synchronization is better achieved the number of asynchronisms is reduced. For
ASP, in Figure 5(c), the whole MANET comes to a stable state after simulation time 50 s and
the numbers of accumulate asynchronism are all below 40.

4.3. E ff e c t o f M o b i lity

Next, we investigate the effect of high mobility to the clock synchronization. The maximum
speed and the pause time are set to 10 m/s and 0, respectively. In Figure 6(a) and (b), we can
find that the maximum clock drifts for hosts running IEEE 802.11 still change dramatically.
The average maximum clock drifts are 209 and 264µs for 100 and 500 hosts, respectively. In
Figure 6(c) and (d), hosts running ATSP achieve better synchronization. The average maxi-
mum clock drifts are 184 and 176µs for 100 and 500 hosts, respectively. In Figure 6(e), the



A Clock Synchronization Algorithm 195

Figure 6. Maximum clock drift vs. simulation time with high mobility.

average clock drift for ASP with 100 hosts is 108µs. A notably large clock drift (214µs)
is happened at simulation time 168 s. We believe it is because the higher mobility increases
the possibility that a MANET is partitioned into several subnetworks. Such subnetworks may
have large clock differences and increase the maximum clock drift when they are merged.
Figure 6(f) demonstrates the result when the host number is 500. The average clock drifts
for ASP with 500 hosts is 114µs. In general, higher mobility makes the synchronization task
harder because hosts would have different set of neighbors during their operation.

In Figure 7(a), we can see that asynchronism is still serious. The accumulated asynchro-
nous numbers at simulation time 500 s are 2477, 3453, and 3523 for hosts 100, 300, and 500,
respectively. For the ATSP in Figure 7(b), the accumulated asynchronous numbers at simu-
lation time 500 s are 337, 286, and 198 for hosts 100, 300, and 500, respectively. The ASP,
as shown in Figure 7(c), performs much better than the IEEE 802.11 and ATSP. When the
number of hosts is under 300, the accumulated asynchronous numbers are below 40. However,
when hosts are increased to 500, the number of asynchronisms upraises to 118 at the end of the
simulation. It is because high mobility increases the difficulty to achieve self-time-correction
to a faster host (recall that two beacons with the same Seq_No are needed from the same
faster host to enable the automatic synchronization ability). Thus the improvements of ASP
over the IEEE 802.11 and ATSP are somewhat reduced. Form these results, we verify that our
ASP outperforms the other two protocols in handling the mobility issue.



196 J.-P. Sheu et al.

0

20

40

60

80
100

120

140

160

180

200

0 50 100 150 200 250 300 350 400 450 500

ASP n=100
ASP n=300
ASP n=500

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300 350 400 450 500

Time (s)

N
um

be
r 

of
 A

sy
nc

hr
on

is
m

Time (s)

N
um

be
r 

of
 A

sy
nc

hr
on

is
m

Time (s)

N
um

be
r 

of
 A

sy
nc

hr
on

is
m

IEEE802.11 n =100

IEEE802.11 n =300

IEEE802.11 n =500

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400 450 500

ATSP n=100
ATSP n=300
ATSP n=500

(a)

(b)

(c)

Figure 7. Accumulated number of asynchronisms vs. simulation time with high mobility.

4.4. E ff e c t o f T i m e - va r ying Clock Drift

Since hardware is not perfect, the oscillation frequency of each node’s clock is time-variant.
This experiment is to verify the effectiveness of our ASP in a time-varying clock drift envi-
ronment. The number of hosts is 100 in this experiment. In Figure 8(a) and (b), each host’s
clock drift is uniformly distributed between −50 µs/s and 50 µs/s.1 In our simulation, clock
drifts are changed every second. The average maximum clock drifts between hosts are 161
and 75µs for ATSP and ASP, respectively. In Figure 8(c) and (d), each host’s clock drift
is set to ±80 µs/s. Again, our ASP performs the better. The average maximum clock drifts

1 We refer to the ECX-3S crystals (7.3728 MHz) produced by ECS Inc. International. The drift unit of the
crystals is PPM.



A Clock Synchronization Algorithm 197

Figure 8. Maximum clock drift vs. simulation time with time-varying clock drift.

are 194 and 81µs for ATSP and ASP, respectively. Figure 8(e) and (f) are the results where
hosts’ clock drifts are different to each other. We test four different clock drifts: ±20, ±40,
±60, or ±80 µs/s; one fourth of the 100 hosts are assigned for each clock drift. The average
maximum clock drifts are 167 and 88µs for ATSP and ASP, respectively. These results reveal
that the performance of both ATSP and ASP are deteriorated due to time-variant clock drift.
The inaccuracy makes the task of synchronization harder. Fortunately, our ASP still keep the
network synchronized. It is because our ASP is built on top of the original TSF of 802.11. The
original TSF still works for synchronization. The self-time-correcting function of TSP is an
enhancement, which can always be corrected by newly received beacons.

5. Conclusions

A clock synchronization mechanism (ASP) in a multihop MANET is proposed. The ASP
makes hosts with faster TSF timers transmit frequently. Also, after receiving the faster timing
information twice from the same host with the same Seq_No, a slower host can synchronize
to the faster one by increasing its TSF timer periodically. Such a mechanism reduces the
necessity of the beacons from the faster-clock hosts. Furthermore, a host who has the ability to
synchronize automatically can take on the job to spread the fast timing out, which synchronizes
the whole MANET soon. Simulation results show that our ASP achieves great improvement



198 J.-P. Sheu et al.

over the IEEE 802.11 TSF and ATSP. Even in a very large MANET with highly mobile hosts,
the ASP keeps the system in a well synchronized manner.

References

1. Chih-Min Chao, Jang-Ping Sheu, and I-Cheng Chou, “An Adaptive Quorum-Based Energy Conserving Proto-
col for IEEE 802.11 Ad Hoc Networks”, IEEE Trans. on Mobile Computing, Vol. 5, No. 5, pp. 560–570, May
2006.

2. IEEE 802.11 Standard (IEEE Computer Society LAN MAN Standards Committee), Wireless LAN Medium
Access Control and Physical Layer Specifications, Aug. 1999.

3. G. Bianchi, L. Fratta, and M. Oliveri, “Performance Evaluation and Enhancement of the CSMA/CA MAC
Protocol for 802.11 Wireless LANs”, in Proceedings of the 7th International Symposium on Personal, Indoor
and Mobile Radio Communications, Tainan, Taiwan, pp. 392–396, Oct. 1996.

4. J. Li, C. Blake, D.S.J.D. Couto, H.I. Lee, and R. Morris, “Capacity of Ad Hoc Wireless Networks”, in Pro-
ceedings of the 7th ACM International Conference on Mobile Computing and Networking, Rome, Italy, pp.
61–69, Jul. 2001.

5. Y.C. Tay and K.C. Chua, “A Capacity Analysis for the IEEE 802.11 MAC Protocol”, ACM Wireless Networks,
Vol. 7, No. 2, pp. 159–171, Apr. 2001.

6. L. Huang and T.H. Lai, “On the Scalability of IEEE 802.11 Ad Hoc Networks”, in Proceedings of the third ACM
International Symposium on Mobile Ad Hoc Networking & Computing, Lausanne, Switzerland, pp. 173–182,
Jun. 2002.

7. T.H. Lai and D. Zhou, “Efficient and scalable IEEE 802.11 Ad-Hoc-Mode Timing Synchronization Function”,
in Proceedings of the 17th International Conference on Advanced Information Networking and Applications,
pp. 318–323, Mar. 2003.

8. The Network Simulator – ns-2, http://www.isi.edu/nsnam/ns/, 2006.
9. The CMU Monarch Project’s Wireless and Mobility Extensions to ns, http://www.monarch.cs.cmu.edu/, Aug.

1998.
10. J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva, “A Performance Comparison of Multi-Hop Wireless

Ad Hoc Network Routing Protocols”, in Proceedings of the 4th Annual ACM/IEEE International Conference
on Mobile Computing and Networking, Dallas, TX, USA, pp. 85–97, Oct. 1998.

Jang-Ping Sheu received the B.S. degree in computer science from Tamkang University,
Taiwan, Republic of China, in 1981, and the M.S. and Ph.D. degrees in computer science from
National Tsing Hua University, Taiwan, Republic of China, in 1983 and 1987, respectively.

He joined the faculty of the Department of Electrical Engineering, National Central Uni-
versity, Taiwan, Republic of China, as an Associate Professor in 1987. He is currently a
Professor of the Department of Computer Science and Information Engineering and Director
of Computer Center, National Central University. He was a Chair of Department of Computer
Science and Information Engineering, National Central University from 1997 to 1999. He was
a visiting professor at the Department of Electrical and Computer Engineering, University of



A Clock Synchronization Algorithm 199

California, Irvine from July 1999 to April 2000. His current research interests include wire-
less communications, mobile computing and parallel processing. He was an associate editor
of Journal of the Chinese Institute of Electrical Engineering, from 1996 to 2000. He was an
associate editor of Journal of Information Science and Engineering from 1996 to 2002. He
was an associate editor of Journal of the Chinese Institute of Engineers from 1998 to 2004. He
is an associate editor of the IEEE Transactions on Parallel and Distributed Systems and Inter-
national Journal of Ad Hoc and Ubiquitous Computing. He has served as a Program Chair and
Vice Program Chair for a number of international conferences including IEEE ICPADS’02,
ICPP’03, and IEEE MSN’05.

He received the Distinguished Research Awards of the National Science Council of the
Republic of China in 1993–1994, 1995–1996, and 1997–1998. He was the Specially Granted
Researchers, National Science Council, from 1999 to 2005. He received the Distinguished
Engineering Professor Award of the Chinese Institute of Engineers in 2003. He received the
Distinguished Professor award of the National Central University in 2005. Dr. Sheu is a senior
member of the IEEE, a member of the ACM, and Phi Tau Phi Society.

Chih-Min Chao received the B.S. and M.S. degrees in computer science from Fu-Jen
Catholic University and National Tsing-Hua University in 1992 and 1996, respectively, and
the Ph.D. degree in computer science and information engineering from National Central Uni-
versity in January of 2004. He was with SENAO International in 1996. He was an assistant
professor at the TamKang University, Taiwan, from 2004 to 2005. Since 2005, he has been an
assistant professor with the Department of Computer Science and Engineering, National Tai-
wan Ocean University, Taiwan. His research interests include mobile computing and wireless
communication.



200 J.-P. Sheu et al.

Wei-Kai Hu received the B.S. degree in Computer Science and Information Engineering from
Tunghai University, Taichung, Taiwan, in 2001. He now studies for master and Ph.D. degree
in Department of Computer Science and Information Engineering of National Central Uni-
versity, meanwhile. His current research interests include wireless sensor networks, Ad Hoc
networks.

Ching-Wen Sun received the B.S. degree in computer and information science from Soochow
University in 2001 and the M.S. degree in computer science and information engineering from
the National Central University in 2003, respectively. She worked in AsusTek Computer Inc.
from 2003 until now. Her research domains include communications of wireless LAN and
sensor network. She currently focuses on the communicaitons of GSM/GPRS/UMTS.


