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Abstract

Background: The recently held Critical Assessment of Function Annotation challenge (CAFA2) required its

participants to submit predictions for a large number of target proteins regardless of whether they have previous

annotations or not. This is in contrast to the original CAFA challenge in which participants were asked to submit

predictions for proteins with no existing annotations. The CAFA2 task is more realistic, in that it more closely mimics

the accumulation of annotations over time. In this study we compare these tasks in terms of their difficulty, and

determine whether cross-validation provides a good estimate of performance.

Results: The CAFA2 task is a combination of two subtasks: making predictions on annotated proteins and making

predictions on previously unannotated proteins. In this study we analyze the performance of several function

prediction methods in these two scenarios. Our results show that several methods (structured support vector

machine, binary support vector machines and guilt-by-association methods) do not usually achieve the same level of

accuracy on these two tasks as that achieved by cross-validation, and that predicting novel annotations for previously

annotated proteins is a harder problem than predicting annotations for uncharacterized proteins. We also find that

different methods have different performance characteristics in these tasks, and that cross-validation is not adequate

at estimating performance and ranking methods.

Conclusions: These results have implications for the design of computational experiments in the area of automated

function prediction and can provide useful insight for the understanding and design of future CAFA competitions.
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Background
Proteins are the workhorses of life, and identifying their

functions is an important biological problem. The Gene

Ontology (GO) [1] is a structured vocabulary that cap-

tures protein function in a hierarchical manner. Through

various wet-laboratory experiments over the years, sci-

entists have been able to annotate a large number of

proteins with GO categories that reflect their function-

ality. However, experimentally determining protein func-

tions is a highly resource-consuming task. The reasonable

success in computationally determining the functions of

proteins using a variety of data sources–by homology

from sequence/structure, using various biological net-

work data, and by text mining [2–5]–has led to automated
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function prediction (AFP) being established as an impor-

tant problem in bioinformatics.

As a result of the emergence of a multitude of com-

putational methods for protein function prediction, the

community has realized the need for a systematic and

organized means of comparing the performance of these

methods so as to assess how far the area has progressed.

Taking note from critical assessment efforts such as Crit-

ical Assessment of protein Structure Prediction (CASP)

[6] and Critical Assessment of Prediction of Interactions

(CAPRI) [7], the AFP community decided to hold its own

competition: Critical Assessment of Function Annotation

(CAFA) [5]. The main objective of CAFA is to gather all

AFP researchers in one place to fairly assess and com-

pare the latest computational methods using a centralized

and independent assessment. In the first CAFA (CAFA1)

the participants were provided with a list of protein tar-

gets that did not have any previous annotations and were

asked to submit computational predictions using their
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own AFP methods [5]. Once the predictions were submit-

ted, the organizers collected the experimentally validated

GO annotations acquired for the targets over a period

of 6 months. Finally the computational predictions were

compared against those annotations to compute the accu-

racy of each AFP method.

The recent CAFA2 challenge [8] had exactly the same

setup, except that the list of 100,000 target proteins con-

sisted of both annotated and unannotated proteins. The

added requirement of making predictions on currently

annotated proteins makes CAFA2 a more realistic repre-

sentation of the function prediction problem, as it better

models the accumulation of annotations over time. We

identify the CAFA2 requirements as a combination of two

subtasks: making predictions on annotated proteins and

making predictions on unannotated proteins.

The AFP problem posed in CAFA is more challenging

than the typical machine learning problem, as the usual

assumption in machine learning is that the distribution of

examples in the training set is reflective of that in the test

set. In the CAFA AFP problem this assumption proba-

bly does not hold because the training is performed on an

older set of annotations whereas testing is performed on

newer annotations; and it is known that the distribution

of GO categories changes over time as a result of strong

biases in the annotation process [9]. Furthermore, the

annotations acquired for annotated proteins and for unan-

notated proteins can be expected to differ in frequency

and specificity: an annotated protein can be expected to

acquire more specific GO categories than an unanno-

tated protein, and perhaps more of them, as the biology

community tends to study proteins that are already char-

acterized. The COMBREX project is an effort to address

this bias [10].

In this study we clearly delineate the differences

between these two AFP tasks (i.e. the task of making pre-

dictions for annotated proteins and the task of making

predictions for unannotated proteins) and how different

AFP methods perform in each case. We also compare

the performance of AFP methods on these tasks with

their performance in cross-validation (CV), which is typ-

ically used by many to assess and compare AFP methods.

Finally, we determine whether the performance metric

has an impact on the ranking of different methods. Our

results have ramifications for practitioners in the area

of AFP, which should help them in the design of their

computational experiments.

Data Description
Prediction tasks

We identify two tasks in the area of AFP: prediction

of annotations for proteins without previous annota-

tions (denoted ‘novel proteins’ or NP) and prediction of

novel annotations for proteins that already have some

annotations associated with them (denoted ‘novel annota-

tions’ or NA). To understand the relative difficulty of these

tasks we compare the performance of several AFP meth-

ods under evaluation protocols that directly capture these

tasks and also compare them to the typically used alter-

native, which is CV. In what follows we describe in detail

the protocols, the data used, and the algorithms that were

compared.

Evaluation protocols

We compare three experimental setups: CV, NA and NP.

CV is the standard CV setup that is typically used for eval-

uating AFP methods; more specifically, we use 5-fold CV

in which each fold corresponds to a randomly chosen set

of proteins.

In the NA protocol, methods are trained using the set

of annotations acquired in or before the year 2009, and

tested on the set of annotations gathered on the same

set of proteins after 2009 (the ‘GO annotations’ section

below fexplains the criteria used for selecting the final set

of annotations). In other words, the same set of proteins

are used for training and testing, but the training labels

are annotations that were available in 2009, whereas test-

ing labels are annotations made available after 2009. An

annotation that was added with a new evidence code but is

present in the training set was not included in testing; sim-

ilarly, we do not include an annotation in the test set when

a more specific annotation already exists in the training

set. In the NP protocol methods are trained using the set

of annotations acquired in or before the year 2009 and

they are tested on the annotations acquired for proteins

that were not annotated in or before 2009. In this setup,

the proteins used for training and the proteins used for

testing are disjoint sets. An overview of the NA and NP

setups is given in Fig. 1.

In our experiments we focused on yeast and human;

the number of proteins/annotations in the training/test

sets with respect to the three setups are given in Tables 1

and 2. We note that our yeast/human test sets contain 5–

10 times more proteins/annotations for each species and

subontology combination than in the CAFA1 and CAFA2

challenges: In CAFA1 the test set consisted of 866 tar-

gets across 11 species consisting of five yeast proteins (one

with molecular function and five with biological process

annotations) and 285 human proteins (182 with molecu-

lar function and 195 with biological process annotations)

[5]. In the information made available during the CAFA2

workshop the organizers revealed that CAFA2 test sets

were composed of 656, 773 and 991 proteins with molec-

ular function, biological process and cellular component

annotations, respectively. These come from 27 species,

but the vast majority of them were human proteins. The
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Fig. 1 Overview of the NA and NP setups. We distinguish between three sets of annotations that are used to define the training and test set in the

two setups. Annotations accumulated between an initial time t0 until t1 (end of 2009 in our experiments) and form a set A, which is the training set

in both NA and NP. The set of annotations acquired for those proteins after t1 form a set B, which is the test set in the NA setup. The set of

annotations acquired after t1 for proteins that were unannotated before t1 is denoted by the set C, and is used as the test set in the NP setup

large number of annotations used here allowed us to

compute term-centric metrics in addition to the protein-

centric metrics used in CAFA.

To perform a fair comparison across setups we first

identified the GO subgraph that consists of only the GO

categories common to all three setups (CV, NA and NP).

Then we computed the evaluation measures described

next only on this subgraph.

Table 1 The number of proteins and the number of annotations

in the train and test sets with respect to the three setups for yeast

Training set Test set

Setup Proteins Annots. Proteins Annots.

F CV 1532 2185 383 546

NA 1367 1706 208 285

NP 1367 1706 521 677

P CV 2752 5789 688 1447

NA 2834 5161 633 990

NP 2834 5161 604 1046

C CV 3731 7053 932 1763

NA 4189 6968 813 1162

NP 4189 6968 476 681

F, P and C represent molecular function, biological process and cellular component,

respectively. For the CV setup, numbers represent average values computed across

the training and test folds (5-fold CV)

Analyses
To evaluate how different AFP methods perform on the

NA and NP tasks, and how these evaluation protocols

compare with CV, we compared the performance of

GOstruct, binary SVMs and Guilt by Association (GBA)

using the three evaluation setups (CV, NA and NP) using

data from yeast and human. The results for the protein-

centric F-max performance measure are shown in Fig. 2

Table 2 The number of proteins and the number of annotations

in the train and test sets with respect to the three setups for

human

Training set Test set

Set. Proteins Annots. Proteins Annots.

F CV 4532 8467 1133 2116

NA 4305 6898 799 1343

NP 4305 6898 1344 2174

P CV 7533 31794 1883 7948

NA 5824 12196 3301 13192

NP 5824 12196 3574 12973

C CV 8440 19196 2110 4799

NA 5082 8185 2966 5511

NP 5082 8185 5468 10200

F, P and C represent molecular function, biological process and cellular component,

respectively. For the CV setup, numbers represent average values computed across

the training and test folds (5-fold CV)
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Fig. 2 Performance comparison between CV, NA and NP. GOstruct,

binary SVMs and GBA are evaluated in cross-validation (CV), novel

annotation (NA) and novel proteins (NP) in yeast and human. The top,

middle and bottom panels depict the molecular function, biological

process and cellular component subontologies, respectively.

Performance is evaluated using the protein-centric F-max

(seeMethods for precise definition of F-max and the other

performance measures). Additionally, p-values computed

using paired t-tests for the differences in performance

between CV and NA/NP are given in Tables S1 and S2 in

Additional file 1. It can be observed that accuracy com-

puted using CV is much higher than in the NA and NP

protocols in both human and yeast and across all three

GO hierarchies. This difference is even more pronounced

when using the term-centric F-max measure (see Figures

S1-S3 in Additional file 1). The only exception to this

trend is the similar performance of GOstruct in the NP

protocol, as discussed in more detail below. These results

suggest that in most cases CV is not a good proxy for the

performance in the more realistic NA and NP protocols.

The observed difference in performance between CV

and the NA and NP protocols can be traced to the evolu-

tion of GO curation. It is known in the AFP community

that the process of acquiring GO annotations is highly

biased, leading to a distribution of categories that changes

over time [9]. Because machine learning methods rely on

the assumption that the distribution of test examples is

the same as the training examples, this bias makes the NA

and NP tasks more difficult than performing well in CV.

Given that CVmixes annotations across time, the training

and test sets are more similar in terms of the categories

annotated, and performance can therefore be expected to

be higher.

To demonstrate the differences in the label distribu-

tions in the training set versus the test set, we performed

the following analysis. First we computed the probability

(number of annotated proteins/total number of proteins)

of GO category i in the training and test sets for all

three setups, denoted by ptri and ptsti , respectively; in CV

setup the calculation was performed five times for each

fold and averaged across the five folds. The discrepancy

for category i is then defined as: |ptri − ptsti |/(ptri + ptsti ).

The mean discrepancy and individual signed discrepancy

values (without the absolute value) are shown in Fig. 3

and Figures S4-S6 in Additional file 1. We observe that

the average discrepancy for NA and NP is significantly

higher than in the CV setup in the three subontologies

for both yeast and human, suggesting that the label dis-

tributions between training and test sets in NA and NP is

consistently different from that in CV.

We hypothesize that this characteristic is at least partly

responsible for the lower performance in the NA and NP

setups. To provide evidence for this hypothesis, we com-

puted the correlation between area under the receiver

operating characteristic curve (AUC) scores and the dis-

crepancy values for each GO category. As illustrated

in Figure S7 in Additional file 1, the AUC scores are

negatively correlated with the discrepancy values, suggest-

ing that for GO categories that show a larger difference

between the training and test probabilities the perfor-

mance tends to be lower. This is more pronounced for NA

than NP, which is in agreement with our observation of

lower accuracy for the NA protocol, as discussed below.

To further explore the differences between the setups,

we considered the observation of Gillis and Pavlidis

[28] that node degree, which is an indicator of multi-

functionality, is highly correlated with classifier accuracy

as measured by CV. We ran a similar experiment: for each

setup we computed the correlation between each of the

three classifiers’ AUC scores across GO terms in the bio-

logical process subontology with a simple classifier that

predicts each GO termwith a confidence given by the cor-

responding gene’s degree. The highest correlations were

observed in the CV setup, followed by NP and NA (see

Table S3 in Additional file 1); in the NA setup some of the

correlations were insignificant, and even negative. This

suggests that in the NA setup, the classifier cannot make
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Fig. 3 Label distribution comparison between CV, NA and NP. First we computed the probability (number of annotated proteins/number of all

proteins) of GO category i in the training and test sets for all three setups, denoted by ptri and ptsti , respectively; in the CV setup the calculation was

performed five times for each fold and averaged across the five folds. The discrepancy for category i is then defined as: |ptri − ptsti |/(ptri + ptsti ). The

average discrepancy is shown in top left panel. p-values based on paired t-tests for CV vs NA and CV vs NP in all three subontologies for both species

are less than 1E − 4 or 10−4 . The individual signed discrepancy values (without the absolute value) are shown in the other three panels in sorted

order by their magnitude for each setup

use of information about node degree as well as in the

other setups, explaining its lower performance. We also

observe significant correlations between the performance

of the node degree classifier and the discrepancy in term

prevalence (Figure S8 in Additional file 1). Another fac-

tor worth exploring is the presence of critical edges, which

are edges whose removal has a strong effect on classifier

performance [27].

It is also interesting to note that the key observation of

NA and NP performance being lower than CV is not due

to a small-sample effect. As reported in Tables S4 and S5

in Additional file 1, by performing the evaluation only on

the well-representedGO categories with 50 ormore anno-

tations, we see the same patterns as the evaluation on all

GO categories.

Another observation is that the ranking of methods on

the basis of CV performance is not the same as that which

is obtained using the other protocols. The protein-centric

F-max of binary SVMs (0.55) is higher than that of GBA

(0.41) in CV in the molecular function subontology in

human, but its performance on the NA task is equal to

that of GBA (0.20) (Fig. 2); the protein-centric F-max of

binary SVMs (0.53) is very similar to that of GBA (0.54)

in CV in the molecular function subontology in yeast, but

its performance in the NP task (0.25) is much lower than

that of GBA (0.37) (Fig. 2). These observations suggest

that a ranking of methods established using CV may not

reflect how they would rank on other AFP tasks, which has

implications for the design of method evaluation in AFP.

Among the three protocols, NA yielded the lowest accu-

racy for all methods, that is, the task of predicting novel

annotations for previously annotated proteins is harder

than prediction of novel annotations for unannotated

proteins.

There are several reasons why NA is harder than NP.

First, unlike the NP protocol, the NA evaluation proto-

col uses only the annotations acquired after 2009 as the

ground truth. This means that a small mistake in NA has

a larger impact on accuracy than what it would in NP. See

Figure S9 in Additional file 1 for a specific example that

illustrates this phenomenon. Second, our intuition sug-

gests that in the beginning a protein is annotated with

GO categories that are less specific or easier to experi-

mentally verify (i.e. low-hanging fruit), and as time goes

on, with the improvement of experimental assays, more

specific annotations are added. We believe this is respon-

sible for making the NA problem harder than NP. For

the GOstruct method the difference between CV and NA
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accuracy is the most pronounced, although it is still the

best-performing method.

When it comes to the NP task, we observe different

trends across methods. In this task, GOstruct performs

almost equally well as in CV, as can be seen in Fig. 2,

whereas all the other methods show amuch bigger decline

in performance. This can be attributed to the fact that

GOstruct uses the set of all combinations of GO cate-

gories in the training set as its set of candidate labels. As a

result, it is likely that when predicting on currently unan-

notated proteins those candidate labels more closely rep-

resent the GO category combinations that are expected to

be annotated in these new proteins. The two other binary

classifiers, binary SVMs and GBA, do not use this infor-

mation, and they struggle to achieve the same level of

performance as in CV. But their performance in the NP

task is still always better than in the NA task.

Our final observation is that the ranking of methods

varies between evaluation metrics. We compared per-

formance measured using protein-centric F-max, which

was used in the CAFA competitions, with performance

measured using the term-centric F-max (complete results

using term-centric F-max and term-centric AUC are

shown in Tables S6 and S7 in Additional file 1. The term-

centric F-max of binary SVMs (0.12) is significantly higher

than that of GBA on the NA task (0.08) in the molecular

function subontology in human (p value: 7.03E-07 based

on paired t-test; see Table S7 in Additional file 1), but the

protein-centric F-max of the twomethods are equal (0.20)

(Fig. 2). This suggests that the choice of performance met-

ric can have an impact on the rankings between methods

on a particular task. The shortcomings of protein-centric

measures are well known, namely the over-emphasis on

accuracy for GO categories that have many annotations,

that are less specific and that are not as informative.

However, the limited time-frame for acquiring new anno-

tations for a CAFA-like competition precludes the use of

term-centric measures unless a large number of anno-

tations are obtained for very specific functions. In our

experiments we used a 5-year time frame for acquiring

new annotations, whereas the CAFA experiment had only

a few months [29].

Discussion
Our study has multiple implications for the field of AFP.

Our results demonstrate that the two AFP subtasks of

making predictions on annotated proteins and previously

unannotated proteins are much more difficult than per-

forming well in CV, especially the task of predicting

annotations for already annotated proteins.

This suggests that the task of predicting annotations for

already annotated proteins could benefit from algorithms

that explicitly use existing annotations to better rank

novel predicted annotations. This can be accomplished

in various ways, one of the simplest of which is to use

the existing annotations as features and extending them

e.g. using a nearest neighbor approach (see e.g. [30]). It is

worth exploring how both existing annotations and other

data can be used together for this task; with methods

such as GOstruct and label-reconciliation methods such

as described in Guan et al. [31], information on existing

annotations can be encoded in the inference procedure

itself.

Another important observation is that different meth-

ods are affected differently by the difficulty of the two AFP

tasks, leading to different rankings of AFP methods under

different evaluation protocols. For AFP practitioners this

implies that using CV is not a good proxy for the per-

formance in the more realistic AFP tasks, an observation

that should be taken into account in performing model

selection. Our focus in this study has been on methods

that perform function prediction in a given species, and it

remains to be seen to what extent our observations apply

to nearest-neighbor type homology-based methods that

are also commonly used in this field.

Finally, we observed that different performance mea-

sures can lead to different rankings of AFP methods, and

more specifically, a difference when comparing protein-

centric and term-centric performance. Although we rec-

ognize that in a CAFA-like competition it is not realistic

to use term-centric performance, our results should con-

tribute to the ongoing conversation in the AFP community

on the appropriate way to evaluate AFP methods, sug-

gesting that the use of multiple evaluation measures is

necessary to accurately compare AFP methods.

Methods
Each AFP method provides a confidence score for each

of its predictions. Following the same procedure that was

used in CAFA [5] these scores are recursively propagated

upwards towards the root by assigning the highest score

among children to their parent term. The true path rule

is also applied to the ground truth in all three setups.

However, in the NA setup, the older annotations (i.e.

annotations acquired before 2009) are removed from the

ground truth used for testing. By using a range of thresh-

olds on these propagated confidence scores we compute

the following protein-centric and term-centric measures.

In what followsN denotes the number of proteins andM

is the number of GO categories. Protein-centric precision

and recall at a threshold t are defined as

Ppc(t) =
1

N

N
∑

i=0

TPi(t)

TPi(t) + FPi(t)
,

Rpc(t) =
1

N

N
∑

i=0

TPi(t)

TPi(t) + FNi(t)
,
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where TPi(t), FPi(t) and FNi(t) are the number of true

positives, number of false positives and number of false

negatives with respect to protein i at threshold t. Now we

can define protein-centric F-max as

F-maxpc = max
t

2Ppc(t)Rpc(t)

Ppc(t) + Rpc(t)
.

Precision and recall for a GO category j are defined as

Pj(t) =
TPj(t)

TPj(t) + FPj(t)
,

Rj(t) =
TPj(t)

TPj(t) + FNj(t)
,

where TPj(t), FPj(t) and FNj(t) are the number of true

positives, number of false positives and number of false

negatives with respect to GO category j at threshold t,

respectively. Then, F-max for GO category j is defined as

F-maxj = max
t

2Pj(t)Rj(t)

Pj(t) + Rj(t)
.

An overall term-centric F-max (F-maxtc) is obtained by

finding the mean of the above individual values.

Features

Each method was trained and tested using the same set of

features and labels, prepared as described below.

GO annotations

We extracted GO annotations from the Gene Ontology

website [11] and Uniprot-goa [12]. We ignored the root

categories of the three subontologies. We also ignored the

category ‘protein-binding’, which is uninformative, as also

done in the CAFA1 challenge. We excluded all annota-

tions that were obtained by computational methods, and

we also did not include GO annotations with evidence

codes that suggest that the annotation was derived from

an interaction assay (i.e. only the evidence codes EXP,

IDA, IMP, IGI, IEP and TAS were included). We also

removed GO categories with fewer than 10 proteins were

annotated.

Trans/Loc

We generated three sets of features using amino acid

sequence properties: localization features, transmem-

brane features and low-complexity features described

elsewhere [13]. The localization of a protein can be

informative about its functions because many biological

processes are known to be localized to certain cellu-

lar compartments [14]. We used the localization signals

computed from the WOLF PSORT program [15] as local-

ization features. The number of transmembrane domains

a protein has can be informative of function. For exam-

ple, transmembrane proteins are known to be associated

with functions that involve transport of variousmolecules.

We used TMHMM [16] to predict the number of trans-

membrane domains of each protein and this number was

associated with an indicator variable. Low complexity

regions are known to have an effect on protein function

[17]. We used a sliding window approach (window length

= 20) to identify the region with the lowest number of dis-

tinct amino acids and used the composition of that region

as the representation of that region.

Homology

Homology to annotated proteins in other species was cap-

tured using an approach similar to GOtcha scores, as

suggested in [3], and also used successfully by Radivojac’s

team in the first CAFA competition [5]. Each protein is

characterized by a feature vector where the jth feature is a

confidence score that the protein is similar to proteins that

are annotated with the jth GO category. Let Sj be the set of

all sequences annotated with GO category j and let e(s, s′)

be the e-value reported by BLAST+ [18] for the alignment

of sequences s and s′ when querying s against the database

containing s′. We define the e-max score for protein s and

GO category j as:

e-maxj(s) = max
s′∈Sj

(−log(e(s, s′)/10)).

This is a simpler version of GOtcha scores, observed to

perform slightly better in preliminary experiments. The

e-max scores efficiently integrate evidence for a given

GO category across multiple species, and a protein is

represented as a vector of variables where component j

provides the e-max-score for GO category j. When run-

ning BLAST+ we used psiblast with one iteration on a

database composed of all annotated sequences from every

species except the target species. For example, when run-

ning BLAST+ for computing e-max-scores for yeast, the

query consisted of all annotated yeast sequences and the

database was composed of the annotated sequences from

rest of the species. This approach ensures that annotations

of the test sequences are not used by the classifier dur-

ing the training phase. Additionally, we filtered out low

complexity regions using the built-in SEG filter.

Network

We extracted protein-protein interactions and other

functional association network data (protein-protein

interactions, co-expression, protein co-occurrence, etc.)

from BioGRID 3.2.106 [19], STRING 9.1 [20] and

GeneMANIA 3.1.2 [21] in two species: human and

yeast. The BioGRID database provides protein-protein

interaction networks acquired from physical and genetic

interaction experiments. STRING provides networks

based on several different evidence channels (co-

expression, co-occurrence, fusion, neighborhood, genetic

interactions, physical interactions, etc.). For a given type

of functional association data we combined edges from
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the two databases by taking the union of interactions

from BioGRID and STRING and represented each gene

by a vector of variables, where component i indicates if

the corresponding protein interacts with protein i in the

combined network. The GeneMANIA website provides a

large number of protein-protein interaction and associa-

tion networks generated using several types of evidence:

co-expression, co-localization, genetic interactions, phys-

ical interactions and predicted interactions. A gene is

represented by a vector of variables for each network,

where component i indicates if the corresponding pro-

tein interacts with protein i with respect to that particular

network.

Literature

If a protein is mentioned in the vicinity of a functional

category in the literature (a co-mention) it is likely that

this protein may be associated with that function. To

make use of this source of information we extracted

protein-functional category co-mentions using the natu-

ral language processing pipeline described in [22] from

all Medline abstracts available on 23 October 2013 and

full-text articles available from the PubMed Open Access

Collection (PMCOA) on 06 November 2013.

The co-mentions we considered are the pairs of pro-

tein name and GO category mentioned in the document

within a specified span. We used two spans: sentence and

non-sentence. Sentence co-mentions only consider pro-

teins and GO categories mentioned in the same sentence,

whereas non-sentence co-mentions consider such pairs

mentioned together in the same paragraph or abstract but

not within the same sentence.

We provided the abstracts and full-text documents

(one paragraph at a time) as input to our text mining

pipeline. It detected protein entities in the given text and

mapped them to UniProt identifiers through a specially

constructed dictionary. This dictionary consists of all

yeast and human target proteins from CAFA2. Similarly,

another dictionary based on GO categories available on

13 November 2013 is used to recognize GO categories in

the text. Finally the pipeline outputs the protein names

and GO categories along with the counts of how often

they appear together within the sentence or non-sentence

spans.

A protein is represented by two vectors in which the

ith element in each vector gives the number of times that

protein is co-mentioned with the GO category i within

either a sentence or non-sentence span. The vectors are

concatenated to form the overall representation.

Models

We used following three AFP approaches in our experi-

ments: GOstruct [4], a collection of binary SVMs, and a

network-based guilt-by-association method (GBA).

GOstruct

GOstruct [4] is an AFP method that uses a structured

SVM [23], which allows it to explicitly model GO term

prediction as a hierarchical multi-label prediction prob-

lem. The structured SVM can address prediction prob-

lems in which the labels, or outputs, have complex inter-

relationships; in the AFP setup, this allows us to use a

single classifier for each of the GO subontologies. Like

other structured-output methods, the GOstruct struc-

tured SVM learns a compatibility function that models the

association between a given input and a structured output

[23], as described next. Let X be the input space where

proteins are represented and let Y be the space of labels

(GO categories). The set of GO categories annotated to

a given gene is collectively referred to as its (structured)

label. Y represents each GO subontology in a vector space

where component i represents category i. Given a training

set {(xi, yi)}
n
i=1 where xiǫX and yiǫY , the compatibil-

ity function f : X × Y �→ R maps input-output pairs to

a score that indicates the strength of the association of an

input to a set of GO categories. The predicted label ŷ for

an input x can then be obtained using the argmax opera-

tor as ŷ = argmaxy∈Yc f (x, y) where Yc ⊂ Y is the set of

all candidate labels. In this work we use the combinations

of all categories in the training set as the set of candidate

labels Yc.

To obtain correct classification, the compatibility value

of the true label (correct set of GO annotations) of an

input needs to be higher than that of any other candidate

label. GOstruct uses structured SVM training in which

this is used as a soft constraint; it tries to maximize the

margin, or the difference between the compatibility value

for the actual label and the compatibility for the next

best candidate [23]. In the structured-output setting, ker-

nels correspond to dot products in the joint input-output

feature space, and they are functions of both inputs and

outputs. GOstruct uses a joint kernel that is the product

of the input-space and the output-space kernels:

K((x1, y1), (x2, y2)) = KX (x1, x2)KY(y1, y2).

Different sources of data are combined by adding linear

kernels at the input-space level, and for the output space

we use a linear kernel between label vectors. Each kernel

is normalized according to

Knorm(z1, z2) = K(z1, z2)/
√

K(z1, z1)K(z2, z2)

before being used to construct the joint input-output ker-

nel. The Strut library [24] with default parameter settings

was used for running GOstruct.

Binary SVMs

We trained a collection of binary SVMs, each trained on

a single GO category. Binary SVMs were trained using

the PyML [25] machine learning library with default
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parameter settings. The SVMs used the same input-space

kernels as GOstruct.

GBA

GBA is the in-house Python implementation of the sim-

plest form of guilt-by-association [26] AFP algorithm (i.e.

neighbor-voting) also called the Basic GBA (BGBA) [27].

It is a binary classifier that computes a confidence score

with respect to a given test protein and a GO category by

using the connectivity of the test protein to other proteins

annotated with that GO category in a given input net-

work. More specifically, this score is equal to the fraction

of direct neighbors that are annotated with that category.

The kernel used for the SVM methods was used as a

network for the GBA procedure.

Availability of supporting data
The data sets supporting the results of this article are

available in the GigaScience GigaDB repository, [32]. This

contains all the input data (both features and labels) and

predictions from the three methods (GOstruct, SVM and

GBA).
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this file are listed below. Table S1. Difference in performance between CV

and NA/NP for yeast. Table S2. Difference in performance between CV and
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subontology for yeast and human. Figure S3. Performance comparison

between CV, NA and NP in cellular component subontology for yeast and

human. Figure S4. Signed discrepancy (between probability of each GO

category in train and test sets) for molecular function subontology of yeast.

Figure S5. Signed discrepancy (between probability of each GO category

in train and test sets) for biological process subontology of yeast. Figure

S6. Signed discrepancy (between probability of each GO category in train

and test sets) for cellular component subontology of yeast. Figure S7.

Pearson correlation coefficient between discrepancy of each GO category

and its individual AUC. Table S3. Pearson correlation coefficient between

the performance of the node degree classifier (NDC) of each GO category

and its individual AUC. Figure S8. Pearson correlation coefficient between

discrepancy of each GO category and its individual AUC obtained by the

NDC classifier. Table S4. Performance comparison between CV, NA and NP

in all three subontologies for yeast for well-represented GO categories.

Table S5. Performance comparison between CV, NA and NP in all three

subontologies for human for well-represented GO categories. Figure S9.
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