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A Closed-form Analytical Solution for the

Valuation of Convertible Bonds With Constant

Dividend Yield

Song-Ping Zhu

School of Mathematics and Applied Statistics,

University of Wollongong,

Wollongong, NSW 2522, Australia

Abstract

In this paper, a closed-form analytical solution for pricing convertible bonds on

a single underlying asset with constant dividend yield is presented. To the au-

thor’s best knowledge, never has a closed-form analytical formula been found for

American-style convertible bonds (CBs) of finite maturity time although there have

been quite a few approximate solutions and numerical approaches proposed. The

solution presented here is written in the form of a Taylor’s series expansion, which
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contains infinitely many terms, and thus is completely analytical and in a closed

form. Although it is only for simplest CBs without call or put features, it is never-

theless the first closed-form solution that can be utilized to discuss the convertibility

analytically. The solution is based on the homotopy analysis method, with which

the optimal converting price has been elegantly and temporarily removed in the

solution process of each order, and consequently, the solution of a linear problem

can be analytically worked out at each order, resulting in a completely analytical

solution for the optimal converting price and the CB’s price.

Key words: Convertible Bonds, Closed-form Analytical Formulae, Homotopy

Analysis Method

1 Introduction

Convertible bonds (CBs), complex in nature, are widely used hybrid financial in-

struments. They are different from bonds and stocks, and yet with some combining

characteristics of bonds and options. During the life of a convertible bond, the

holder can choose to convert the bond into the stock of issuing company or financial

institution with a pre-specified conversion price, or hold the bond till maturity to

receive coupons and the principal prescribed in the purchase agreement.

Theoretical framework of pricing CBs was initiated by Ingersoll (1977) and Bren-

nan and Schwartz (1977). They used the contingent claims approach and took the
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firm value as the underlying variable. Brennan and Schwartz (1980) later investi-

gated the effect of stochastic interest rates and found that the effect of a stochastic

term structure on convertible bond prices is so small that it can be ignored for

empirical purposes. In 1986, McConnel and Schwartz (1986) developed a valuation

model, using the stock value as the underlying stochastic variable.

Because of their hybrid nature, the valuation of CBs can be much more compli-

cated than that of simple options, especially when the additional complexity such as

the callability and putability or the issue of default risk of the issuer is added to the

valuation task. Nyborg (1996) presented a closed-form solution for most basic con-

vertible bonds, i.e., those that are non-callable and non-putable but only conversion

being allowed at the maturity. With conversion being allowed at any time prior to

expiry, i.e., we say that the CB is of American style, only numerical approaches are

available in the literature. Examples of numerical approaches include finite element

approach (see Barone-Adesi et al. (2003)), finite volume approach (see Zvan et al.

(2001)) and finite difference approach (see Tavella and Randall, (2000)).

Since most traded CBs are of American style in today’s financial markets, it is

extremely valuable that an analytical formula be added to the literature of pricing

CBs. In this paper, an analytical closed-form solution is presented for the first

time to price CBs without callability and putability but with conversion being of

American style. The essential difficulty for this problem lies in the fact that once

conversion is allowed to take place prior to the expiry, there is an optimal value
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of the underlying asset, at which the holder of CB should convert the CB into the

underlying asset. Mathematically, like the problem of valuing American options, the

problem becomes highly nonlinear because the problem has been turned into a free

boundary value problems (e.g., Stefan problems of melting ice (Hill (1987)). Thus,

valuing CBs with American-style conversion is very different from the valuation of

CBs with European-style conversion as the latter is essentially still a linear problem.

The explicit and closed-form analytical solution presented in this paper is an

extension of Zhu (2005), who presented a closed-form solution for the valuation of

American options by constructing a Taylor’s series expansion of the unknown op-

tion price and the unknown optimal exercise price based on the homotopy analysis

method. The terminology “closed-form” has been used in the literature of financial

derivatives’ pricing theory in different ways. Here we use the definition given by

Gukhal (2001). That is, by being a “closed-form” solution, it is meant that the

solution can be written in terms of a set of standard and generally accepted mathe-

matical functions and operations. A solution in the form of infinite series expansion

is certainly in a closed form by this definition. By “explicit”, we mean that the

solution for the unknown function (or functions) can be determined explicitly in

terms of all the inputs to the problem. It is within this context that we interpret

other authors’ comments that such a solution did not exist in the literature.

This paper is organized into four sections. In Section 2, the valuation problem

is first formulated into a differential system. In Section 3, a closed-form solution to
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the differential system followed by some numerical examples presented in Section 4.

Some concluding remarks are given in the last section.

2 The formation of the problem

Let V (S, t) denote the value of a convertible bond, S be the price of the underlying

asset and t be the current time. Then, under the Black-Scholes framework (see Black

and Scholes, (1973)), the value of a convertible bond V should satisfy the partial

differential equation

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ (r − D0)S

∂V

∂S
− rV = 0, (1)

where r is the risk-free interest rate, σ is the volatility of the underlying asset price

and D0 is the rate of continuous dividend paid to the underlying asset. In this paper,

r and σ are assumed to be constant.

Eq. (1) needs to be solved together with a set of appropriate boundary conditions

and the terminal condition.

The terminal condition of a CB is slightly more complicated than that of an

option. Because of the holder’s right of conversion and the issuer’s guaranteed

amount of redemption, there is a jump from the condition

V (S, T−) = max{nS, Z}, (2)
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imposed right before the expiry time T to the condition

V (S, T ) = Z, (3)

imposed right at the expiry time T when the CB has been redeemed by the issuer.

In Eqs. (2) and (3), n is the conversion ratio and Z is the principal (also called face

value or par value). Mathematically, such a jump represents a singularity and it is

usually hard to deal with. However, investors would always use Condition (2) to

maximize their profit. Therefore, Eq. (2) should always be used to value a CB for

any time prior to its expiry. In other words, the valuation problem of CBs can be

mathematically conducted in two time zones; a Zone 1 that includes all the time up

to but not including the expiry time and a Zone 2 that has one single point on the

time axis with t = T . In Zone 2 we already know the value of the CB through Eq.

(3) and the remaining task is to value the CB in Zone 1.

If a CB can only be “converted” or “redeemed” at expiry, the boundary condition

for large underlying asset values must be placed at infinity, i.e.,

lim
S→∞

V (S, t)

S
= n, (4)

just like that in the problem of European Options. However, most of the convertible

bonds issued are of American style, conversion is allowed at any time prior to the

expiry of the CB, just like American options. For these American-style CBs, the
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boundary condition at infinity should be replaced by two conditions



















V (Sc(t), t) = nSc(t),

∂V

∂S
(Sc(t), t) = n,

(5)

where Sc(t) is a moving boundary which needs to be found as part of the solution.

This paper focuses on the valuation of CBs with American-style conversion since

the valuation of those with European-style conversion is simple and trivial.

The price of a CB can be bounded above by a call feature sold to the issuer.

The call option allows the issuer to purchase back the bond if the underlying asset

value becomes too high. The price of a CB can also be bounded below by a “put”

option that allows the holder to sell the CB back to the issuer in case the underlying

asset value becomes too low. While the call feature would lower the price of a CB,

the put feature increases the price of a CB in comparison with the CB without.

The valuation of CBs with a call feature is not significantly more complicated than

that without simply because the call option is in the hands of the issuer; the bond

holder is only obliged to deliver if the bond is called. This obligation underpins the

movement of the free boundary to an upper limit, beyond which the imposition of

the upper bound on the CB price becomes effective. On the other hand, the “put”

feature gives the holder a right to either hold the bond or exercise the right to sell

the bond. Thus, the “put” feature requires a second free boundary be introduced to

the problem, in addition to the free boundary associated with the conversion, Sc(t),

as mentioned in the previous paragraph.

7



In this paper, we focus on CBs without “put” or “call” features. The valuation

problem with a call feature is currently being worked out and the results are to be

presented in a forthcoming paper.

In the absence of default issues, the boundary condition at S = 0 for convertible

bonds without “put” features is

V (0, t) = Ze−r(T−t) +
∑

i

Kie
−r(ti−t), (6)

where Ki represents discrete coupon payments to the CB’s holder by the issuer and

ti is the time at which the ith coupon will be paid (ti > t). Financially, such a

boundary condition implies that the CB would be of the same value as a regular

bound when the stock price is very low. This is true, except that the bond behaves

like a risky bond if the issuer’s credit risk is taken into consideration. When risky

bonds default, their value becomes zero. Therefore, if the defaultability has to be

taken into consideration for risky CBs, this boundary condition has to be altered.

Since the presence of discrete coupon payments introduces no additional difficulty

other than making the solution process a little bit more tedious as far as our solution

procedure to be presented in the next section is concerned, we shall concentrate only

on the cases with zero coupon payments. In other words, we set all Kis in Eq. (6)

to zero from now on.

The CB valuation problem is now completely defined by a differential system

composed of Eqs. (1), (2), (5) and (6). To solve this system more efficiently and
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consistently, we first normalize the system by introducing dimensionless variables as

follows:

V ′ =
V

Z
, S ′ =

S

Z
, τ ′ = τ · σ2

2
= (T − t) · σ2

2
.

Then upon omitting all primes for the sake of simplicity, the normalized system can

be easily derived as






































































































−∂V

∂τ
+ S2∂2V

∂S2
+ (γ − β)S

∂V

∂S
− γV = 0,

V (0, τ) = e−γτ ,

V (Sc(τ), τ) = nSc(τ),

∂V

∂S
(Sc(τ), τ) = n,

V (S, 0) = max{nS, 1}.

(7)

in which γ (=
2r

σ2
) is the risk-free interest rate relative to the volatility of the under-

lying asset price and β (=
2D0

σ2
) is the dividend yield rate relative to the volatility

of the underlying asset price. Such a normalization not only provides mathematical

efficiency in the solution procedure but also has some financial advantage that CBs

of different face values and under different currencies can be easily compared.

The normalized differential system (7) shows that the solution will be a four-

parameter family. That is, the solution of the system depends only on four pa-

rameters: the relative interest rate, γ, the conversion ratio, n, the relative dividend

payment rate, β and the dimensionless time to expiry, τexp = T · σ2

2
. It should
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be noticed that the introduction of time to expiration τ as the difference between

the expiration time T and the current time t results in the change of the terminal

condition (2) to an initial condition in (7).

3 A Closed-Form Analytical Solution

To find a closed-form analytical solution for the differential system (7), we follow

Zhu’s (2005) method and introduce a transform

x = − ln
S

Sf (τ)
, (8)

to shift the moving boundary conditions to fixed boundary conditions. After per-

forming the coordinate transformation and some algebraic manipulations, the dif-

ferential system (7) can be written as











































































































∂V

∂τ
− ∂2V

∂x2
+ (γ − β − 1)

∂V

∂x
+ γV = − 1

Sc(τ)

dSc

dτ

∂V

∂x
,

V (x, 0) = 1,

V (0, τ) = nSc(τ),

∂V

∂x
(0, τ) = −nSc(τ),

lim
x→∞

V (x, τ) = e−γτ .

(9)

The non-zero boundary conditions at infinity could pose a problem later if we

want to adopt the solution strategy employed by Zhu (2005). So, a simple shift of
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the vertical axis by a time-dependent amount of e−γτ can be carried out and the

transform

U(x, τ) = V (x, τ) − e−γτ , (10)

changes System (9) to











































































































∂U

∂τ
− ∂2U

∂x2
+ (γ − β − 1)

∂U

∂x
+ γU = − 1

Sc(τ)

dSc

dτ

∂U

∂x
,

U(x, 0) = 0,

U(0, τ) − nSc(τ) = −e−γτ ,

∂V

∂x
(0, τ) + nSc(τ) = 0,

lim
x→∞

V (x, τ) = 0.

(11)

Now, one should notice that the nonlinearity in (11) concentrates explicitly in

the nonhomogeneous term of the governing differential equation while the boundary

conditions defined on a moving boundary have been replaced by a set of boundary

conditions defined on a fixed boundary. This is an advantage we can take of when

the homotopy analysis method is applied to solve a nonlinear system with fixed

boundary conditions.

The homotopy analysis method originated from the homotopic deformation in

topology and was initially suggested by Ortega and Rheinboldt (1970). Recently, it

has been successfully used to solve a number of heat transfer problems (see Liao,

(1997) and Liao and Zhu (1999)) and fluid flow problems (see Liao and Zhu (1996)
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and Liao and Campo (2002)). The essential concept of the method is to construct

a continuous “homotopic deformation” through a series expansion of the unknown

function. The series solution of the unknown function is of infinitely many terms,

but is nevertheless of a closed form. By a “closed-form” solution, we mean that it can

be written in terms of functions and mathematical operations from a given generally

accepted set and theoretically can be calculated to any desired degree of accuracy.

By this definition, a solution explicitly written in terms of a convergent infinite series

is certainly a closed-form solution. However, in practice, calculation of the actual

values of the unknown function at a point in space (the underlying asset price here)

and time requires truncation of the infinite series to a finite one; just as performed

for the calculation of many other standard mathematical functions. Therefore, the

fact that the realization of our closed-form analytical solution in numerical values

requires truncation of the series solution does not devalue the analyticity of the

solution itself. The key point to determine if a homotopic solution is truly analytic

or not is whether or not an analytical solution can be found at each order. If an

analytical solution can be constructed at each order like we present in this paper

rather than computed numerically like in Liao (1997) and Liao and Zhu (1999),

who solved each order of their equations numerically through the boundary element

method, a truly closed-form analytical solution is obtained. As far as the accuracy is

concerned, unlike those unavoidable “discretization errors” associated with a finite

difference method or finite element method, there are no “discretization errors”
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at each order for a truly closed-form analytical solution. Theoretically speaking,

one should be able to achieve machine accuracy if a sufficient number of terms is

included in the summation process, for then all the numerical errors will result only

from “truncation errors” when real numbers are stored in a computer with a finite

number of digits.

We now construct two new unknown functions Ū(x, τ, p) and S̄c(τ, p) that satisfy

the following differential system,











































































































(1 − p)L[Ū(x, τ, p) − Ū0(x, τ)] = −p{A[Ū(x, t, p), S̄c(τ, p)]},

Ū(x, 0, p) = (1 − p)Ū0(x, 0),

Ū(0, τ, p) − nS̄c(τ, p) = −e−γτ ,

∂Ū

∂x
(0, τ, p) + nS̄c(τ, p) = (1 − p)

[

e−γτ +
∂Ū0

∂x
(0, τ) + Ū0(0, τ)

]

,

lim
x→∞

Ū(x, τ, p) = 0,

(12)

where L is a differential operator defined as

L =
∂

∂τ
− ∂2

∂x2
+ (γ − β − 1)

∂

∂x
+ γ,

and A is a functional defined as

A[Ū(x, τ, p), S̄c(τ, p)] = L(Ū) +
1

S̄c(τ, p)

∂S̄c

∂τ
(τ, p)

∂Ū

∂x
(x, τ, p).
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When p = 0, we have







































































































L[Ū(x, τ, 0)] = L[Ū0(x, τ)],

Ū(x, 0, 0) = Ū0(x, 0),

Ū(0, τ, 0) − nS̄c(τ, 0) = −e−γτ ,

∂Ū

∂x
(0, τ, 0) + nS̄c(τ, 0) = e−γτ +

∂Ū0

∂x
(0, τ) + Ū0(0, τ),

lim
x→∞

Ū(x, τ, 0) = 0.

(13)

Clearly, the solution of differential system (13) is



























Ū(x, τ, 0) = Ū0(x, τ),

S̄c(τ, 0) = 1
n

[

e−γτ + Ū0(0, τ)
]

= S̄0(τ),

(14)

so long as the initial guess Ū0(x, τ) satisfies the condition

lim
x→∞

Ū0(x, τ) = 0.

One should notice that other than this condition, theoretically, there are no other

requirements for the initial guess Ū0(x, τ) to satisfy. However, if we choose a function

that has already satisfied an additional condition LŪ0(x, τ) = 0, we should expect

a faster convergence of the series.
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On the other hand, if p = 1, differential system (12) becomes











































































































L[Ū(x, τ, 1)] = − 1

S̄c(τ, 1)

∂S̄c

∂τ
(τ, 1)

∂Ū

∂x
(x, τ, 1),

Ū(x, 0, 1) = 0,

Ū(0, τ, 1) − nS̄c(τ, 1) = −e−γτ ,

∂Ū

∂x
(0, τ, 1) + nS̄c(τ, 1) = 0,

lim
x→∞

Ū(x, τ, 1) = 0.

(15)

Comparing Eq. (15) and Eq. (11), it is obvious that the solution we seek is nothing

but


























U(x, τ) = Ū(x, τ, 1),

Sc(τ) = S̄c(τ, 1).

(16)

The two unknown functions Ū(x, τ, 1) and S̄c(τ, 1) can now be found by expand-

ing them as two Taylor’s series expansions of p

Ū(x, τ, p) =
∞
∑

m=0

Ūm(x, τ)

m!
pm, (17)

S̄c(τ, p) =
∞
∑

m=0

S̄m(τ)

m!
pm, (18)

where Ūm is the mth-order partial derivative of Ū(x, τ, p) with respect to p and then

evaluated at p = 0,

Ūm(x, τ) =
∂m

∂pm
Ū(x, τ, p)

∣

∣

∣

∣

∣

p=0

,

and S̄m is the mth-order partial derivative of S̄c(τ, p) with respect to p and then

15



evaluated at p = 0,

S̄m(τ) =
∂m

∂pm
S̄c(τ, p)

∣

∣

∣

∣

∣

p=0

.

To find all the coefficients in the above Taylor’s expansions, we need to derive a

set of governing partial differential equations and appropriate boundary and initial

conditions for the unknown functions Ūm(x, τ) and S̄m(τ). They can be derived

from differentiating each equation in system (12) with respect to p and then setting

p equal to zero. After this process, we obtain










































































































L[Ū1(x, τ)] = −L[Ū0(x, τ)] + A′
(x, τ, 0),

Ū1(x, 0) = −Ū0(x, 0),

Ū1(0, τ) − nS̄1(τ) = 0,

∂Ū1

∂x
(0, τ) + nS̄1(τ) = −

[

Ū0(0, τ) +
∂Ū0

∂x
(0, τ) + e−γτ

]

,

lim
x→∞

Ū1(x, τ) = 0,

(19)

and










































































































L[Ūm(x, τ)] = m
∂m−1A′

∂pm−1

∣

∣

∣

∣

∣

p=0

,

Ūm(x, 0) = 0,

Ūm(0, τ) − nS̄m(τ) = 0, if m ≥ 2,

∂Ūm

∂x
(0, τ) + nS̄m(τ) = 0,

lim
x→∞

Ūm(x, τ) = 0.

(20)
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In Eqs. (19) and (20), A′
(x, τ, p) is the negative value of the second term of A(x, τ, p),

i.e.,

A′
(x, τ, p) = − 1

S̄c(τ, p)

∂S̄c

∂τ
(τ, p)

∂Ū

∂x
(x, τ, p).

This term needs to be calculated recursively. With the development of modern

symbolic calculation packages, such as Maple and Mathematica, such recursive cal-

culation becomes simple and straightforward. As demonstrated by Zhu and Hung

(2003), fast development of modern symbolic calculation packages now enables ap-

plied mathematicians and engineers to develop solution approaches that would be

otherwise not possible without symbolic manipulation capabilities. The solution pro-

cedure presented here is another example. The expression of A′
(x, τ, p) is lengthy

and there is no need to write out its explicit form due to its recursive nature. How-

ever, the recurrent calculation of this term can be easily realized in a symbolic

calculation package such as Maple.

After eliminating S̄m(τ) from the two boundary conditions at x = 0 in Eqs. (19)

and (20), we can write Eqs. (19) and (20) in a general form














































































L[Ūm(x, τ)] = fm(x, τ),

Ūm(x, 0) = ψm(x),

∂Ūm

∂x
(0, τ) + Ūm(0, τ) = φm(τ),

lim
x→∞

Ūm(x, τ) = 0,

(21)

with fm(x, τ), ψm(x) and φm(τ) being expressed respectively as

17



fm(x, τ) =























−L[Ū0(x, τ)] + A′
(x, τ, 0), if m = 1,

m
∂m−1A′

∂pm−1

∣

∣

∣

∣

∣

p=0

, if m ≥ 2,
(22)

ψm(τ) =



















−Ū0(x, 0), if m = 1,

0, if m ≥ 2,

(23)

φm(τ) =























−
[

Ū0(0, τ) +
∂Ū0

∂x
(0, τ) + e−γτ

]

, if m = 1,

0, if m ≥ 2.

(24)

The elimination of S̄m(τ) is the key to the success that an analytical solution

is eventually worked out for this highly nonlinear problem through solving a se-

quence of infinitely many linear partial differential systems. Upon performing a

transformation

Ūm(x, τ) = e
1
2
(γ−β−1)x+[− 1

4
(γ+1)2+β

2
(γ−β

2
+1)]τ V̄m(x, τ), (25)

we can rewrite Eq. (21) in the form of a standard diffusion equation














































































∂V̄m

∂τ
− ∂2V̄m

∂x2
= e−

1
2
(γ−β−1)x+[ 1

4
(γ+1)2−β

2
(γ−β

2
+1)]τfm(x, τ),

V̄m(x, 0) = e−
1
2
(γ−β−1)xψm(x),

∂V̄m

∂x
(0, τ) +

1

2
(γ − β + 1)V̄m(0, τ) = e[

1
4
(γ+1)2−β

2
(γ−β

2
+1)]τφm(τ),

lim
x→∞

V̄m(x, τ) = 0.

(26)

A closed-form solution of Eq. (26) at each order (i.e., with each m) can now be

found by splitting the linear problem into three problems, a technique frequently

18



used in solving linear partial differential equations. The solution of the first problem,

which involves a homogeneous differential equation and homogeneous boundary con-

dition at x = 0 but arbitrary initial condition can be easily worked out by utilizing

the Laplace transform technique while the solution of the second problem, which

also involves a homogeneous differential equation and zero initial condition but a

non-homogeneous boundary condition at x = 0 can be found in Carslaw and Jaeger

(1959). The solution of the third problem, in which the differential equation is non-

homogeneous but both of the boundary condition at x = 0 and the initial condition

are homogeneous can be worked out by using the Duhamel’s theorem (See Carslaw

and Jaeger (1959)) once the solution of the first problem is found. Without going

through the lengthy solution procedures, the final analytic solution of Eq. (21) is

given here explicitly in terms of three single integrals and two double integrals as:
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V̄m(x, τ) = 1√
π

{

e−
1
2
(γ−β−1)x

∫ x
2
√

τ

− x
2
√

τ

ψm(2
√

τ ξ + x)e−(γ−β−1)
√

τξ−ξ2

dξ

+
∫ ∞

x
2
√

τ

[

e−
1
2
(γ−β−1)xψm(2

√
τ ξ + x) + e

1
2
(γ−β−1)xψm(2

√
τ ξ − x)

]

· e−(γ−β−1)
√

τξ−ξ2
dξ

}

+ (γ − β + 1)
√

τ e
1
2
(γ−β−1)x+

(γ−β+1)2

4
τ

·
∫ ∞

x
2
√

τ

ψm(2
√

τξ − x)e−2(γ−β)
√

τ ξerfc(ξ − (γ − β + 1)

2

√
τ)dξ

− 2√
π
e[−

1
4
(γ+1)2− 1

2
β(γ−β

2
+1)]τ

∫ ∞

0
e−

1
2
(γ−β+1)η

∫ ∞

x+η

2
√

τ

φm

(

τ − (x + η)2

4ξ2

)

· e
−
[− 1

4 (γ+1)2− 1
2 β(γ−β

2 +1)](x+η)2

4ξ2
−ξ2

dξdη

+
∫ τ

0







e[−
1
4
(γ+1)2+ 1

2
β(γ−β

2
+1)]η

√
π

[

e
1
2
(γ−β−1)x

∫ x

2
√

τ−η

− x

2
√

τ−η

fm(2
√

τ − η ξ + x, η)

· e(γ−β−1)
√

τ−η ξ−ξ2
dξ +

∫ ∞

x

2
√

τ−η

[

e
1
2
(γ−β−1)xfm(2

√
τ − η ξ + x, η)

+e−
1
2
(γ−β−1)xfm(2

√
τ − η ξ − x, η)

]

e(γ−β−1)
√

τ−η ξ−ξ2
dξ

]

+(γ − β + 1)
√

τ − ηe−
1
2
(γ−β−1)x+

(γ−β+1)2

4
τ+[− 1

2
(γ+1)2+β(γ−β

2
+1)]η

·
∫ ∞

x

2
√

τ−η

fm(2
√

τ − η ξ − x, η)e−2
√

τ−η ξ

·erfc(ξ − (γ−β+1)
2

√
τ − η)dξ

}

dη,

(27)

where erfc(x) denotes the complementary error function.

Upon finding the coefficients Ūm(x, τ) from Eqs. (25) and (27), S̄m(τ) can be

easily found from the third equation of Eqs. (19) and Eq. (20). i.e.,

S̄m(τ) =
1

n
Ūm(0, τ). (28)

Then, the final solution of our original problem Eq. (11) can be written, by virtue

20



of Eqs. (17), and (18), in terms of a series of infinitely many terms as































U(x, τ) = Ū(x, τ, 1) =
∞
∑

m=0

Ūm(x, τ)

m!
,

Sc(τ) = S̄c(τ, 1) =
∞
∑

m=0

S̄m(τ)

m!
.

(29)

The summation process begins with an initial guess U0(x, τ). As shown in Eqs.

(13) and (14), the initial guess can be virtually any continuous function defined on

x ∈ [0,∞). However, for the present CB problem, we can choose the solution for a

European option with continuous yield dividend as the initial guess. Just like the

nice initial choice used by Zhu (2005) who outlined the three major advantages when

an elegant European-style counterpart of the financial derivative to be valued is used

in conjunction with the homotopy analysis method, here choosing the solution for a

European option with continuous yield dividend as our initial guess also significantly

simplifies the problem. First of all, the dimensionless solution

UE(x, τ) = e−x−βτN(d10) − e−γτN(d20) (30)

with

d10 =
(γ + 1 − β)τ − x√

2τ

and

d20 =
(γ − 1 − β)τ − x√

2τ

satisfies the equation

L[Ū0(x, τ)] = 0, (31)
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and therefore f1(x, τ) in Eq. (22) is further simplified as the first term disappears if

uE(x, τ) is set to be equal to U0(x, τ). Secondly, because of the transform Eq. (8),

we are actually only using part of the solution (30). At τ = 0, the part we actually

used is the UE in the range S ∈ [0, Z) or in terms of x, x ∈ [0,∞). Within this

range,

Ū0(x, 0) = 0, (32)

which has considerably simplified the solution (27) because ψ1(x) in Eq. (23) van-

ishes, resulting in the integral involving ψm in Eq. (27) being entirely eliminated.

Finally, even the boundary condition for Ū0(x, τ) as x approaches infinity is also

satisfied because that is the boundary condition that the value of a European call

option with continuous dividend payment must satisfy. This can be easily verified

in Eq. (30).

These advantages have led to a reasonable convergence rate; about 30 terms are

needed to reach a convergent solution with an accuracy up to the 3rd decimal place.

This is about one third of the terms needed when Liao (1997) combined homotopy

analysis method with the boundary element techniques to solve a nonlinear heat

transfer problem. On the other hand, if other initial guess are taken, numerical

experiments show that it could take considerably longer time to reach the same

level of accuracy, although eventually convergent solution can still be found.
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4 Examples and Discussions

A convertible bond example is now used to illustrate some calculated results obtained

from using the newly-derived analytical solution. To help readers who may not be

used to discussing financial problems with dimensionless quantities, all results, unless

otherwise stated, are now converted back to dimensional quantities in this section

before they are graphed and presented.

The example is based on a basic convertible bond with conversion being allowed

any time prior to expiry. The bond’s parameters are:

• Strike price X = $100,

• Risk-free annual interest rate r = 10%,

• Rate of continuous dividend payment D0 = 7%,

• Volatility σ = 0.4,

• Time to expiration T = 1 (year).

In terms of the dimensionless variables, the three parameters involved are γ = 1.25,

β = 0.875 and τexp = 0.08.

There are many choices for the numerical computation of the integrals involved in

the closed-form analytical solution Eqs. (21), (23) and (24). All the results presented

in this paper were calculated with a variable grid spacing in time and equal grid

spacing in the dimensionless stock price. The symbolic calculation package Maple
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Figure 1: Optimal exercise prices for three different conversion ratios

9 was used to carry out the recursive computation of fm(x, τ) in (22) for m ≥ 2.

Numerical integration with a compound Simpson’s rule was performed for the spacial

integration and the simple trapezoidal rule was used for the temporal integration.

Because the integrals involving an infinite upper limit converges extremely fast, only

a small finite number is needed to replace the infinite upper limit; beyond this finite

limit the integrand is virtually zero and contributes almost nothing to the result of

the integration.

The results of the analytical series solution were obtained when the solution

became convergent after 30 terms were summed. Depicted in Fig. 1 are the results
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Figure 2: The prices of the convertible bond with a conversion ratio 0.5 at four

different time instants

of the optimal exercise prices, Sc, for three different conversion ratios. As expected,

all optimal exercise prices increase monotonically with time to expiry, τ = T − t,

or decrease with time t. However, as the conversion ratio becomes large, the Sc(τ)

curve becomes flatter. Of course, when the time approaches to the expiration time

T of the option, the optimal exercise prices all approach the strike price divided by

the conversion ratio, respectively, because of the arbitrage-free assumption, based

on which the governing differential system is derived.

With the closed-form analytic solution, we can graph the value of the convertible
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Figure 3: The prices of the convertible bond with a unit conversion ratio at four

different time instants

bond vs. the stock price at a fixed time. Depicted in Figs. 2-4 are the prices of the

convertible bond with three different conversion ratios as a function of the underlying

asset value S at four instants, t = 0 (year), t = 0.262 (years), t = 0.492 (years), and

t = 0.751 (years), respectively. Clearly, one can observe that all the price curves

smoothly land on the straight line, which represents the intrinsic value of the CB

for each case. This smooth landing demonstrates how well the boundary conditions

prescribed on the moving boundary in (5) are satisfied.

In this example, the summations in (25) were carried out up to 30 terms when
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Figure 4: The prices of the convertible bond with a conversion ratio of two at four

different time instants

a convergent optimal exercise price was found for the case with conversion ratios

of half and two, but only up to 27 terms for the case with conversion ratio of one.

In all these cases, any further inclusion of more terms in the solution resulted in a

contribution in the order of 10−3. The convergence of our results as m is increased

can be clearly seen in Fig. 5, in which the dimensionless V̄m(x, τ) values for the case

with the half conversion ratio are plotted for m = 25 to m = 30. As m increases, the

magnitude of V̄m(x, τ) decreases. When m becomes greater than 30, the remainder

of the series becomes insignificant as the computed result has more or less reached a
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level that they are hardly distinguishable when they are plotted out. The behavior

of V̄m(x, τ) for the other two cases is very similar and the corresponding graphs are

thus omitted.
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Figure 5: An illustration of convergence for the case with a conversion ratio 0.5

5 Conclusions

Making use of the concept of homotopic deformation in topology, the nonlinear

problem of valuing a convertible bond with the American style of conversion is solved

analytically and a closed-form solution of the well-known Black-Scholes equation is
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obtained for the first time. It is shown that the optimal conversion price, which is the

key difficulty in the valuation of American-style convertible bonds, can be expressed

explicitly in a closed form in terms of four input parameters; the risk-free interest

rate, the continuous dividend yield, the volatility and the time to expiration. This

closed-form analytical solution can be used to validate other numerical solutions

designed for more complicated cases where no analytical solutions exist.
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