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Abstract—An accurate, closed-form expression evaluating the
nonlinear interference (NLI) power in coherent optical transmis-
sion systems in the presence of inter-channel stimulated Raman
scattering (ISRS) is derived. The analytical result enables a rapid
estimate of the signal-to-noise ratio and avoids the need for integral
evaluations and split-step simulations. The formula also provides
a new insight into the underlying parameter dependence of ISRS
on the NLI. Additionally, it accounts for the dispersion slope and
arbitrary launch power distributions including variably loaded
fiber spans. The latter enables real-time modeling of optical mesh
networks. The results is applicable for lumped amplified, disper-
sion unmanaged, and ultra-wideband transmission systems. The
accuracy of the closed-form expression is compared to numerical
integration of the ISRS Gaussian noise model and split-step simu-
lations in a point-to-point transmission, as well as in a mesh optical
network scenario.

Index Terms—C+L band transmission, closed-form approxima-
tion, first-order perturbation, Gaussian noise model, nonlinear
interference, nonlinear distortion, optical fiber communications,
stimulated Raman scattering.

I. INTRODUCTION

A
NALYTICAL models to estimate nonlinear interference

(NLI) are key for rapid and efficient system design [1],

achievable rate estimations of point-to-point links [2]–[4] and

physical layer aware network optimization. The latter is essen-

tial for optical network abstraction and virtualization leading to

optimal and intelligent techniques to maximize optical network

capacity [5].

Most approaches analytically solve the nonlinear Schrödinger

equation using first-order perturbation theory with respect to the

Kerr nonlinearity. The resulting integral expressions offer a sig-

nificant reduction in computational complexity with minor in-
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Fig. 1. A section from the British Telecommunications (BT) 20+2 topology
of the United Kingdom (UK) core network [16]. In section III-D, the nonlinear
interference of the example light path (A-B) is modeled.

accuracies, compared to split-step simulations and experiments

[6]–[11].

In particular, the Gaussian Noise (GN) model offers a reason-

able accuracy with moderate computational complexity [12],

[13]. Numerical integration of the GN model to obtain the non-

linear interference has a typical computation time of a few min-

utes per WDM channel [14], [15]. For ultra-wideband signals

with over 200 WDM channels, the computation time quickly

increases to a few hours to obtain the NLI distribution across

the entire optical bandwidth.

For some applications, such time frames are not acceptable

and closed-form approximations, that yield performance esti-

mations in picoseconds, are required. Such applications include

e.g. physical layer aware network optimization and network per-

formance estimation. In addition to speed, closed-form approx-

imations offer a unique insight into the underlying parameter

dependencies and provide useful design and scaling rules.

An optical mesh network consists of a large number of point-

to-point links, carrying many lightpaths. As an example, the

British Telecommunications (BT) 20+2 topology of the United

Kingdom core network [16] has 34 bidirectional network edges.

A section of the network is shown in Fig. 1. Assuming a WDM

grid spacing of 50 GHz (ITU grid) over the entire C+L band

(10 THz), a full performance estimation of a single network state
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requires up to 10THz
50GHz

· 2 · 34 = 13600 performance evaluations.

It is evident that the problem is intractable using numerical in-

tegration. However, using closed-form approximations, the per-

formance estimation of an entire network state can be reduced

to only a few microseconds.

Closed-form approximations, that predict the nonlinear inter-

ference power in coherent transmission systems, were derived

for lossless fibers [3], [17] and lossy fibers using lumped ampli-

fication [13], [18]–[22] as well as distributed Raman amplified

links [23].

However, all aforementioned formulas are not applicable

for optical bandwidths beyond C-band (5 THz) where inter-

channel stimulated Raman scattering (ISRS) becomes signif-

icant. ISRS is a non-parametric nonlinear effect that effec-

tively amplifies low frequency components at the expense of

high frequency components within the same optical signal.

This significantly alters the NLI distribution across the received

spectrum.

A GN model that accounts for ISRS, in integral and in closed-

form, was first proposed in our previous work [24]. The effect

of ISRS was included through a channel dependent exponen-

tial decay, valid in the weak ISRS regime. A more generalized

model, in integral form, termed ISRS GN model, was subse-

quently proposed in [14], [15], [25]–[27]. The ISRS GN model

accurately accounts for strong ISRS power transfers, as well as

for distributed amplification techniques. A more detailed com-

parison can be found in [27] and experimental validations can

be found in [11], [26]. However, the ISRS GN model relies

on numerically solving an integral of at least three dimensions

and an approximation in closed-form has not been reported to

date.

In this paper, a closed-form approximation of the ISRS GN

model is presented which accurately accounts for the impact of

ISRS on the nonlinear interference power. The derived formula

generalizes our previous results in [24] by including the dis-

persion slope, the improved ISRS description of the ISRS GN

model and arbitrary launch power distributions, including vari-

ably loaded fiber spans. The latter enables real time performance

estimations in optical mesh networks. The proposed formula is

applicable to dispersion unmanaged ultra-wideband transmis-

sion systems with lumped amplifiers. The formula is validated

by split-step simulations over 10.05 THz optical bandwidth.1

The remainder of this paper is organized as follows: The

ISRS GN model is briefly summarised in Section II-A. Section

II-B addresses the key steps in the derivation of the closed-

form approximation and the result is presented in Section II-C.

In Section III, the proposed formula is validated via split-step

simulations and via the ISRS GN model in integral form for a

point-to-point transmission and a mesh network scenario. Sec-

tion IV addresses the case of non-uniform (tilted) launch power

distributions.

1Simultaneously with this submission here, this paper was submitted to arXiv
e-prints [28]. During the peer-review process, [29] appeared on arXiv. The
approach in [29] is very similar to the one presented here. Comparison of the
results for the parameters used in Fig 5 in this manuscript, yield an average
difference of less than 0.1 dB.

II. THE ISRS GN MODEL IN CLOSED-FORM

In this section, the proposed closed-form approximation of

the ISRS GN model is presented. The main derivation steps are

outlined and its key assumptions are addressed and discussed.

After coherent detection, electronic dispersion compensation

and neglecting the impact of transceiver noise, the signal-to-

noise ratio (SNR) of the channel of interest (COI) i can be

calculated as

SNRi ≈
Pi

PASE + ηnP 3
i

, (1)

where Pi is the launch power of channel i at the transmitter and

PASE is the accumulated amplified spontaneous emission (ASE)

noise originating from optical amplifiers. ASE noise inflation

as a result of gain equalization can be included by a channel

dependent PASE. The nonlinear interference coefficient ηn (fi)
after n spans is dependent on the center frequency fi of the COI.

For optical bandwidths beyond C-band (5 THz), inter-channel

stimulated Raman scattering becomes significant. ISRS leads to

a power transfer of an incident pump wave to lower frequency

(Stokes) waves through the intermediary of optical lattice vibra-

tions in the guiding medium. The probability of this power trans-

fer is enhanced with increasing frequency separation between

pump and Stokes wave according to the Raman gain function

[30]. In the context of perturbation based models, the impact

of ISRS on the Kerr effect is modeled by changing the effec-

tive attenuation (the signal power profile) across the transmitted

spectrum to resemble the average effect of ISRS, neglecting

temporal fluctuations. To this date, all approaches available in

the literature treat transmitted channels as continuous waves and

hence neglect temporal gain fluctuations resulting from chan-

nel modulation. The negligible nature of such dynamic effects

is motivated by the averaging of many independent sources

which has been theoretically shown for on-off keyed systems

[31], [32]. Recently, this has been experimentally demonstrated

over continuous bandwidths of 3 THz [26] and 9 THz [11] and

between the S- and L-band [33].

A. The ISRS GN Model in Integral Form

In the following the ISRS GN model, a Gaussian model

that accounts for inter-channel stimulated Raman scattering,

is briefly revised.

The NLI coefficient in the presence of ISRS is given by [27,

Eq. (9)]

η1 (fi) =
Bi

P 3
i

16

27
γ2

∫

df1

∫

df2 GTx(f1)GTx(f2)

· GTx(f1 + f2 − fi)

·
∣
∣
∣
∣

∫ L

0

dζ
Ptote

−αζ−P totC rL eff·(f1 +f2 −fi )

∫
GTx(ν)e−P totC rL effν dν

ejφ(f1 ,f2 ,fi ,ζ )

∣
∣
∣
∣

2

, (2)

where Bi is the bandwidth of the COI i, γ is the nonlinearity

coefficient, α is the attenuation coefficient, Leff = 1−e−α ζ

α
(the

ζ dependence is suppressed throughout this paper for notational

brevity), Cr is the slope of the linear regression of the normal-

ized Raman gain spectrum, Ptot is the total transmitted optical
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Fig. 2. Illustration of the transmitted spectrum GTx (f ) subject to the XPM
assumption. Shown are the channel under test (COI) and a single interferer
(INT) with arbitrary power levels, bandwidths and center frequencies. The total
XPM is then obtained by summing over all interferers k ∈ Si as in (4).

power and φ = −4π2(f1 − fi)(f2 − fi) [β2 + πβ3(f1 + f2)] ζ
is a phase mismatch term, with the group velocity dispersion

(GVD) parameter β2 and its linear slope β3 at the reference

wavelength.

Eq. (3) is valid for optical bandwidths of up to 15 THz as

it assumed a linear (rectangular) Raman gain spectrum. The

ISRS GN model in integral form for multi-span systems (where

different spans exhibit different launch power distributions) can

be found in [14, Eq. (2)]. Eq. (3) assumes a uniform NLI power

spectral density (PSD) over the channel bandwidth (the local

white noise assumption). This assumption is required in order to

avoid the integration of the NLI PSD over the receiver (matched)

filter, which is analytically difficult for arbitrary filter shapes.

The strength of ISRS for a given system can be assessed

by calculating the net power transfer ∆ρ (z) between the outer

channels of the WDM signal. This is the summation of the ISRS

net gain/loss of the highest and lowest frequency channel, which

is given by [34], [35]

∆ρ (z) [dB] � 10 log10 [∆ρ (z)] = 4.3 · PtotCrLeffBtot, (3)

where Btot is the total optical bandwidth.

B. The XPM Assumption

In the following, some of the key steps in deriving the

proposed closed-form approximation of (3) are addressed and

discussed.

We first evaluate the nonlinear perturbation of the COI i,

caused by a single interferer (INT) k, which is denoted by

η
(k)
XPM(fi). The special case where the NLI is caused by the

COI itself (i.e. k = i), is denoted by SPM (also denoted by

SCI). The NLI contribution of all other interferers is denoted

as XPM (also denoted by XCI). An illustration of the SPM and

XPM contribution of a COI and a single INT is schematically

shown in Fig. 2. In more detail, the set of all XPM interferers,

with respect to the COI i, is given as

Si = {k ∈ N | 1 ≤ k ≤ Nch and k �= i} . (4)

In the literature, this assumption is often referred to as XPM

assumption [21], [36]–[39] and it neglects NLI contributions

that are jointly generated by two interfering channels, which is

denoted as FWM (also denoted by MCI). However, this contri-

bution is typically very small in highly dispersive links, where

high symbol rates or channel spacings are used [40], [41].

Using the XPM assumption, the NLI coefficient is

ηn (fi) ≈
n∑

j=1

[
Pi,j

Pi

]2

· [ηSPM,j (fi) nǫ + ηXPM,j (fi)] , (5)

where ηSPM,j (fi) is the SPM contribution and ηXPM,j (fi) is

the total XPM contribution generated in the j’th span. Pi,j

is the power of channel i launched into the j’th span, where

Pi,1 = Pi . Eq. (5) essentially returns the NLI coefficient of

each span, normalized to the launch power of the transmitter.

Different launch power distributions and fiber parameters for

each span can be accounted for. However, for the remainder of

this paper, the j dependence of the SPM and XPM contribution

is suppressed for notational convenience.

The total XPM contribution is obtained by summing over all

interfering channels, as

ηXPM (fi) =
∑

∀k∈S i

η
(k)
XPM(fi), (6)

where η
(k)
XPM(fi) is the XPM contribution of a single interfering

channel k on channel i.

The coherent accumulation along multiple fiber spans is in-

cluded using the coherence factor ǫ. The coherence factor can

be obtained in closed-form [13, Eq. (22)]. The coherence fac-

tor is typically defined for the entire optical signal. However in

this work, only the SPM contribution is assumed to accumu-

late coherently and the coherence factor is redefined over the

channel bandwidth Bi [42]. The XPM contribution is assumed

to accumulate incoherently. The advantage of this approach is

that the coherent accumulation is independent of the transmitted

spectrum and is only a function of the channel bandwidth. This

significantly simplifies the modeling of NLI in optical mesh

networks as fiber spans are variably loaded. The approach is

consistent with the observations in [40].

Additionally, it is assumed that the coherence factor itself is

not altered by ISRS, which is not strictly true as shown in [27].

However, this effect is neglected due to its small impact on the

NLI. For SSMF based spans and a 10 THz signal, this results in

an approximation error of around 0.1 dB after 10 fiber spans.

In the following, the NLI caused by a single interferer on

the COI, is analytically evaluated. It is assumed that the chan-

nel of interest i has normalized pulse shape gi(f − fi) =
1

B i
Π
(

f−fi

B i

)

, launch power Pi , channel bandwidth Bi and

is centered around frequency fi . The function Π(x) denotes

the rectangular function. The interfering channel has normal-

ized pulse shape gk (f − fk ) = 1
Bk

Π
(

f−fk

Bk

)

, launch power Pk ,

bandwidth Bk and is centered around frequency fk . The trans-

mitted spectrum is then given by

GTx(f) = Pigi(f − fi) + Pkgk (f − fi − ∆f), (7)

where ∆f = fk − fi is the frequency separation between COI

and INT. An illustration of (7) with the resulting nonlinear in-

teractions on the COI is shown in Fig. 2.

Substituting the transmitted spectrum (7) in the ISRS GN

model (3) yields six non-identical terms where only two are

non-zero and contribute to the NLI of the COI. These two terms
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are the SPM and the XPM contribution. The XPM contribution

is

η
(k)
XPM(fi) =

32

27

γ2

B2
k

(
Pk

Pi

)2 ∫ B i
2

− B i
2

df1

∫ B k
2

− B k
2

df2 Π

(
f1 + f2

Bk

)

·
∣
∣
∣
∣

∫ L

0

dζ
Ptote

−αζ−P totC rL eff·(f1 +f2 +fk )

∫
GTx(ν)e−P totC rL effν dν

ejφ(f1 +fi ,f2 +fk ,fi ,ζ )

∣
∣
∣
∣

2

,

(8)

and the SPM contribution is

ηSPM(fi) =
1

2
η

(i)
XPM(fi). (9)

It should be noted that in Eq. (9) Ptot, Btot and GTx(ν) refer to

the launch power, bandwidth and transmitted spectrum of the

entire WDM signal.

C. The ISRS GN Model in Closed-Form

The SPM and the XPM contributions are solved separately

yielding two formulas, one for each contribution. The total NLI

is then obtained using (5). The reader is referred to Appendix A

and Appendix B for the detailed derivations.2

The closed-form approximation for the SPM contribution is

ηSPM (fi) ≈
4

9

γ2

B2
i

π

φiᾱ (2α + ᾱ)

·
[
Ti − α2

a
asinh

(
φiB

2
i

πa

)

+
A2 − Ti

A
asinh

(
φiB

2
i

πA

)]

,

(10)

with φi = 3
2 π2 (β2 + 2πβ3fi), A = α + ᾱ and Ti =

(α + ᾱ − PtotCrfi)
2
.

The closed-form approximation for the total XPM contribu-

tion is

ηXPM (fi) ≈
32

27

N ch∑

k=1,k �=i

(
Pk

Pi

)2
γ2

Bkφi,k ᾱ (2α + ᾱ)

·
[
Tk − α2

α
atan

(
φi,kBi

α

)

+
A2 − Tk

A
atan

(
φi,kBi

A

)]

,

(11)

with φi,k = 2π2 (fk − fi) [β2 + πβ3 (fi + fk )]. The sum in

(11) represents the summation over the XPM contribution of

each individual interferer as in (4).

If not specified otherwise, it holds that ᾱ = α. The parameter

ᾱ can be used to apply the proposed closed-formula in more

general cases. Such cases include improved accuracy for non-

uniform (tilted) launch power distributions, wavelength depen-

dent attenuation and even the extension of the formula beyond

15 THz i.e. beyond the triangular region of the Raman gain

spectrum. This is done by reinterpreting α, ᾱ and Cr as chan-

nel dependent quantities. The parameters are then matched to

reproduce the actual power profile of each channel and the pro-

posed formula can be applied. The drawback of this strategy is

2An implmentation in MATLAB and Python can be found at [43].

Fig. 3. SPM contribution for i = 25 with fi = −4040 GHz as a function
of symbol rate (bandwidth), obtained from numerically solving the ISRS GN
model in integral form (8) and its proposed approximation in closed-form (10).
The inset shows the actual integration domain and its circlular approximation.
For comparison the results of [13] [21] are shown, which both model SPM in
the absence of ISRS.

Fig. 4. XPM contribution for i = 25 with fi = −4040 GHz as a function of
frequency separation between channel of interest (COI) and interferer (INT),
obtained from numerically solving the ISRS GN model in integral form (8) and
its proposed approximation in closed-form (11), for k ∈ {26, 27, 28, 29, 30}.
For comparison the results of [13] [21] are shown, which both model XPM in
the absence of ISRS.

larger complexity as the Raman equations must be solved nu-

merically and additional regression operations are necessary in

order to obtain the channel dependent α, ᾱ and Cr . The case of

non-uniform (tilted) launch power distributions is addressed in

Sec. IV. The other cases are the subject of future publications.

D. Convergence to Previously Reported Results in the

Absence of ISRS

The SPM contribution as a function of symbol rate (chan-

nel bandwidth) is shown in Fig. 3 and the XPM contribution

as a function of channel separation is shown in Fig. 4. The

results were obtained by numerically integrating (8) and its pro-

posed approximation in closed-form. A WDM signal with an

optical bandwidth of 10.05 THz was assumed with a channel

launch power of 0 dBm. The COI has a center frequency of
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TABLE I
SYSTEM PARAMETERS

fi = −4040 GHz and is transmitted with a single interferer

over 100 km SMF with parameters listed in Table I . The accu-

racy of the closed-form approximation is remarkable throughout

Figs. 3 and 4, with an average deviation of < 0.1 dB and 0.1 dB

without and with ISRS, respectively.

In the absence of ISRS, the proposed formula is comparable

to the formulas proposed in [13, Eq. (39)] [21, Eq. (11)]. Both

are shown in Figs. 3 and 4, where the dispersion slope was

included for a fair comparison. Without ISRS, both formulas are

very close to the result proposed in this work, except for lower

symbol rates. For the SPM contribution, this difference mainly

originates in the assumed integration domain. The proposed

formula assumes a circular integration domain, whereas [13,

Eq. (39)] [21, Eq. (11)] both assume a rectangular integration

domain. A circular integration domain provides better accuracy

for lower symbol rates and yields analytical solutions in terms

of elementary functions as opposed to special functions [20].

E. Discussion of Key Assumptions

The closed-form formulas (10) and (11) were derived from the

ISRS GN model in integral form (8) with three key assumptions:

Assumption 1: For the XPM contribution, the frequency sep-

aration between the channel of interest and the interfering chan-

nel is much greater than half of the channel bandwidth, i.e.

|∆f | ≫ Bk

2 .

Assumption 2: The impact of ISRS on the effective channel

power attenuation (the signal power profile) is small, which

means that it can be approximated by a first-order Taylor series.

Assumption 3: The effective channel power attenuation is

only a function of the total launch power and independent of

its spectral distribution. This assumption has no impact on a

uniform launch power distribution.

Assumption 1 is mathematically equivalent with the zeroth-

order solution of the inner integral, over f2 , in Eq. (8). In Ap-

pendix C, it is shown that the introduced relative approximation

error of the XPM conribution is upper bounded by

Rel. Err. < 8% ·
(

Bk

∆f

)2

. (12)

For the closest channel spacing with ∆f = (k − i) · Bk , as-

sumption 1) introduces an approximation error of at most 0.3 dB

for a directly adjacent channel and approximation errors of

<0.1 dB for all other interfering channels. The analysis ex-

plains the excellent match between closed-form and integral

evaluation in Fig. 4. As the total XPM power is a summation

over numerous interfering channels, the approximation error of

assumption 1) can be deemed negligible.

Assumption 2 holds when the impact of ISRS on the the effec-

tive channel power attenuation (the signal power profile) can be

considered low. Mathematically, the ISRS term is approximated

by a first-order Taylor series. A validity range can be derived

by analyzing higher order terms. In particular, we compare the

first-order and second-order terms of the Taylor expansion used

to approximate ISRS. The reader is referred to Appendix D for

a detailed derivation. It is found that the second-order term is

negligible if

0.23 · ∆ρ (L) [dB] ≪ 6. (13)

The power transfer between the outer channels of the assumed

WDM signal in Figs. 3 and 4 is ∆ρ (L) [dB] = 6.3 dB and the

particular ISRS gain of the CUT is 2.3 dB. Eq. (13) yields

1.4 ≪ 6 which is not fully satisfied. This results in a small

approximation error in the presence of ISRS.

Assumption 3 introduces no approximation error when the

launch power distribution is uniform. In general, ISRS changes

the effective attenuation for a given WDM channel during

propagation. This change is a function of the total transmitted

launch power, mathematically expressed as e−P totC rL eff(f1 +f2 −fi )

in (3), and its spectral distribution, mathematically expressed

as 1
P tot

∫
GTx(ν)e−P totC rL effν dν in (3). In deriving the proposed

closed-form formula, it was assumed that (for the ISRS term)

the total optical launch power is uniformly distributed over the

entire optical bandwidth. This effectively assumes that the ef-

fective channel power attenuation (the signal power profile) is

independent of the launch power distribution and only depen-

dent on the total launch power. The impact of this assumption is

quantified for mesh optical networks in Section III-D and tilted

launch power distributions in Section IV.

Additionally, in Section IV, a strategy is proposed to com-

pletely eliminate the approximation error of assumption 3) by

matching the parameters α, ᾱ and Cr to the actual power profile

present in the fiber span.

III. NUMERICAL VALIDATION

In this section the proposed closed-form approximations (10)

and (11) are validated in an optical transmission system with

parameters listed in Table I. The validation is performed for

a point-to-point transmission in III-C and for a mesh optical

network scenario in III-D.

A. Setup

The validation was carried out by numerically solving the

Manakov equation using the well established split-step Fourier

method (SSFM). Inter-channel stimulated Raman scattering was

included in the SSFM by applying a frequency dependent loss
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Fig. 5. The NLI coefficient after one 100 km span as a function of channel frequency is shown in (a). The deviation of the NLI coefficient after one span as a
function of ISRS power transfer for different channels within the transmitted WDM signal is shown in (b). The results were obtained by numerical simulations,
numerically solving the ISRS GN model in integral form (3) and its proposed approximation in closed-form (10) and (11).

at every linear step, so that the signal power profile altered by

ISRS, is obtained.

A logarithmic step size distribution was implemented, where

0.25 · 106 simulation steps were found to be sufficient for launch

powers as high as 0 dBm per channel and 1 · 106 for launch

powers as high as 3 dBm/ch. Launch powers of up to 3 dBm/ch.

were considered in order to check the validity of the weak ISRS

assumption (see assumption 2 in Section II-E). At the beginning

of the fiber, the step size was as short as 21.5 cm, while the step

size at the end of a span was 2.15 m for 3 dBm/ch.

Gaussian symbols, drawn from a circular-symmetric Gaus-

sian distribution and uniform 64-QAM symbols were used for

transmission. The former was chosen in order to verify the

closed-form approximation while the latter was chosen to com-

pare the performance to a standard modulation format.

The receiver consisted of digital dispersion compensation,

ideal root-raised-cosine (RCC) matched filtering and constella-

tion rotation. The SNR was ideally estimated as the ratio be-

tween the variance of the transmitted symbols E[|X|2 ] and the

variance of the noise σ2 , where σ2 = E[|X − Y |2 ] and Y rep-

resents the received symbols after digital signal processing. The

nonlinear interference coefficient was then estimated via Eq. (1).

In order to improve the simulation accuracy, four different data

realizations were simulated and averaged for each transmission.

Ideal, noiseless amplifiers were considered to ease the NLI

computation and for a fair comparison between numerical sim-

ulation and ISRS GN model.

B. Single Span Transmission

The spectral distribution of the NLI coefficient after a single

span obtained by the SSFM, the ISRS GN model in integral

form and its proposed approximation in closed form are shown

in Fig. 5a. Launch powers of 0 dBm/ch. and 2 dBm/ch. are

shown which results in an ISRS power transfer of ∆ρ (L) [dB] =
6.3 dB and ∆ρ (L) [dB] = 10.3 dB, respectively. A case, where

no ISRS is considered is shown for comparison.

The tilt in NLI, in the case of no ISRS, is due to the dis-

persion slope S (or β3), where low frequency components ex-

hibit a higher amount of dispersion resulting in lower nonlinear

penalties. With increasing launch powers, low frequency

components are increasingly amplified, at the expense of high

frequency components, leading to increased (reduced) NLI for

low (high) frequency components.

Not surprisingly, the ISRS GN model in integral form matches

the simulation results with negligible error except at the most

outer channels due to the local white noise assumption (which

could be lifted by properly integrating the NLI PSD over the

channel bandwidth). The proposed closed-form approximation

is in good agreement with the ISRS GN model in integral form

and the simulation results. The average gap, in the case of no

ISRS, is 0.1 dB. This discrepancy is due to the XPM assumption

(see Section II-B), as the individual SPM and XPM contributions

are approximated with negligible error, as shown in Figs. 3 and 4.

The average discrepancy is 0.1 dB for 0 dBm/ch. and 0.2 dB

for 2 dBm/ch. launch power. The increasing discrepancy with

increasing launch power is due to the weak ISRS assumption

(see Section II-E). This assumption has more impact on the outer

channels as the net ISRS gain is larger.

The deviation of the NLI coefficient as a function of the

ISRS power transfer ∆ρ (L) [dB] for different channels within

the WDM signal is shown in Fig. 5 b. The discrepancy be-

tween the ISRS GN model in integral form and the SSFM

is negligible for the shown range of power transfers. Due

to the weak ISRS assumption, the accuracy of the closed-

form expression decreases with increasing ISRS. This is be-

cause higher order terms of the Taylor expansion are becoming

significant.

C. A Point-to-Point Transmission Scenario

In this section, a multi-span transmission system, consisting

of six identical 100 km SMF fiber spans, is studied with parame-

ters listed in Table I. A uniform launch power of 0 dBm/ch. was
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Fig. 6. The distribution of the NLI coefficient after 6 spans (600 km) without a) and with b) ISRS. A launch power of 0 dBm/ch. was considered yielding an
ISRS power transfer of ∆ρ (L) [dB] = 6.3 dB. The results were obtained by numerical simulations, the ISRS GN model in integral form (3) and its proposed
approximation in closed-form (10) and (11), in coherent and incoherent form.

used which is the optimum launch power for the central channel

in the presence of Erbium-doped fiber amplifiers (EDFA) with

a noise figure of 5 dB. The ISRS power transfer was equalized

by a gain flattening filter after every fiber span.

The NLI coefficient after six spans is shown in Fig. 6a with-

out accounting for ISRS and in Fig. 6b accounting for ISRS.

Simulation results using Gaussian modulation as well as uni-

form 64-QAM are shown together with the ISRS GN model in

integral form and its proposed approximation in closed-form.

To account for coherent accumulation and variably loaded fiber

spans, the ISRS GN model takes a slightly different form which

was published in [14, Eq. (2)] and used to obtain the results in

Fig. 6.

The closed-form approximation is considered with an in-

coherent (ǫ = 0) and a coherent (ǫ �= 0) accumulation of NLI

along multiple fiber spans (5). The coherence factor of the given

system configuration is ǫ = 0.15. The average gap between the

closed-form, including a coherent accumulation, and the ISRS

GN model in integral form is 0.1 dB and 0.2 dB without and

with ISRS, respectively. The accuracy is similar to the single

span case (see Fig. 5), indicating that Eq. (5) sufficiently ap-

proximates the coherent accumulation of NLI.

A majority of the NLI originates from XPM, which is accu-

mulating incoherently. The formalism may therefore be sim-

plified by assuming an incoherent accumulation and setting

ǫ = 0. The average accuracy loss, of assuming incoherent ac-

cumulation, is 0.2 dB for the studied system. Depending on

accuracy requirements, this error may be deemed negligible.

It should be noted, however, that this accuracy loss (with

respect to Gaussian modulation) increases with the number

of spans.

A key assumption of the model is that each frequency compo-

nent carries a symbol drawn from a symmetric circular Gaussian

distribution which leads to an overestimation of the NLI power

with respect to square QAM formats. To compare the model

predictions to a standard modulation format, the NLI coefficient

using 64-QAM obtained by the SSFM is shown in Fig. 6. The

average gap between SSFM using 64-QAM and the closed-form

approximation in coherent form is 1.6 dB in both cases, without

and with ISRS. This gap decreases with increasing accumu-

lated dispersion, hence, with increasing transmission distance.

Additionally, modern transmission systems utilize probabilis-

tic or geometric shaping which further decreases this gap as

shaped signals partially resemble Gaussian modulated signals

[44], [45].

In summary, the proposed closed-form approximation models

the impact of ISRS on the NLI (SPM and XPM) with excellent

accuracy in fully occupied point-to-point transmission scenar-

ios. In can, therefore, be used for system design, optimization

and real-time performance estimations of ultra-wideband trans-

mission point-to-point links.

D. A Mesh Optical Network Scenario

In this section, the closed-form approximation (10) and (11)

is applied and validated in a mesh optical network. The fun-

damental difference in a mesh network, as opposed to a point-

to-point transmission, is that not all channels within a WDM

signal are transmitted along the entire lightpath. At each recon-

figurable optical add-drop multiplexer (ROADM), channels are

added and dropped according to traffic demands and as the re-

sult of wavelength routing and lightpath assignment algorithms

(RWA).

We introduce the following two definitions. For a given light-

path, channels that are transmitted along the entire lightpath are

termed channels of interest. However, channels that are added

and/or dropped at any point along the lightpath are termed here

as add/drop channels.

Due to variably loaded network edges, the NLI of the chan-

nels of interest is different compared to equivalent point-to-

point transmission as different WDM spectra are launched

during propagation, emphasizing different XPM contributions

η
(k)
XPM(fi) at each network edges. Additionally, most add/drop

channels have already propagated through part of the network,
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Fig. 7. The lightpath under test, between nodes 15 and 13, from the BT
20+2 topology of the UK core network Fig. 6, showing interfering channels (in
color) added and dropped at each ROADM. The channels of interest, that are
transmitted along the entire lightpath, are shown in black.

resulting in different amounts of accumulation dispersion com-

pared to a point-to-point transmission.

The analysis is applied to the the British Telecommunica-

tions 20+2 topology of the United Kingdom core network [16].

As discussed, for a given network topology and a given traffic

demand, a large number of feasible lightpath combinations are

possible. For this validation, only one lightpath was analyzed

with two different network utilization values. Network utiliza-

tion is defined as the average spectrum occupancy out of the

entire available optical bandwidth.

The lightpath under test is one between node A and B, as

shown in Fig. 1. It is assumed that the first two edges, the

first edge with 197 km length and the second edge with 203 km

length, are each split into two fiber spans. The resulting lightpath

of interest is illustrated in Fig. 7, where after each ROADM a

different spectrum is launched into the fiber due to the adding

and dropping of the add/drop channels. The channels of interest,

that are propagated along the entire lightpath, are shown in black

and the add/drop channels are shown in color.

For the studied example, several assumptions on the traffic

and the established lightpaths are made. Every fifth channel (51

out of a total of 251 channels slots) was a channel of interest and

their NLI coefficients were obtained by the SSFM and by the

proposed closed-form approximation using (10) and (11). The

remaining 200 channel slots were partially filled with add/drop

channels which were dropped and added at each ROADM. At

each ROADM, 80% of the add/drop channels were randomly

dropped and add/drop channels were added by randomly choos-

ing an empty channel slot. The unoccupied channel slots were

randomly filled until a certain network utilization value was

reached. The considered network utilization values were 80%

and 90%.

The added channels exhibit a random power offset between

±1 dB with respect to the COI to simulate potential non-ideal

power equalization. Additionally, this was done in order to

test the impact of assumption 3) (see Section II-E) in a net-

work scenario. Add/drop channels were using the same mod-

ulation format as the channel under test and were randomly

pre-dispersed corresponding to a transmission distance between

0 and 1000 km, to emulate the propagation from different light-

paths in the network. The wavelength dependent gain due to

ISRS was ideally compensated after each span to ease a com-

parison to the point-to-point case in Section III-C.

The NLI coefficient for a network utilization value of 80% is

shown in Fig. 8a) and a network utilization of 90% is shown in

Fig. 8b). The SSFM results in Fig. 8a) were first published in

[14]. The ISRS power transfers were ∆ρ (L) [dB] = 5 dB and

∆ρ (L) [dB] = 5.7 dB, which is less than in the point-to-point

case as less average power was launched into a span.

The fluctuating behavior of the NLI coefficient is a di-

rect consequence of the variably loaded network edges. The

fluctuations are weaker in the case of 90 % network utilization

as a larger average spectral occupation yields more averaging.

The change in NLI due to ISRS was −1.6 dB to 1.5 dB for

80% of network utilization and −1.8 dB to 1.6 dB for 90%

of network utilization. The proposed closed-form approxima-

tion is in good agreement with the simulation results with an

average discrepancy of 0.1 dB and 0.2 dB for 80% and 90% net-

work utilization, respectively. Assumption 3) in II-E seems to

have a negligible impact on the accuracy of the formula in vari-

ably loaded mesh optical networks. The average gap between

the closed-form approximation and the SSFM using uniform

64-QAM is 1 dB which is less than in the point-to-point case

(cf. Fig. 6) as add/drop channels exhibit, on average, a higher

amount of accumulated dispersion.

Based on the validation carried out in this section, it can be

concluded that the proposed closed-form approximation mod-

els the NLI in mesh optical network scenarios with excellent

accuracy. The results in this paper, therefore, enable the per-

formance evaluation of complex light path configurations for

an entire network topology, within only a few microseconds.

This is an essential step in the modeling of optical network

performance in the ultra-wideband regime.

IV. NON-UNIFORM (TILTED) LAUNCH POWER DISTRIBUTIONS

In this section, the impact of a tilted launch power distribution

on the accuracy of the proposed closed-form is addressed. In

the derivation of the proposed closed-form approximation, it is

assumed that the effective channel power attenuation is only a

function of the total launch power and independent of its spectral

distribution (see assumption 3 in Section II-E). The accuracy

loss in the case of variable loaded fiber spans was found to be

negligible in Section III-D.

The deviation of the SPM contribution using (8) as a function

of launch power tilt with respect to a uniform launch power

distribution is shown in Fig. 9. A positive launch power tilt

means that higher frequency channels have a larger launch power

than lower frequency channels.

For a particular launch power tilt, every channel within the

WDM signal experiences a slightly different approximation er-

ror. Therefore, the average and the maximum deviation over all

WDM channels for a given launch power tilt are shown. Fig. 9

shows that the approximation error by considering a uniform

launch power compared to a tilted one is fairly small.

However, this approximation error can be completely elimi-

nated with the following approach. The parameters α, ᾱ and
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Fig. 8. The NLI coefficient of every fifth channel (i.e. a channel of interest) after six spans where interfering channels are continuously added and dropped along
the transmission with a network utilization of 80% shown in a) and 90% shown in b). The results were obtained by numerical simulations and using the proposed
closed-form approximation (10) and (11).

Fig. 9. Approximation error caused by assumption 3) on the SPM contribution
using (8). The plot shows the deviation between a tilted launch power distribution
and a uniform one as a function of input power slope for a 10.05 THz signal.
The average and the maximum deviation of every WDM channel within the
signal are shown. Additionally, the deviation is shown by matching α, ᾱ , and
Cr to the actual power profile.

Cr in (10) and (11) are reinterpreted as channel dependent

quantities and matched to the actual power profile of each

interfering channel using regression. As shown in Fig. 9, this

completely removes the approximation error and fully takes

into account the impact of a non-uniform launch power distri-

bution. This shows that assumption 3) can be fully eliminated by

matching the parameters α, ᾱ and Cr to the actual power profile

of each interferer. This can be done at the expense of numer-

ically solving the Raman equations and additional regression

operations.

V. CONCLUSION

A closed-form approximation of the Gaussian noise model

in the presence of inter-channel stimulated Raman scattering

was presented.

It was validated using split-step simulations and numerical

integrations of the ISRS GN model in integral form, reporting

an average deviation of 0.2 dB in nonlinear interference power

for SMF based spans operating over the entire C+L band. This

discrepancy is primarily because the NLI contribution, that is

jointly generated by two interfering channels (FWM or MCI),

is neglected and due to the first-order description of ISRS.

However, this has little impact for systems with dispersion

unmanaged links and high symbol rates or channel spacings.

The major discrepancy for the prediction of QAM formats

remains the signal Gaussianity assumption, which will be

subject of future work.

The results in this paper allow for rapid evaluation of perfor-

mance (e.g. SNR, maximum reach, optimum launch power) in

ultra-wideband transmission systems, an essential step towards

dynamic optical network capacity optimization and intelligent

information infrastructure design.

APPENDIX A

DERIVATION OF THE XPM CONTRIBUTION

In this section, the closed-form approximation of the XPM

contribution (11) is derived. The derivation consists of finding

an analytical approximation of the integral form (8) which mod-

els the nonlinear interference caused on channel i by a single

interfering channel k.

For notational brevity, we define x (ζ) = PtotCrL̄eff (ζ) with

L̄eff (ζ) = 1−e−ᾱ ζ

ᾱ
. To increase the potential parameter space

and enable regression approaches, a separate effective length

L̄eff is kept in the ISRS term. This allows for a more gen-

eral application of the proposed formula e.g. in the case of

non-uniform (tilted) launch power distributions. Additionally, a

pre-factor of 32
27

γ 2

B 2
k

(
Pk

P i

)2

is suppressed throughout the deriva-

tion. For the ISRS term, the optical power is assumed to be

uniformly distributed over the transmitted bandwidth yielding
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∫
1

P tot
GTx(ν)e−x·ν dν = xB tot

2sinh( x B tot
2 )

. Eq. (8) is then written as

η
(k)
XPM(fi) =

∫ B i
2

− B i
2

df1

∫ B k
2

− B k
2

df2 Π
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f1 + f2

Bk

)

Btot

·
∣
∣
∣
∣
∣

∫ L

0

dζ
xe−αζ−x·(f1 +f2 +fi +∆f )

2sinh
(

xB tot

2

) ejφ(f1 +fi ,f2 +fi +∆f ,fi ,ζ )

∣
∣
∣
∣
∣

2

≈
∫ B i

2

− B i
2

df1

∫ B k
2

− B k
2

df2

∣
∣
∣
∣
∣

∫ L

0

dζ
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−αζ−x·(f1 +fi +∆f )

2sinh
(

xB tot

2

)

· ejφ(f1 +fi ,fi +∆f ,fi ,ζ )

∣
∣
∣
∣
∣

2

= 2Bk

∫ B i
2

0

df1

∣
∣
∣
∣
∣

∫ L

0

dζ
xBtote

−αζ−x·(f1 +fi +∆f )

2sinh
(

xB tot

2

)

· ejφ(f1 +fi ,fi +∆f ,fi ,ζ )

∣
∣
∣
∣
∣

2

, (14)

where ∆f = fk − fi is the (center) frequency separation be-

tween channels k and i. In (14), it is assumed that the frequency

separation is much larger than half of the bandwidth of chan-

nel k (i.e. |∆f | ≫ Bk

2 ). This assumption allows to approximate

f2 + ∆f ≈ ∆f and has only a minor accuracy impact on the

phase mismatch term φ for channels that are close to the COI as

addressed in detail in Appendix C. It has negligible impact on

the ISRS term (the signal power profile) and the dispersion slope

as both are essentially constant over one channel bandwidth Bk .

Additionally, the term Π
(

f1 +f2

Bk

)

was neglected in (14).

For the phase mismatch factor φ, we obtain

φ (f1 + fi , fi + ∆f, fi , ζ)

= −4π2f1∆f [β2 + πβ3(f1 + 2fi + ∆f)] ζ

≈ −4π2f1∆f [β2 + πβ3(2fi + ∆f)] ζ

= −4π2f1 (fk − fi) [β2 + πβ3(fi + fk ] ζ

= φi,kf1ζ, (15)

with φi,k = −4π2 (fk − fi) [β2 + πβ3(fi + fk ] and where it

was assumed that the impact of the dispersion slope is constant

over one channel bandwidth Bi . Eq. (15) shows that the XPM

assumption and a slowly varying group velocity dispersion, es-

sentially leads to a modification rule of the GVD parameter β2

to account for the dispersion slope.

In order to simplify (14), the ISRS term is expanded into a

Taylor series and truncated to first-order, assuming weak ISRS.

The validity range of this approximation is analyzed in Ap-

pendix D. Additionally, it is assumed that the signal power pro-

file is constant over one channel bandwidth Bi , mathematically

e−x·(f1 +fi +∆f ) ≈ e−x·(fi +∆f ) = e−x·fk . The Taylor expansion

of the ISRS term is then given by

Btotxe−x·fk

2sinh
(

B tot

2 x
) = 1 − fkx + O(x2), (16)

and the signal power profile (to first-order) as

Btotxe−αζ−x·fk

2sinh
(

B tot

2 x
) ≈

(

1 + T̃k

)

e−αζ − T̃ke−Aζ , (17)

with T̃k = −P totC r

ᾱ
fk and A = α + ᾱ. Enabled by the first-order

assumption of ISRS, the following simplification is obtained

∣
∣
∣
∣
∣

∫ L
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dζ
Btotxe−αζ−x·fk

2sinh
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B tot

2 x
) ejφ i , k f1 ζ
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∣
∣
∣
∣

2

≈
∣
∣
∣
∣
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∣
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∣

2

≈
∣
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− 1 + T̃k

−α + jφi,kf1
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T̃k

−A + jφi,kf1
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∣

2

=
Tk + φ2

i,kf 2
1

αA2 + (2αA + ᾱ2) φ2
i,kf 2

1 + φ4
i,kf 4

1

, (18)

where Tk = (α + ᾱ − PtotCrfk )2
and it was assumed that

e−αL ≪ 1. Substituting the simplification (18) in (14) and using

the exact integral identities (29) and (30) yields

2Bk

∫ B i
2

0

df1

∣
∣
∣
∣
∣

∫ L

0

dζ
xBtote

−αζ−x·fk

2sinh
(

xB tot

2

) ejφ i , k f1 ζ

∣
∣
∣
∣
∣

2

≈ 2Bk

φi,k ᾱ (2α + ᾱ)
·
[
Tk − α2

α
atan

(
φi,kBi

2α

)

+
A2 − Tk

A
atan

(
φi,kBi

2A

)]

. (19)

In order to obtain the XPM contribution of channel k on chan-

nel i, the suppressed pre-factor 32
27

γ 2

B 2
k

(
Pk

P i

)2

must be included.

Finally, φi,k is redefined and the individual XPM contributions

η
(k)
XPM(fi) are summed up in order to obtain the total XPM con-

tribution ηXPM(fi) as in (11).

APPENDIX B

DERIVATION OF THE SPM CONTRIBUTION

In this section, the closed-form SPM contribution of the NLI

(10) is derived. The derivation consists of finding an analytical

approximation of the integral expression (8) which models the

nonlinear interference caused by channel i on itself. The reader

is reminded that, for the SPM contribution, a factor of 1
2 must

be multiplied to (8). For notational brevity, we define x (ζ) =

PtotCrL̄eff (ζ) with L̄eff (ζ) = 1−e−ᾱ ζ

ᾱ
and a pre-factor of 16

27
γ 2

B 2
i

is suppressed throughout the derivation.
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The NLI coefficient of the SPM contribution is then written

as

ηSPM(fi) ≈
∫ B i

2

− B i
2

df1

∫ B i
2

− B i
2

df2

·
∣
∣
∣
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4
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2

,

(20)

with φi = −4π2 (β2 + 2πβ3fi) and where the first-order de-

scription of ISRS was used and it was assumed that the signal

power profile and the dispersion slope are constant over one

channel bandwidth Bi (see Appendix A).

Eq. (20) can be solved exactly in terms of elementary func-

tions over a closed circular integration domain. The radius of

the circular domain is chosen such that its area equals that of

the actual integration domain, as proposed in [20]. The actual

integration domain and its approximated circular domain are

shown as insets in Fig. 3. Exploiting the circular domain ap-

proximation, Eq. (20) is recast in polar coordinates and solved

using the integral identities (31) and (32) as

ηSPM(fi) ≈ 4

∫
√
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(21)

In order to obtain the SPM contribution, the suppressed pre-

factor 16
27

γ 2

B 2
i

must be included and φi is redefined in order to

obtain (10).

APPENDIX C

ADDRESSING ASSUMPTION 1)

In this section, the assumption 1) in Section II-E is addressed

in more detail. Assumption 1) states that the channel separa-

tion between COI and INT has to be much greater than half of

the channel bandwidth |∆f | ≫ Bk

2 . To mathematically quan-

tify the impact of the assumption we start with the XPM con-

tribution as in (8). For simplification, ISRS is neglected and

φ̃i,k = −4π2 [β2 + πβ3(fi + fk ] similar to Appendix A. For

notational brevity, the pre-factor 32
27

γ 2

B 2
k

(
Pk

P i

)2

is not shown, as

it does not alter the analysis in this section. The NLI coefficient

is then given as

η̃
(k)
XPM(fi) =

∫ B i
2
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df1

∫ B k
2 ∆ f
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with µ̃ =
φ̃2

i , k ∆f 2

α2 and where it was assumed that e−αL ≪ 1 and

Π
(

f1 +f2

Bk

)

was neglected as in Appendix A.

As the channal spacing is at least ∆f > Bk

2 , the inner in-

tegration variable in (22) varies as f2 ∈ [−1,1]. Therefore, the

integrand in (22) is expanded into a converging Taylor series

and truncated after second-order

∫ B k
2 ∆ f

− B k
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df2
2∆f
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1 (f2 + 1)2 ≈

2Bk
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︸ ︷︷ ︸

second-order

, (23)

where the first-order term yields zero after integration. Math-

ematically, the assumption |fk − fi | = |∆f | ≫ Bk

2 (or simply

f2 = 0) in II-C coincides with the zeroth-order approximation of

the integral over the variable f2 . The relative error can be there-

fore obtained by analyzing the higher-order terms. Inserting the

Taylor approximation (23) in (22) and solving the integrals using

(33) and (34) yields

η̃
(k)
XPM(fi) ≈

BkBi

α2µ

·
{

atan (µ)

︸ ︷︷ ︸

zeroth-order

+
B2

k

12∆f 2

[

atan (µ) − µ
(
2µ2 + 1

)

(µ2 + 1)2

]

︸ ︷︷ ︸

second-order

}

, (24)

with µ =
|φ̃ i , k ||∆f |B i

2α
. The zeroth-order term in (24) is identical

to the proposed closed-form (10) in the absence of ISRS. Finally,

the relative error, caused by Assumption 1) in Section II-E is

obtained by normalizing the second-order term by the zeroth-

order term. Therefore, the relative error is given by

Rel. Err. =
1

12

B2
k

∆f 2

[

1 − µ
(
2µ2 + 1

)

(µ2 + 1)2
atan (µ)

]

<
1

12

B2
k

∆f 2
.

(25)

Eq. (25) can be reliably used to quantify the approximation error

caused by Assumption 1).

APPENDIX D

DERIVATION OF THE VALIDITY RANGE

In order to derive a validity range of the weak ISRS assump-

tion, the ISRS term to first-order is compared to the ISRS term

to second-order at a frequency component fk . The first-order
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approximation is then valid when the second-order term is neg-

ligible. The second coefficient of the Taylor series, as in (16), is

given by

T̃
(2)
k =

f 2
k

2
− B2

24
. (26)

Requiring that the second-order term is negligible to the first-

order approximation yields

|fkx| ≫
∣
∣
∣T̃

(2)
k x2

∣
∣
∣ =

∣
∣
∣
∣

f 2
k

2
− B2

tot

24

∣
∣
∣
∣
x2 . (27)

The channel that is most impacted by ISRS is the channel with

center frequency fk = B
2 for which we will evaluate (27) and

obtain

BtotPtotLeffCr = 0.23 · ∆ρ (L) [dB] ≪ 6, (28)

where ∆ρ (L) [dB] is the ISRS power transfer between the outer

channels of the transmitted signals as in Eq. (3).

APPENDIX E

INTEGRAL IDENTITIES

This section contains the integral identities that were used in

order to derive the proposed closed-form expression.

∫ X

0

dx
1

a + bx2 + x4

=

√
2

c
√

b − c
atan

(√
2X√

b − c

)

−
√

2

C
√

b + c
atan

(√
2X√

b + c

)

,

(29)

∫ X

0

dx
x2

a + bx2 + x4

=

√
b + c√
2c

atan

(√
2X√

b + c

)

−
√

b − c√
2c

atan

(√
2X√

b − c

)

, (30)

with c =
√

b2 − 4a.

∫ π
2

0

dx
1 + asin2 (x)

1 + bsin2 (x) + csin4 (x)

=
π

√

(2)ã

{

j
[a (ã − c) + 2c]

b̃
+

[a (ã + c) − 2c]

c̃

}

, (31)

where ã =
√

b2 − 4c, b̃ =
√

b (A − b) + c (A − b + 2), c̃ =
√

b (A + b) + c (A + b − 2) and j =
√
−1.

∫ X

0

1√
1 + a2x4

=
1

2a
asinh

(
aX2

)
(32)

∫ X

0

1

a2x2 + 1
dx =

atan (aX)

a
, (33)

∫ X

0

x2
(
3a2x2 − 1

)

(a2x2 + 1)3 dx =
atan (aX)

a3
− X

(
2a2X2 + 1

)

a2 (a2X2 + 1)2 .

(34)

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for

their valuable feedback that helped to improve this paper.

REFERENCES

[1] T. Hasegawa, Y. Yamamoto, and M. Hirano, “Optimal fiber design for
large capacity long haul coherent transmission,” Opt. Express, vol. 25,
no. 2, pp. 706–712, Jan. 2017.

[2] D. Semrau et al., “Achievable information rates estimates in opti-
cally amplified transmission systems using nonlinearity compensation
and probabilistic shaping,” Opt. Lett., vol. 42, no. 1, pp. 121–124,
Dec. 2016.

[3] G. Bosco, P. Poggiolini, A. Carena, V. Curri, and F. Forghieri, “Analytical
results on channel capacity in uncompensated optical links with coherent
detection,” Opt. Express, vol. 19, no. 26, pp. B440–B451, Dec. 2011.

[4] N. A. Shevchenko et al., “Achievable information rates estimation for
100-nm Raman-amplified optical transmission system,” in Proc. 42nd

Eur. Conf. Opt. Commun., 2016, pp. 1–3.
[5] V. Anagnostopoulos, C. T. Politi, C. Matrakidis, and A. Stavdas, “Physical

layer impairment aware wavelength routing algorithms based on analyti-
cally calculated constraints,” Opt. Commun., vol. 270, no. 2, pp. 247–254,
Feb. 2007.

[6] A. Nespola et al., “GN-model validation over seven fiber types in un-
compensated PM-16QAM Nyquist-WDM links,” IEEE Photon. Technol.

Lett., vol. 26, no. 2, pp. 206–209, Jan. 2014.
[7] A. Nespola et al., “Experimental validation of the EGN-model in un-

compensated optical links,” in Proc. Opt. Fiber Commun. Conf., 2015,
pp. 1–3.

[8] L. Galdino et al., “Experimental demonstration of modulation-dependent
nonlinear interference in optical fibre communication,” in Proc. 42nd Eur.

Conf. Opt. Commun., 2016, pp. 1–3.
[9] G. Saavedra et al., “Experimental investigation of nonlinear signal distor-

tions in ultra-wideband transmission systems,” in Proc. Opt. Fiber Com-

mun. Conf. Exhib., 2017, pp. 1–3.
[10] G. Saavedra et al., “Experimental analysis of nonlinear impairments

in fibre optic transmission systems up to 7.3 THz,” J. Lightw. Technol.,
vol. 35, no. 21, pp. 4809–4816, Nov. 2017.

[11] G. Saavedra et al., “Inter-channel stimulated Raman scattering and its
impact in wideband transmission systems,” in Proc. Opt. Fiber Commun.

Conf., 2018, pp. 1–3.
[12] J. Tang, “The channel capacity of a multispan DWDM system employing

dispersive nonlinear optical fibers and an ideal coherent optical receiver,”
J. Lightw. Technol., vol. 20, no. 7, pp. 1095–1101, Jul. 2002.

[13] P. Poggiolini, “The GN model of non-linear propagation in uncompensated
coherent optical systems,” J. Lightw. Technol., vol. 30, no. 24, pp. 3857–
3879, Dec. 2012.

[14] D. Semrau, E. Sillekens, R. I. Killey, and P. Bayvel, “The ISRS GN model,
an efficient tool in modeling ultra-wideband transmission in point-to-point
and network scenarios,” in Proc. Eur. Conf. Opt. Commun., 2018, pp. 1–3.

[15] M. Cantono et al., “On the interplay of nonlinear interference generation
with stimulated Raman scattering for QoT estimation,” J. Lightw. Technol.,
vol. 36, no. 15, pp. 3131–3141, Aug. 2018.

[16] D. J. Ives, A. Lord, P. Wright, and S. J. Savory, “Quantifying the impact
of non-linear impairments on blocking load in elastic optical networks,”
in Proc. Opt. Fiber Commun. Conf., 2014, pp. 1–5.

[17] A. Splett, C. Kurtzke, and K. Petermann, “Ultimate transmission capac-
ity of amplified optical fiber communication systems taking into ac-
count fiber nonlinearities,” in Proc. Eur. Conf. Opt. Commun., 1993,
pp. 41–44.

[18] H. Louchet, A. Hodzic, and K. Petermann, “Analytical model for the
performance evaluation of DWDM transmission systems,” IEEE Photon.

Technol. Lett., vol. 15, no. 9, pp. 1219–1221, Sep. 2003.
[19] X. Chen and W. Shieh, “Closed-form expressions for nonlinear transmis-

sion performance of densely spaced coherent optical OFDM systems,”
Opt. Express, vol. 18, no. 18, pp. 19039–19054, Aug. 2010.

[20] S. J. Savory, “Approximations for the nonlinear self-channel interference
of channels with rectangular spectra,” IEEE Photon. Technol. Lett., vol. 25,
no. 10, pp. 961–964, May 2013.

[21] P. Johannisson and E. Agrell, “Modeling of nonlinear signal distortion in
fiber-optic networks,” J. Lightw. Technol., vol. 32, no. 23, pp. 3942–3950,
Dec. 2014.



1936 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 37, NO. 9, MAY 1, 2019

[22] P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A
simple and effective closed-form GN model correction formula accounting
for signal non-Gaussian distribution,” J. Lightw. Technol., vol. 33, no. 2,
pp. 459–473, Jan. 2015.

[23] D. Semrau, G. Saavedra, D. Lavery, R. I. Killey, and P. Bayvel, “A
closed-form expression to evaluate nonlinear interference in Raman-
amplified links,” J. Lightw. Technol., vol. 35, no. 19, pp. 4316–4328,
Oct. 2017.

[24] D. Semrau, R. Killey, and P. Bayvel, “Achievable rate degradation of
ultra-wideband coherent fiber communication systems due to stimulated
Raman scattering,” Opt. Express, vol. 25, no. 12, pp. 13024–13034, Jun.
2017.

[25] I. Roberts, J. M. Kahn, J. Harley, and D. W. Boertjes, “Channel power
optimization of WDM systems following Gaussian noise nonlinearity
model in presence of stimulated Raman scattering,” J. Lightw. Technol.,
vol. 35, no. 23, pp. 5237–5249, Dec. 2017.

[26] M. Cantono, J. L. Auge, and V. Curri, “Modelling the impact of SRS on
NLI generation in commercial equipment: An experimental investigation,”
in Proc. Opt. Fiber Commun. Conf. Expo., 2018, pp. 1–3.

[27] D. Semrau, R. I. Killey, and P. Bayvel, “The Gaussian Noise model in
the presence of inter-channel stimulated Raman scattering,” J. Lightw.

Technol., vol. 36, no. 14, pp. 3046–3055, Jul. 2018.
[28] D. Semrau, R. I. Killey, and P. Bayvel, “A closed-form approximation

of the Gaussian Noise model in the presence of inter-channel stimulated
Raman scattering,” 2018, arXiv:1808.07940.

[29] P. Poggiolini, “A generalized GN-model closed-form formula,” 2018,
arXiv:1810.06545v2.

[30] R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,”
App. Phys. Lett., vol. 22, no. 6, pp. 276–278, 1973.

[31] F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, “Effect of modulation
statistics on Raman crosstalk in WDM systems,” IEEE Photon. Technol.

Lett., vol. 7, no. 1, pp. 101–103, Jan. 1995.
[32] K.-P. Ho, “Statistical properties of stimulated Raman crosstalk in WDM

systems,” J. Lightw. Technol., vol. 18, no. 7, pp. 915–921, Jul. 2000.
[33] K. Minoguchi et al., “Experiments on stimulated Raman scattering in

S- and L-bands 16-QAM signals for ultra-wideband coherent WDM sys-
tems,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, pp. 1–3.

[34] D. N. Christodoulides and R. B. Jander, “Evolution of stimulated Ra-
man crosstalk in wavelength division multiplexed systems,” IEEE Photon.

Technol. Lett., vol. 8, no. 12, pp. 1722–1724, Dec. 1996.
[35] M. Zirngibl, “Analytical model of Raman gain effects in massive wave-

length division multiplexed transmission systems,” Electron. Lett., vol. 34,
no. 8, pp. 789–790, Apr. 1998.

[36] A. Mecozzi and R.-J. Essiambre, “Nonlinear shannon limit in pseudolinear
coherent systems,” J. Lightw. Technol., vol. 30, no. 12, pp. 2011–2024,
Jun. 2012.

[37] M. Secondini and E. Forestieri, “Analytical fiber-optic channel model in
the presence of cross-phase modulation,” IEEE Photon. Technol. Lett.,
vol. 24, no. 22, pp. 2016–2019, Nov. 2012.

[38] R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlin-
ear noise in long, dispersion-uncompensated fiber links,” Opt. Express,
vol. 21, no. 22, pp. 25685–25699, Oct. 2013.

[39] D. J. Ives, P. Bayvel, and S. J. Savory, “Adapting transmitter power and
modulation format to improve optical network performance utilizing the
Gaussian noise model of nonlinear impairments,” J. Lightw. Technol.,
vol. 32, no. 21, pp. 4087–4096, Nov. 2014.

[40] A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri,
“EGN model of non-linear fiber propagation,” Opt. Express, vol. 22, no. 13,
p. 16335, Jun. 2014.

[41] F. Zhang, Q. Zhuge, and D. V. Plant, “Fast analytical evaluation of fiber
nonlinear noise variance in mesh optical networks,” IEEE/OSA J. Opt.

Commun. Netw., vol. 9, no. 4, pp. C88–C97, Apr. 2017.
[42] D. J. Ives, A. Alvarado, and S. J. Savory, “Adaptive transceivers in non-

linear flexible networks,” in Proc. 42nd Eur. Conf. Opt. Commun., Sep.
2016, pp. 1–3.

[43] D. Semrau, E. Sillekens, R. I. Killey, and P. Bayvel, “ISRS
GN model implementation,” 2019. [Online]. Available: https://github.
com/dsemrau/ISRSGNmodel

[44] G. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient
modulation for band-limited channels,” IEEE J. Sel. Areas Commun.,
vol. 2, no. 5, pp. 632–647, Sep. 1984.

[45] T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilis-
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