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A closed‐form equation for effective stress in unsaturated soil
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[1] We propose that the recently conceptualized suction stress characteristic curve
represents the effective stress for the shear strength behavior of unsaturated soil.
Mechanically, suction stress is the interparticle stress called tensile stress. The working
hypothesis is that the change in the energy of soil water from its free water state is mostly
consumed in suction stress. We demonstrate that the suction stress lies well within the
framework of continuum mechanics where free energy is the basis for any thermodynamic
formulation. Available experimental data on soil water characteristic curves and suction
stress characteristic curves are used to test the hypothesis, thus validating a closed‐form
equation for effective stress in unsaturated soil. The proposed closed‐form equation is
intrinsically related to the soil water characteristic curve by two pore parameters: the air
entry pressure and pore size spectrum number. Both semiquantitative and quantitative
validations show that the proposed closed‐form equation well represents effective stress
for a variety of earth materials ranging from sands to clays. Of important practical
implications are (1) the elimination of the need for any new shear strength criterion for
unsaturated soil, (2) the elimination of the need for determining the Bishop’s effective
stress parameter c because the new form of effective stress is solely a function of soil
suction, and (3) the ready extension of all classical soil mechanics work on limit
equilibrium analysis to unsaturated soil conditions.

Citation: Lu, N., J. W. Godt, and D. T. Wu (2010), A closed‐form equation for effective stress in unsaturated soil, Water
Resour. Res., 46, W05515, doi:10.1029/2009WR008646.

1. Introduction

[2] In recent years, the suction stress characteristic curve
has been introduced to represent the state of stress in
unsaturated soil [Lu and Likos, 2004, 2006]. In a broad
sense, it is an expansion and extension of both Terzaghi’s
effective stress for saturated soil [e.g., Terzaghi, 1943] and
Bishop’s effective stress for unsaturated soil [Bishop, 1954,
1959]. Like previous effective stress approaches, the suction
stress approach seeks a single stress variable that is
responsible for the mechanical behavior of earth materials.
However, suction stress differs from Terzaghi’s “skeleton”
stress in that forces contributing to suction stress are self‐
balanced at the interparticle level and thus do not pass on
from one particle to another. Suction stress originates from
the available interaction energy at the soil solid surface that
can be conceptualized to exist in the forms of van der Waals
and double‐layer forces, surface tension, and solid‐liquid
interface forces due to pore water pressure [Lu and Likos,
2006]. A macroscopic continuum representation of suction
stress is the tensile stress [e.g., Mitarai and Nori, 2006; Lu
et al., 2007] that can be simply determined from uniaxial
tensile strength tests of unsaturated earth and other granular

materials [Lu et al., 2007]. The suction stress concept differs
from Bishop’s effective stress mainly in that it eliminates the
need to define the coefficient of effective stress c, as suction
stress is solely a function of soil suction. The uniqueness of
c and its determination have been major obstacles for the
wide acceptance of Bishop’s effective stress. However,
recent work has established a link between c and the air
entry pressure head [Khalili and Khabbaz, 1998; Khalili et
al., 2004] and the utility of Bishop’s effective stress as a
constitutive framework for critical state soil mechanics [Nuth
and Laloui, 2008]. Finally, the suction stress characteristic
curve, similar to the soil water characteristic curve, does not
need to be restricted to a single‐valued function. Hysteresis
due to different wetting states could also be treated under the
framework of suction stress. For example, different para-
meters can be used for the air entry or water entry pressure,
depending on the soil’s wetting state.
[3] Suction stress provides a framework for the exami-

nation of the state of stress in unsaturated soil that differs
radically from the more commonly known two independent
stress state variable approach [e.g., Fredlund andMorgenstern,
1977]. In the two independent stress state variable approach,
the total stress or “net normal stress” and matric suction are
hypothesized to be the necessary and sufficient stress vari-
ables for describing the mechanical behavior of unsaturated
soil. Under this framework, shear strength needs to be
completely modified to account for its dependence on matric
suction, and this is accomplished by the introduction of an
additional friction angle, �b. Despite the popularity of the
two independent stress state variable approach, it is quite
controversial [e.g., Khalili and Khabbaz, 1998; Nuth and
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Laloui, 2008]. Whether matric suction is a stress variable and
the physical basis for the additional shear strength parameter �b

are disputed at the present time [e.g., Lu, 2008]. The major
theoretical and practical obstacle faced by the two independent
stress state variable approach is that it cannot be reconciled
within the context of classical mechanics for saturated soil. In
classical soil mechanics, the single stress variable, effective
stress, can be used for both shear strength (e.g., limit state) and
deformation (e.g., consolidation) analyses. This philosophy has
been widely adopted as the design basis in geotechnical
practice today.
[4] The two independent stress state variable approach

has been expanded to handle elastoplasticity, critical state
soil mechanics, and coupled yield limits with some success
[e.g., Alonso et al., 1990; Wheeler and Sivakumar, 1995;
Gallipoli et al., 2003]. While these theories provide insight
into important concepts such as loading collapse and suction
increase and decrease curves, they add additional com-
plexity by requiring additional material parameters that are
often either variable or difficult to determine experimentally.
These theories typically involve an additional variable or
parameter and are most suitable for stress‐strain analysis of
postfailure or deformable soil. A thorough critical review
and analysis of these models can be found in works by Gens
et al. [2006] and Nuth and Laloui [2008].
[5] In this paper, we present our working hypothesis that

the change in energy of soil water from its free water state is
mostly consumed in suction stress and establish a thermo-
dynamic justification for a closed‐form equation for effec-
tive stress in variably saturated soils. We then reinterpret
available experimental results from the literature to validate
the closed‐form equation and conclude with a discussion of
theoretical and practical implications.

2. A Closed‐Form Equation for Effective Stress
in Variably Saturated Soil

2.1. Working Hypothesis

[6] The effective stress principle, under the framework of
the suction stress characteristic curve, can be expressed as
[Lu and Likos, 2006]

�′ ¼ �� uað Þ � �s; ð1Þ

where ua is the pore air pressure, s is the total stress, s′ is
the effective stress, and ss is defined as the suction stress
characteristic curve of the soil with a general functional
form of

�s ¼ �ðua � uwÞ ua � uw � 0; ð2aÞ

�s ¼ f ua � uwð Þ ua � uw � 0; ð2bÞ

where uw is the pore water pressure and f is a scaling
function describing the link between suction stress and
matric suction. Lu and Likos [2004, 2006] and Lu et al.
[2007] showed that the suction stress characteristic curve,
ss, could be obtained by shear strength or tensile strength
tests or by theoretical formulations. In this work we seek a
closed‐form equation for the suction stress characteristic
curve as a function of either matric suction or soil saturation
using a working hypothesis formed on the basis of experi-
mental observations and thermodynamic justifications.

[7] The working hypothesis is that the change in energy
of soil water from its free water state is mostly consumed in
suction stress. Experiments show that for a variety of soils
and granular materials, there is a relationship between the
soil water characteristic curve (SWCC), plotting suction
versus saturation, and the suction stress characteristic curve
(SSCC), plotting the tensile stress versus saturation. Our aim
here is to derive a first‐order approximation for this rela-
tionship within a thermodynamic framework.

2.2. Thermodynamic Justifications

[8] The tensile stress can be calculated from the virtual
work of increasing the volume of a soil system. For a partially
saturated soil held at constant temperature, T, and chemical
potential, m, the work is itself stored as the grand canonical
free energy, F, and so the stress is given by the derivative of
the free energy with respect to volume V; that is,

�s ¼ �@F

@V

����
�;T

: ð3Þ

Assuming a constant density for water, the free energy will
have contributions from both the free capillary water and the
bound residual water layers. We analyze each contribution
below.
[9] Bound residual water layers can exist because of

surface hydration attraction, extending over a layer thick-
ness of water to the surface of the soil solid. The binding
results in a lower free energy for the water bound in that
layer. For all N grains in a representative elementary volume
(REV), the bound water layers occupy a total “residual
volume,” Vr, and have a total free energy, Fr. The remaining
“free” capillary water thus has a volume Vf = Vw − Vr, where
Vw is the total water volume.
[10] Since the bound residual water is taken to have sig-

nificantly lower free energy density than the free water,
water added to a dry granular system up to a volume Vw ≤ Vr

will accumulate in this layer first. Since our focus will be on
Vw > Vr, we do not concern ourselves with the volume
dependence of the free energy below this residual volume,
other than to identify Fr as the limiting value as Vw

approaches Vr. The remaining phases j (free capillary water
and air) having volume Vj and interfacial (or surface) areas
Ai contribute volume and surface terms to the free energy,
giving

F ¼ Fr �
X
phase j

ujVj þ
X

interface i

�iAi for Vw > Vr; ð4aÞ

with differential

dF ¼ �SdT �
X
j

ujdVj �
X
j

Njd�j þ
X
i

�idAi for Vw > Vr;

ð4bÞ

where S is the entropy of the system and Nj is the number of
molecules in phase j (omitting notation specifying species
type). This provides the thermodynamic definition of the
surface tension for interface i,

�i ¼ @F

@Ai

����
T ;V ;�

¼ @E

@Ai

����
S;V ;N

; ð5Þ
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where the second equation expressed in terms of the total
energy E of the system is obtained by Legendre transfor-
mation F = E − TS − mN.
[11] Specifically, for a free water phase with volume Vf =

Vw − Vr and air phase with volume Va = Vv − Vw = (Vv − Vr) −
Vf, where Vv is the void volume, we have

F ¼ Fr � uaVa � uwVf þ
X
i

�iAi

¼ Fr � ua Vv � Vrð Þ � Vw � Vrð Þ½ � � uw Vw � Vrð Þ
þ
X
i

�iAi for Vw > Vr; ð6Þ

or, expressed in terms of the matric suction, (ua − uw),

F ¼ Fr � ua Vv � Vrð Þ þ ua � uwð Þ Vw � Vrð Þ þ
X
i

�iAi for Vw > Vr:

ð7Þ

We can use this expression for the free energy to derive the
tensile stress or suction stress from a virtual work argument.
As the REV is subject to tension, an infinitesimal extension
with volume change dV will lead to an infinitesimal increase
in the free energy, dF, corresponding to the input work. In
particular, we consider a uniaxial strain leading to a change in
the total volume, V = Vs + Vv, where Vs is the constant volume
occupied by the solid grains. Since the volumes of the rigid
grains and of the bound water layer are essentially constant
for Vw > Vr, we have dV = dVw + dVa. At constant T and m, we
thus have

@F

@V

����
�;T

¼ �ua
@Va

@V

����
�;T

�uw
@Vw

@V

����
�;T

þ
X
i

�i
@Ai

@V

����
�;T

¼ �ua þ ðua � uwÞ@Vw

@V

����
�;T

þ
X
i

�i
@Ai

@V

����
�;T

for Vw > Vr;

ð8Þ

where we have assumed @Fr
@V

��
�;T

¼ 0 since the tightly bound
residual water is unperturbed by a small change in total volume.
[12] We thus need to specify how much the water volume,

Vw, and the interfacial areas, Ai, change with V under uni-
axial strain. The ratio of free water volume to the total
available to it is specified by the effective saturation,

Se � S � Sr
1� Sr

�
Vw

Vv
� Vr

Vv

1� Vr

Vv

¼ Vf

Vv � Vr
; ð9Þ

or Vf = Se (Vv − Vr), with Sr being the residual saturation.
Given that dV = dVv and dVw = dVf for Vw > Vr, we have

dVw ¼ SedV þ ðVv � VrÞdSe for Vw > Vr: ð10Þ

Since the arrangement of soil particles within the REV is
assumed to be random, there is a distribution of local grain
arrangements and strengths, and we propose that the sample
will deform at a localized region. This region under defor-
mation can draw upon both water and air in the neighboring
area, which acts as a reservoir. As a first approximation, we
can assume that the effective saturation, Se, remains con-

stant, i.e., dSe = 0, in which case the change in water volume
is simply proportional to the change in void volume:

dVw ¼ SedV for Vw > Vr: ð11Þ

Accounting for the pressure, ua, provided by the surround-
ing atmospheric air, this leads to an expression for the
tensile stress (suction stress):

�s ¼ �@F

@V

����
�;T

� ua ¼ � ua � uwð Þ@Vw

@V

����
�;T

�
X
i

�i
@Ai

@V

����
�;T

for Vw > Vr; ð12Þ
or

�s ¼ � ua � uwð ÞSe �
X
i

�i
@Ai

@V

����
�;T ;uniaxial

for Vw > Vr: ð13Þ

If the second term (interfacial contribution) is ignored, we
have the approximation of suction stress:

�s ¼ � ua � uwð ÞSe for Vw > Vr: ð14Þ

Although the surface tension term has been neglected in
previous work [e.g., Houlsby, 1997], no convincing physical
justification has been reported. In the capillary (occluded air
bubble state) regime, the surface tension term should be
small or zero, but it could be significant in both the pendular
(discontinuous menisci state) and the funicular (continuous
menisci and pore air) regimes. Houlsby [1997] argued that
the relative velocity of the interface and the soil solid is
small, so that the surface tension can be ignored, but the
exact circumstances where such a condition applies, as well
as the quantitative role of interfacial tension in the tensile
stress, have yet to be established. The work done by the
tensile stress, captured by equation (13) or equation (14), is
similar to that proposed by Bishop [1954] or derived by
Houlsby [1997, equation (26)], except that the energy in the
residual water bound by surface hydration is removed from
the tensile stress. As argued above, the residual water con-
tent is the amount of water that remains primarily in the
form of thin films surrounding the soil particle surfaces at
very high suctions but has very little effect on the inter-
particle suction stress. The graphical representation of suc-
tion stress is the area under the normalized soil water
characteristic curve and is shown in Figure 1a. In this work,
we rely on the physical justification of the validity of
neglecting the surface tension term using experimental data,
shown in section 3.

2.3. A Closed‐Form Equation for Effective Stress

[13] Bishop’s [1954, 1959] effective stress can be written as

�′ ¼ �� uað Þ þ � ua � uwð Þ: ð15Þ
Bishop [1954] also suggested that for his effective stress
parameter c, c = S,

�′ ¼ �� uað Þ þ S ua � uwð Þ: ð16Þ
Lu and Likos [2006] proposed a form of suction stress that
is consistent with Terzaghi’s effective stress:

�′ ¼ �� uað Þ � �s; ð17Þ
where ss = −(ua − uw)S.
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[14] Following equation (14), we propose an effective
stress as an extension of Bishop’s and an expansion of
Terzaghi’s for all saturations by modifying the saturation
contribution to effective stress:

�′ ¼ �� uað Þ � �Se ua � uwð Þ½ �

¼ �� uað Þ � � S � Sr
1� Sr

ua � uwð Þ
� �

¼ �� uað Þ � �s; ð18Þ

where ss = −(ua − uw)Se. Note that equation (18) is different
than that of Bishop in the degree of saturations and can
recover Terzaghi’s effective stress s′ = s − uw when a soil is
saturated. We make an additional extension of equation (18)
by applying the relationship between the normalized volu-
metric water content or degree of saturation and matric

suction. If van Genuchten’s [1980] SWCC model is used,
the normalized degree of saturation can be expressed as

Se ¼ 1

1þ � ua � uwð Þ½ �n
� �1�1=n

; ð19Þ

where n and a are empirical fitting parameters of unsatu-
rated soil properties, with a being the inverse of air entry
pressure for water saturated soil and n being the pore size
distribution parameter. Figure 1b shows the range of values
of the a and n parameters for various soil types.
[15] A closed‐form expression for suction stress for the

full range of saturation can be arrived at by substituting
equation (19) into equation (14) and eliminating matric
suction:

�s ¼ � Se
�

S
n

1�n
e � 1

� �1
n

0 � Se � 1: ð20Þ

Similarly, a closed‐form expression for suction stress for the
full range of matric suction also can be arrived at by sub-
stituting equation (19) into equation (14) and eliminating the
degree of saturation:

�s ¼ �ðua � uwÞ ua � uw � 0; ð21aÞ

�s ¼ � ua � uwð Þ
1þ � ua � uwð Þ½ �nð Þ n�1ð Þ=n ua � uw � 0: ð21bÞ

In what follows, we focus on the characteristics and vali-
dation of equation (21), as most of the data available in the
literature on shear strength and soil water characteristic
curves are exclusively expressed in terms of matric suction.
Substituting equation (21) into equation (18), the closed‐
form equation for effective stress in the entire pore water
pressure range (all saturations) is

�′ ¼ �� ua þ ðua � uwÞ ua � uw � 0; ð22aÞ

�′ ¼ �� ua þ ua � uwð Þ
1þ � ua � uwð Þ½ �nð Þ n�1ð Þ=n ua � uw � 0: ð22bÞ

Equation (22a) is for saturated conditions, which is Ter-
zaghi’s equation, and equation (22b) is for unsaturated
conditions. In Appendix A we show that equation (22b)
continuously and smoothly approaches equation (22a) as
matric suction approaches zero or from an unsaturated state
to a saturated state.
[16] The general patterns of the SSCC defined by

equation (21) and its interrelationship with the SWCC for
different types of soil are illustrated here. Figure 2a shows
SWCCs for typical sandy, silty, and clayey soils, and
Figure 2b shows the corresponding SSCCs predicted using
equation (21b). Each of these three “typical” soils has unique
characteristics of suction stress. For sandy soil, suction stress
is zero at zero matric suction (saturated condition) and at
some large value of matric suction (110 kPa for the example
here). Suction stress reaches a minimum value at a given
matric suction (suction stress of −2 kPa at matric suction of
3 kPa or 70% saturation). The down‐and‐up characteristic
of suction stress can be illustrated by plotting equation

Figure 1. (a) Interrelationship between the soil water char-
acteristic curve (SWCC) and the suction stress characteristic
curve (SSCC) and (b) illustration of suction stress regimes
for various soils.
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(17b), as shown in Figure 2c. This behavior of suction stress
is well known for sand‐sized granular media [e.g., Schubert,
1975; Kim, 2001; Lu et al., 2007]. It is important to note
that this behavior cannot be effectively described using
Bishop’s effective stress approach because the effective
stress was treated as a function of both matric suction and
the degree of saturation (equation (16)).
[17] For a typical silty soil, suction stress follows a similar

pattern to that of sandy soil (Figures 2b and 2c), except the
minimum value is now on the order of 10 kPa. However,
considerable suction stress remains beyond the minimum
value. The range of matric suction for which the magnitude
of suction stress remains considerable could be on the order
of several hundreds to several thousands of kilopascals. A
practical illustration of this behavior is evidenced by loess
cut slopes. In these cut slopes, suction stress of several tens
of kilopascals in the loess is capable of maintaining near‐
vertical cuts of several meters in height in dry environments
even in the absence of clay films or cement.
[18] For a typical clayey soil (Figures 2b and 2c), the

pattern of variation of suction stress shows some distinct
characteristics. Suction stress is zero when matric suction is
zero but decreases monotonically as matric suction
increases. The minimum suction stress for clayey soil could
be on the order of several hundreds of kilopascals in
magnitude. A practical example is that when clay is dry or
under high matric suction conditions, the bonding force or
suction stress is very high, up to several hundreds of kilo-
pascals, making it difficult to break. Under very moist
conditions, clay is plastic, and under moderately moist
conditions, clay is brittle like rock.
[19] Under the proposed framework, effective stress or

suction stress is intrinsically related to the SWCC. The form
of these curves is fundamentally controlled by the pore
geometry and pore fluid parameters a and n. The parameter
a is a direct indicator of the matric suction at which pore
fluid begins to leave a drying soil water system, whereas
parameter n reflects the pore size distribution of the soil. It
can be shown (see Appendix B) that the SSCC can be in two
distinct regimes dependent on the value of n: it monotoni-
cally decreases if n ≤ 2.0 and decreases and then increases if
n > 2.0. Figure 1b illustrates these two regimes in the a − n
space. When n > 2.0, the minimum suction stress and its
corresponding value of the equivalent degree of saturation
and matric suction are

�sjmin¼ � 1

�

1� n

2� n

	 
1�n
n 1

n� 2

	 
1
n

; ð23aÞ

ua � uwð Þjmin¼
1

�

1

n� 2

	 
1
n

; ð23bÞ

Sejmin¼
1� n

2� n

	 
1�n
n

; ð23cÞ

respectively. It can be shown from analyzing the mathe-
matical properties of equations (23a) and (23b) that the a
parameter dominantly controls the minimum value of suc-
tion stress and the matric suction value corresponding to that
minimum, whereas the parameter n solely controls the

Figure 2. (a) SWCC for some typical soils, (b) SSCC for
the typical soils in terms of the effective degree of satura-
tion, and (c) SSCC for the typical soils in terms of matric
suction.
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equivalent degree of saturation corresponding to the mini-
mum suction stress.

3. Experimental Validation

[20] Thanks to the increasing experimental effort in the
past 3 decades, experimental validation of the closed‐form

equation for effective stress (equation (22)) can be achieved
using data from shear strength or tensile strength tests.
Experimental validation of the proposed effective stress
equation (equation (21b)) under the tensile total stress
regime has been demonstrated by Lu et al. [2009] for var-
ious sandy materials. Because most results reported in the
literature are from shear strength tests performed in the

Table 1. Soil Descriptions and Properties Used to Validate Closed‐Form Equation for Effective Stressa

Name Soil Properties ub = 1/a (kPa) n
�′
(°)

c′
(kPa) Reference Apparatus

Group 1
Kaolin wL = 63%, Ip = 33%,

percent finer than 3 mm = 70%,
gdMAX = 1.4 g/cm3

395b 1.20c 22 24 Khalili and
Khabbaz [1998]

Modified triaxial

Jossigny silt
(low‐plasticity clay)

wL = 37%, Ip = 18%,
clay‐size fraction = 34%,
gdMAX = 1.7 g/cm3

182b 1.54c 22b 25b Cui and
Delage [1993]

Triaxial apparatus
with osmotic
suction control

Madrid clayey sand wL = 32%, Ip = 15%,
fine fraction = 17%,
gdMAX = 1.91 g/cm3

127b 1.63c 38 0 Escario and
Sáez [1986]

Modified direct shear

Sandy clay 1 N.D. 35b 1.59c 37d 0d Blight [1967] Modified triaxial with
water content control

Group 2
Compacted glacial till wL = 35.5%, Ip = 18.7%,

clay‐size fraction = 30%,
gdMAX = 1.815 g/cm3

153b 1.50c 25.5 10 Gan et al. [1988] Modified direct shear

Tappen Notch Hill silt wL = 57%, Ip = 32% (for clay fraction),
clay‐size fraction = 10%, silt = 85%,

94b 1.39c 35 0 Krahn et al. [1989] Modified multistage
triaxial

Sandy clay 2d N.D. 70b 1.58c 30 0 Maswaswe [1985] Modified triaxial
Dhanauri clay
compacted to
low densityd

gd = 1.48 g/cm3 62b 1.43c 28.5 7.8 Satija [1978] Modified triaxial

Mature residual soil
(Vista Chinesa, Brazil)

wL = 50.7%, Ip = 18.4%,
clay‐size fraction = 24.4%,
sand = 60%

38b 1.63c 28.7 13.7 de Campos
and Carrillo [1995]

Modified direct shear

Group 3
Dhanauri clay
compacted to
high densityd

gd = 1.58 g/cm3 127b 1.30c 29 7.8 Satija [1978] Modified triaxial

Sand‐clay mixture Clay‐size fraction = 25%,
sand = 75%, gdMAX = 1.92 g/cm3

115b 1.40c 33.5 30 Khalili and
Khabbaz [1998]

Modified triaxial

Speswhite kaolin gdMAX = 1.2 g/cm3 86b 1.42c 25 0 Wheeler and
Sivakumar [1995]

Triaxial

Yellow colluvium
(Vista Chinesa,
Brazil)

wL = 45.7%, Ip = 22.7%,
clay‐size fraction = 42.5%,
sand = 50.3%

54b 1.62c 26.4 0 de Campos and
Carrillo [1995]

Modified direct shear

Compacted nonplastic
silty sandd

gdMAX = 1.89 g/cm3 43 1.50c 38.7 11.5 Drumright [1989] Modified triaxial

Group 4
Hume Dam clay
(Southeastern
Australia)

wL = 33%, Ip = 12%,
fine fraction = 74%,
sand fraction = 26%,
gd = 1.69 g/cm3

77.5e 1.37e 29 19 Khalili et al. [2004] Modified triaxial

Barcelona silt wL = 32%, Ip = 16%,
clay‐size fraction = 20%,
silt = 43%, sand = 37%,

14.9e 1.13e 28 0 Vaunat et al. [2002] Modified direct shear

Group 5
Glacial till
compacted dry
of optimum
water content

wL = 35.5%, Ip = 18.7%,
clay‐size fraction = 30%,
silt = 42%, sand = 28%,
gd = 1.73 g/cm3

40.9e 1.46e 23 0 Vanapalli et al. [1996] Modified multistage
direct shear

Decomposed tuff
(Hong Kong)

N.D. 46.9e 1.89e 39 0 Fredlund et al. [1995] Modified multistage
direct shear

Group 6
Ottawa sand N.D. 2.20e 2.50e N.D. N.D Kim [2001] Tensile strength tests
Limestone
agglomerates

N.D. 1.12e 12.68e N.D. N.D. Schubert [1984] Tensile strength tests

aN.D., no data; wL, liquid limit; Ip, plasticity index; gd, dry density; gdMAX, maximum dry density.
bEstimates reported by Khalili and Khabbaz [1998].
cObtained by fitting suction stress characteristic curve to shear strength test data.
dData taken from Khalili and Khabbaz [1998].
eObtained using RETC v.6.0 code [van Genuchten et al., 1991].
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compressive regime, we conduct our validation using shear
failure data for which the total normal stresses are com-
pressive. These tests were typically conducted using either a
direct shear or triaxial shear apparatus modified so that
matric suction can be controlled. A total of 20 different soils
covering the range of sand, silt, and clay was used for
validation purposes (see Table 1).
[21] A true validation for a given soil requires both a

SWCC and a SSCC. Suction stress characteristic curves can
be experimentally obtained from a series of shear strength
tests under different matric suctions. However, because of
the paucity of both SWCC and SSCC for the same soil, the
following strategy for validation is adopted. For those soils
for which SWCC and SSCC are available, we directly com-

pare test data with the theoretical equations (equation (19)
for the SWCC and equation (21b) for SSCC). If equation
(21b) is valid, a unique pair of parameters a and n is
identified. For those soils for which only suction stress data
are available, we perform a “semiquantitative” analysis. We
identify the parameters a and n from those data and use
them to predict the corresponding SWCCs. We compare
these curves with the typical range of curves for different
soils to see whether they follow the expected trend, as
described below.

3.1. Semiquantitative Validation

[22] We have compiled suction stress data from 14 dif-
ferent soils for the semiquantitative validation. These soils
cover a wide spectrum of soil types, from sandy to clayey,
as listed in Table 1. Shear strength data were reduced to
yield suction stress data as follows. For direct shear testing,
the Mohr‐Coulomb failure criterion can be written as

�f ¼ c′þ �� uað Þ � �s½ � tan�′; ð24Þ

where tf is shear stress at failure at a given matric suction,
c′ is the drained cohesion, and �′ is drained friction angle
at saturated state. Suction stress at a given matric suction is
then reduced from equation (24):

�s ¼ � �f � c0 � �� uað Þ tan�0

tan�0 : ð25Þ

For triaxial testing, suction stress at a given matric suction
can be obtained as follows:

�s ¼ �
�1 � uað Þ � �3 � uað Þ tan2 	

4
þ �0

2

	 

� 2c0 tan

	

4
þ �0

2

	 


2 tan
	

4
þ �0

2

	 

tan�0

;

ð26Þ

where s1 and s3 are the total principle stresses in the vertical
and horizontal directions, respectively.
[23] For clarity of presentation, we have divided the soils

for which the semiquantitative validation was performed
into three groups (Table 1). Figure 3a shows the measured
suction stress characteristic data from the four soils in Group 1.
This group consists of kaolin, Jossigny silt, Madrid clayey
sand, and sandy clay 1. In general, the SSCCs for these
soils follow a trend of monotonic decrease in suction stress
with increasing matric suction. At matric suctions less than
the air entry value of the soil, suction stress strictly follows
the line ss = −(ua − uw), where Terzaghi’s effective stress
principle is valid. Suction stress begins to deviate from this
line in the air entry regime and continues to do so as
matric suction increases. The air entry pressures, ub, for
these soils were estimated by Khalili and Khabbaz [1998]
and are reported in Figure 3 and in Table 1. The air entry
pressure, ub, can also be inferred from the SSCC test data
as the point at which the SSCC deviates from the saturated
line, although real soils do not have a clear deviating point
or air entry value but rather a range of pressures in which
the largest pores begin to drain. For example, the air entry
pressure from Figure 3a for the kaolin is between 300 and
400 kPa (versus the reported value of 395 kPa), and that
for the sandy clay 1 is around 30 kPa (versus the reported

Figure 3. Semiquantitative validation of the closed‐form
equation for effective stress for Group 1 soils: (a) measured
and fitted SSCCs for kaolin, Jossigny silt, Madrid clayey
sand, and sandy clay 1 and (b) predicted SWCCs for these
soils.
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value of 35 kPa). Using these air entry pressures from the
work of Khalili and Khabbaz [1998], we attempt to fit the
experimental data for each soil in order to obtain a value
for the pore size parameter n, which is reported in Figure 3.
The SWCCs are then calculated (using equation (19)) using
the air entry parameter, a (a being the inverse of air entry
pressure ub), and pore size parameter, n, and plotted in
Figure 3b.
[24] In general, the finer‐grained soils have larger air

entry pressures and support higher matric suctions at a given
degree of saturation compared with the coarser‐grained soils
that have smaller air entry pressures. Thus, the soil water
characteristic curves should shift to the right in Figure 3b
with increasing fine‐grained fraction and larger air entry
pressures. Figure 3b shows that equation (21) captures this

expected “right shifting” trend for the Group 1 soils. The
magnitude of suction stress generally increases as the soils
become finer (Figure 3a and Table 1). For example, suction
stress varies from slightly more than about 250 kPa at a
matric suction value of 800 kPa for the Madrid clayey sand
(fine fraction is 17%) to about 350 kPa for the Jossigny silt
(clay‐size fraction is 34%). For clayey soils (e.g., kaolin),
suction stress could be as much as several hundreds of
kilopascals. The predicted SWCCs for the soils in Group 1
are qualitatively within the ranges that would be expected
for soils with similar air entry pressures and grain size
distributions.
[25] Figure 4 shows the measured suction stress data from

five additional soils, defined here as Group 2. This group
consists of compacted glacial till, Tappen Notch Hill silt,
sandy clay 2, Dhanauri clay compacted to low density, and a
mature residual soil. The best fit SSCCs and the air entry
pressures (ub) from the work of Khalili and Khabbaz [1998]
and fit n parameters are shown in Figure 4a and Table 1.
Suction stress at a matric suction of 500 kPa varies from
about 100 to 250 kPa moving from the relatively coarse
residual soil to the finer‐grained glacial till. The ub and n
parameters are used in equation (19) to predict the
corresponding SWCCs, as shown in Figure 4b. For exam-
ple, the leftmost SWCC is that for the mature residual soil,
and it reflects its relatively large sand‐size fraction (60%)
(Table 1). The rightmost SWCC is that for the relatively fine
grained (clay‐size fraction is 30%) (Table 1) and dense com-
pacted glacial till. Again, these estimated SWCCs are quali-
tatively within the ranges that would be expected for soils with
similar air entry pressures and grain size distributions.
[26] The final group for this semiquantitative validation

consists of five additional soils: Dhanauri clay compacted to
high density, a sand‐clay mixture, speswhite kaolin, yellow
colluvium, and compacted nonplastic silty sand. The mea-
sured and fitted suction stress data are shown in Figure 5a
and listed in Table 1, and the corresponding SWCCs from
the best fit parameters are plotted in Figure 5b. Suction
stress at a matric suction of 200 kPa varies from about 85 to
150 kPa moving from the relatively coarse colluvial soil to
the dense Dhanauri clay. The predicted SWCCs for the soils
in Group 3 are qualitatively within the range expected for
soils with similar grain size distributions and bulk densities.
The rightward shifting trend of the SWCCs for the finer and
denser soils with greater air entry pressures is evident and
qualitatively supports equation (21) for the suction stress
characteristic curve.

3.2. Quantitative Validation

[27] We identified six soils for which data on both the
SWCC and SSCC are available from the literature. For
clarity we have divided the soils into three groups. The first,
Group 4, includes Hume Dam clay [Khalili et al., 2004] and
Barcelona silt [Vaunat et al., 2002]. Test results and the best
fit SWCCs are shown in Figure 6a. The curves were fit
using a least squares regression and the RETC code [van
Genuchten et al., 1991]. The parameters a and n were
then used to predict the SSCCs (Figure 6b). Comparisons of
the predicted curves with the suction stress data show that
the closed‐form equations (19) and (21) predict the mea-
sured stresses within a few tens of kilopascals for both the
Hume Dam clay and the Barcelona silt. This comparison

Figure 4. Semiquantitative validation of the closed‐form
equation for effective stress for Group 2 soils: (a) measured
and fitted SSCCs for compacted glacial till, Tappen Notch
Hill silt, Dhanauri clay compacted to low density, sandy
clay 2, and mature residual soil and (b) predicted SWCCs
for these soils.
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indicates that the closed‐form equation (22) for effective
stress is valid for the two soils.
[28] Group 5 consists of glacial till compacted dry of

optimum water content [Vanapalli et al., 1996] and
decomposed tuff [Fredlund et al., 1995]. The soil water
characteristic and suction stress characteristic curve data are
shown in Figures 7a and 7b, respectively. As for Group 4,
the RETC model was used to identify a and n from the soil
water characteristic data (Figure 7a), and the best fit values
of a and n are used in equation (21) to predict the SSCCs
(Figure 7b). Again, equation (21) provides an accurate
prediction (within a few percent) of the measured suction
stress data for both the glacial till and the decomposed tuff.
[29] Group 6 contains two relatively coarse‐grained

materials: fine (Ottawa) sand [Kim, 2001] and limestone

agglomerates [Schubert, 1984]. The test data and the best fit
for the SWCCs are shown in Figure 8a. As with the other
two groups, the best fit a and n parameters were then used
to predict the corresponding SSCCs (Figure 8b). Close
matches between the measured and predicted SSCCs for
both soils support the validity of the proposed closed‐form
equation (22) for effective stress in unsaturated soils. Worth
noting is the “peak” behavior when parameter n > 2.0 (see
Appendix B), an important characteristic of suction stress in
coarse‐grained materials; suction stress is at a minimum of
−1.6 kPa at about 3 kPa of matric suction for the Ottawa

Figure 5. Semiquantitative validation of the closed‐form
equation for effective stress for Group 3 soils: (a) measured
and fitted SSCCs for Dhanauri clay compacted to high den-
sity, sand‐clay mixture, speswhite kaolin, yellow colluvium,
and compacted nonplastic silty sand and (b) predicted
SWCCs for these soils.

Figure 6. Quantitative validation of the closed‐form equa-
tion for effective stress for Group 4 soils: (a) measured and
fitted SWCCs for Barcelona silt and Hume Dam clay and (b)
measured and predicted SSCCs for these soils.
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sand and a minimum of about −0.85 kPa at 1 kPa of matric
suction for the limestone agglomerates. This behavior can-
not be predicted using either the classical effective stress
approach of Bishop (equation (16)) or the extended Mohr‐
Coulomb criterion under the framework of two independent
stress state variables, as they are not defined as a sole
function of matric suction or saturation, but is well described
by the proposed closed‐form effective stress equation (22)
when parameter n > 2.0.

4. Theoretical and Practical Implications

[30] A goal of theoretical inquiry is to describe physical
behavior using mathematics. For such inquiry to be widely

useful for science and engineering problems it must provide
fundamental insight and also be simple and provide results
of sufficient accuracy. Darcy’s law for fluid flow and
Terzaghi’s equation for effective stress in saturated soils
are examples of physical observations and mathematical
abstraction that have had a profound impact on science and
engineering practice. This general philosophy provides
guidance in the current search for an effective stress equation
for variably saturated soil. In what follows, we point out a
few theoretical and practical implications of this work.
[31] We have shown that suction stress equation (21) is

generally valid for a wide range of soils: from clay to

Figure 8. Quantitative validation of the closed‐form equa-
tion for effective stress for Group 6 soils: (a) measured and
fitted SWCCs for limestone agglomerates and Ottawa sand
and (b) measured and predicted SSCCs for these soils.

Figure 7. Quantitative validation of the closed‐form equa-
tion for effective stress for Group 5 soils: (a) measured and
fitted SWCCs for decomposed tuff and glacial till and
(b) measured and predicted SSCCs for these soils.
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limestone agglomerates (Table 1). If equation (21) for suc-
tion stress in unsaturated soil is valid in a manner similar to
that of Terzaghi’s effective stress for saturated soil, all limit
equilibrium theories, such as those for lateral earth pres-
sures, bearing capacity, and slope stability, in use today can
be readily expanded for design and analysis under unsatu-
rated soil conditions by simply replacing pore water pres-
sure with the suction stress characteristic curve.
[32] Theoretically, the closed‐form equation for suction

stress (equation (21)) has several potentially far‐reaching
implications. First, it avoids the common theoretical and
practical impediment embedded in Bishop’s effective stress
equation since there is no need to determine the coefficient
of effective stress c. Effective stress can be determined
simply by reducing suction stress from shear strength test
results (equation (26)) or by measuring soil water charac-
teristic curves to identify parameters a and n. Equation (21)
also captures the highly nonlinear and peak behavior of
effective stress in sandy and silty soils. This behavior has
been widely observed in the results of unsaturated shear
strength experiments [e.g., Vanapalli et al., 1996; Kim,
2001] that show a nonlinear increase‐then‐decrease depen-
dence of shear strength with increasing matric suction (as
shown in Figure 8b). This behavior is also well known from
field examples such as the observation of a sudden collapse
of unsaturated loess slopes upon wetting [e.g., Higgins and
Modeer, 1996]. This work, for the first time, reconciles such
behavior under the framework of effective stress. It also
bridges the gap between the two independent stress variable
framework and the effective stress framework by upscaling
matric suction to suction stress for which matric suction is
conceptualized as the controlling stress state variable. Matric
suction, as demonstrated by Lu [2008], is not a stress at a
typical REV level in soils and thus should not be defined as
a stress variable. Distinctions between stress variables and
stress state variables as well as their implications in theo-
retical soil mechanics are discussed by Lu [2008]. A ther-
modynamic distinction between the two independent stress
variable frameworks and the effective stress frameworks is
highlighted below.
[33] Under the two independent stress variable frameworks

[Fredlund and Morgenstern, 1977], shear strength is con-
ceptualized as a nonlinear function of both soil suction and
saturation. For example,Vanapalli et al. [1996, equation (18)]
proposed the following form for a modified Mohr‐Coulomb
criterion:

�f ¼ c′þ �� uað Þ tan�′þ ua � uwð Þ tan�′ S � Sr
1� Sr

: ð27aÞ

In light of the effective stress equation (equation (18)),
equation (27a) can be rearranged as

�f ¼ c0 þ �� uað Þ þ ua � uwð Þ S � Sr
1� Sr

� �
tan�0: ð27bÞ

[34] Equation (27a) bears two fundamental differences
with the proposed closed‐form effective stress equation
(equation (22)). First is a simple mathematical difference;
equation (27a) or equation (27b) is a function of suction and
saturation, whereas equation (22) is solely a function of

suction. The second difference rests on a thermodynamic
consideration. In equation (22), we state that effective stress
varies with suction and that changes in suction stress lead to
changes in energy in soils. In equation (27a), shear strength
is conceptualized as the product of suction and saturation.
From a continuum mechanics perspective, stress, such as
suction stress, is part of energy (i.e., specific energy equals
half stress times strain). Material strength, such as shear
strength, is unambiguously not a stress and thus does not
contribute to energy stored, released, or dissipated in the
medium. This distinction places our effective stress equation
(equation (22)) well within the framework of continuum
mechanics where free energy is the basis for any thermo-
dynamic formulation.
[35] We also seek a common basis for both fluid flow and

effective stress in unsaturated soil. The SWCC (e.g.,
equation (19)) is commonly used in solutions to the gov-
erning equation (Richards equation) for variably saturated
fluid flow in porous media. Fields of matric suction calcu-
lated in such a manner can be used directly in equations (21)
and (22) for stress field and stability analysis under the same
classical soil mechanics framework as saturated soils.
Analyses of many practical problems, such as the state of
stress in steep soil‐mantled hillslopes during infiltration,
require such a coupled hydromechanical model. As shown
in equations (19) and (21), soil moisture and suction stress
are fundamentally governed by a single variable: matric
suction through the same pore fluid and solid and size
distribution parameters, namely, a and n [van Genuchten,
1980].
[36] Beyond the well‐established utility of Terzaghi’s

effective stress principle for strength behavior, it is also
considered to be “effective” for some deformation problems
such as the consolidation settlement. Strength and defor-
mation behaviors of both saturated and unsaturated soil have
been theoretically examined within the framework of critical
state soil mechanics. Because the proposed effective stress
equation (equation (18)) is governed by matric suction and
is consistent with Terzaghi’s effective stress, it can also be
incorporated into elastic‐plastic constitutive relations and
the critical state soil mechanics frameworks.

5. Summary and Conclusions

[37] A closed‐form equation (equation (22)) for effective
stress in unsaturated soil is proposed and validated. The
closed‐form equation requires only two controlling para-
meters: the inverse of the air entry pressure a and the pore
size spectrum number n. With them, effective stress in
unsaturated soils ranging from sand to silt to clay can be
accurately described. These two parameters are identical to
those commonly used in the soil water characteristic curve
equations proposed by van Genuchten [1980]. Therefore,
the proposed closed‐form equation for effective stress can
be considered to be a unified description for phenomena of
flow and stress in porous granular materials.
[38] The proposed closed‐form equation for the suction

stress characteristic curve is an expansion of Terzaghi’s
effective stress principle into unsaturated conditions and a
unification of Bishop’s unsaturated effective stress with
Terzaghi’s effective stress. The proposed closed‐form
equation (equation (22)) is an extension of Bishop’s effec-
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tive stress, as the effective stress is solely a function of either
matric suction or the equivalent degree of saturation,
whereas Bishop’s effective stress demands knowledge of the
coefficient of effective stress c and concurrent knowledge
of soil suction and the degree of saturation. Under the
proposed equation, the transition from saturated to unsatu-
rated states is continuous and smooth, ensuring mathemat-
ical consistency between Terzaghi’s effective stress and the
effective stress equation (equation (22)).
[39] Suction stress is the tensile stress. We show that the

conception of it as an effective stress is thermodynamically
justifiable when the surface tension contribution to the stress
can be neglected, which apparently is the case in the
funicular and capillary regimes. This justification leads to the
statement that suction stress is an effective stress under the
conditions of no external stress and is the energy consumed
by capillary pore water. The proposed closed‐form equation
for effective stress and the justification for neglecting the
surface tension term are validated against published test-
ing data for a wide range of soils. We conclude that the
proposed effective stress or effective stress equation is
valid within the inherent errors of current experimental
techniques.
[40] An important practical implication of using the pro-

posed effective stress equation is that there is no need for
any new shear strength criterion for unsaturated soil and all
classical soil mechanics work on limit analysis can be
readily extended to unsaturated soil conditions. Of equal
practical importance is the development of a thermodynam-
ically consistent framework for analyzing coupled hydro-
mechanical problems such as the state of stress in hillslopes
during infiltration.

Appendix A: Proof of a Smooth Transition
for Suction Stress at Zero Matric Suction

[41] This section shows the mathematical consistency
between Terzaghi’s effective stress for saturated state and
the proposed effective stress equation (equation (22)) for
unsaturated state. We show here that suction stress and its
first derivative in the closed‐form expression are continuous
as matric suction varies between the partially saturated case
to the fully saturated case. Thus, taking the derivative of
equation (17a) with respect to matric suction, we have

d�s

d ua � uwð Þ ¼ �1 ua � uw � 0: ðA1Þ

Taking the derivative of equation (17b) with respect to
matric suction, we have

d�s

d ua � uwð Þ ¼ � 1

1þ � ua � uwð Þ½ �nf gn�1
n

þ ua � uwð Þ
1þ � ua � uwð Þ½ �nf g2n�1

n

n� 1

n

� 1þ � ua � uwð Þ½ �nf gn�1
n �1n � ua � uwð Þ½ �n�1��

d�s

d ua � uwð Þ ¼ � 1

1þ � ua � uwð Þ½ �nf gn�1
n

þ n� 1ð Þ � ua � uwð Þ½ �n
1þ � ua � uwð Þ½ �nf g2n�1

n

ua � uw � 0: ðA2Þ

Taking the limit of (ua − uw) → 0 for both the derivatives
shown in equations (A1) and (A2), we have

Lim
d�s

d ua � uwð Þ
����
ua�uwð Þ!�0

¼ �1

Lim
d�s

d ua � uwð Þ
����
ua�uwð Þ!þ0

¼

Lim � 1

1þ � ua � uwð Þ½ �nf gn�1
n

 

þ n� 1ð Þ � ua � uwð Þ½ �n
1þ � ua � uwð Þ½ �nf g2n�1

n

!
ua�uuað Þ!�0

¼ � 1

1þ ½0�nf gn�1
n

þ n� 1ð Þ½0�n
1þ ½0�nf g2n�1

n

 !
¼ �1:

Taking the limit of (ua − uw) → 0 for both the suction stress
shown in equations (21a) and (21b), we have

Lim�sj ua�uwð Þ!�0 ¼ �ðua � uwÞ ¼ 0

Lim�sj ua�uwð Þ!þ0 ¼ � ua � uwð Þ
1þ � ua � uwð Þ½ �nð Þ n�1ð Þ=n

¼ � ua � uwð Þ
1þ ½0�nð Þ n�1ð Þ=n ¼ 0:

Since at zero matric suction, both suction stress and its
derivatives have unique values, the closed‐form equation
(21) is smooth at the point where matric suction is zero.

Appendix B: Solution Regimes for the Suction
Stress Characteristic Curve

[42] This section shows the theoretical possibility of the
“peak” behavior of effective stress in unsaturated soils. To
find out the maxima and minima of the closed‐form
equation for suction stress, we can take the derivative of
equation (20) with respect to the equivalent degree of
saturation and set the resulting equation to zero:

d�s

dSe
¼ � 1

�
S

n
1�n
e � 1

� �1
n � Se

�

1

n
S

n
1�n
e � 1

� �1
n�1 n

1� n
S

n
1�n�1
e ¼ 0

� 1

�
S

n
1�n
e � 1

� �1
n � Se

�

1

n

S
n

1�n
e � 1

� �1
n

S
n

1�n
e � 1

� � n

1� n

S
n

1�n
e

Se
¼ 0

�1� S
n

1�n
e

S
n

1�n
e � 1

� � 1

1� n
¼ 0

� 1� nð Þ S
n

1�n
e � 1

� �
� S

n
1�n
e ¼ 0

� 2� nð ÞS n
1�n
e þ 1� nð Þ ¼ 0

Sejmin¼
1� n

2� n

	 
1�n
n

: ð23c′Þ

It can be deduced that for equation (23c) to have a real
solution, n must be >2.0.
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[43] Substituting equation (23c) into (21), we have the
minimum suction stress value:

�sjmin¼ � 1

�

1� n

2� n

	 
1�n
n 1

n� 2

	 
1
n

: ð23a′Þ

The matric suction where the minimum suction stress is
attained can also be found by substituting equation (23c)
into the soil water characteristic curve (equation (19)):

Sejmin¼
1

1þ � ua � uwð Þ½ �n
� �n�1

n

Sejmin

� � n
n�1 ¼ 1

1þ � ua � uwð Þ½ �n
� �

1þ � ua � uwð Þ½ �n¼ Sejmin

� � n
1�n

ua � uwð Þjmin¼
1

�
Sejmin

� � n
1�n�1

h i1
n

ua � uwð Þjmin¼
1

�

1� n

2� n

	 
1�n
n

( ) n
1�n

�1

2
4

3
5

1
n

ua � uwð Þjmin¼
1

�

1� n

2� n

	 

� 1

� �1
n

ua � uwð Þjmin¼
1

�

1

n� 2

	 
1
n

ð23b′Þ

Thus, we show that when n ≤ 2.0, the closed‐form equation
(21) for suction stress is a monotonically decreasing func-
tion. When n > 2.0, the closed‐form equation (21) for suc-
tion stress has a minimum suction stress value described by
equation (23a), and it occurs when the equivalent degree of
saturation is at the value given by equation (23c) and matric
suction is at the value given by equation (23b).
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