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Abstract— Poisson point process (PPP) network model in 

which base stations (BSs) and users have Poisson distributions has 

been recently used to replace grid model for analyzing the 

performance of cellular networks. The closed-form for the coverage 

probability of a typical user that connects to the closest base station 

(BS), however, is only found in case of high transmission signal-to-

noise (SNR) and only in Rayleigh fading. This paper derives a 

closed-form expression for the network coverage probability in 

composite Rayleigh-Lognormal for both low and high SNR. The 

analytical results show that the coverage probability is proportional 

to path loss exponent coefficient, 𝜶, and inversely proportional to 

exponential function of 
𝟏𝑺𝑵𝑹. The analytical results are also verified 

by Monte Carlo simulations. 
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I.  INTRODUCTION   

In realistic mobile radio scenarios in urban areas, the 
multipath effect at the mobile receiver due to scattering from 
local scatters such as buildings in the neighborhood of the 
receiver causes a fast fading while the variation in the terrain 
configuration between the base-station and the mobile receiver 
causes a slow shadowing. Therefore, the mobile radio signal 
envelope is usually composed of a small scale multipath fading 
component superimposed on a larger scale or slower 
shadowing component. It is well known that the signal 
envelope of the multipath component can be modeled as a 
Rayleigh distributed random variable (RV), and its power can 
be modeled as an exponential RV. Thus the path power gain 
has a mixed Rayleigh-Lognormal distribution which is also 
known as the Suzuki fading distribution model [1].  

The traditional grid network model with deterministic BS 
locations is no longer accurate to estimate the performance of 
multi-cell wireless networks [2].  Poisson point process (PPP) 
network model [2], in which the BS locations are modeled as a 
homogeneous spatial Poisson point process, has been 
developed as a more accurate and flexible tractable model for 
cellular network. As in well-known network models, a typical 
user is allowed to associate with the closest or the strongest BS. 
In strongest model, a user measures Signal-to-Interference-
plus-Noise ratio (SINR) from several BSs and selects the BS 
with the highest SINR while in closest model, the distances 
between a user and BSs are estimated, and the BS, which is 
nearest to the user, is selected. 

Most recent works on PPP model focused on deriving exact 
formulas for performance of a typical user in only Rayleigh 
based on coverage probability approach[2]. Due to the 
complexity of mathematical manipulations, the mathematical 
expression stopped at two layer integrals for closest model [2, 
3] and one layer integrals for strongest model [4, 5]. In these 
frameworks, the closed-form expressions were only found in 
case of ignoring Gaussian noise.  

Authors in [6] proposed a new method to calculate average 
capacity in generalized fading channels based on moment 
generating function (MGF) which could avoid the complexity 
of coverage probability approach. However, the final equations 
were not exactly simple because they contained the Gauss 
hypergeometric function [7] which is expressed as  an integral. 
Another work, that evaluated the effect of Rayleigh and 
shadowing, was considered in [8] where shadowing was not 
incorporated in channel gain and can be constant when the 
origin PPP model is rescaled. Instead of rescaling network 
model, authors in [9] introduced a new approach to derive the 
coverage probability mathematical expression. However, this 
approach still stopped at the two layer integrals and is only 
used for zero noise networks (neglecting noise). 

This paper is based on coverage probability frameworks 
and uses the exponential form of probability density function 
(PDF) of composite Rayleigh-Lognormal random variable 
(RV) and Gauss-Legendre to obtain the closed-form expression 
for coverage probability of a typical user in the closest PPP 
network model. 

II. SYSTEM MODEL 

A. Network Topology 

      We consider a PPP cellular network (as shown in Figure 1) 

in which the locations of BSs are distributed as a 

homogeneous spatial Poisson point process (PPP) with 

density 𝜆. A typical user is randomly located according to an 

independent stationary point process in a Voronoi cell and has 

connection with the closest BS [2].  

        Without loss of generality, a typical user is assumed to be 

located at the origin and served by a BS at distance 𝑟. The 

probability density function (PDF) of 𝑟 is given by: 𝑓𝑟(𝑟) = 2𝜋𝜆𝑒−𝜋𝜆𝑟2 (1) 

 



 
Figure 1: An example of PPP network model with 𝜆 = 0.2 

 

In our analysis, we assume that all BSs transmit 

continuously in all time slots and at constant power, although 

if their operation is interrupted with coefficient 𝛽, then the 

density of BSs should be changed from 𝜆 to (1 − 𝛽)𝜆 [5]. 

B. Channel model 

In downlink cellular network, the signal transmitted over 

distance 𝑟 suffers free-space path loss, fast fading as well as 

slow fading.  

The free-space path loss (FSPL) can be defined as the 

loss of signal strength of an electromagnetic signal originated 

from the line of sight path through free space without any 

obstacles that cause any reflection or diffraction. For a 

receiver at distance 𝑟 from the transmitter, the received power 

is 𝑃𝑟 = 𝑃𝑟−𝛼 in which 𝛼 is path-loss coefficient. 

The probability density function (PDF) of power gain 𝑔 

of signal experiencing Rayleigh and Lognormal fading is 

found from the probability density function (PDF) of the 

product two cascade channels [1]. 𝑓𝑅−𝐿𝑛(𝑔)

= � 1𝑥 𝑒𝑥𝑝 �−𝑔𝑥� 1𝑥𝜎𝑧√2𝜋 𝑒𝑥𝑝 �− (10log10 𝑥 − 𝜇𝑧)2
2𝜎𝑧2 �𝑑𝑥∞

0  
(2) 

Then, its cumulative density function is given by: (see 

Appendix A) 𝐹𝑅−𝐿𝑛(𝑔) = �𝑤𝑛√𝜋 �1− 𝑒𝑥𝑝 �−  
𝑔𝛾(𝑎𝑛)

��𝑁𝑝
𝑛=1  (3) 

in which  

• 𝑤𝑛 and 𝑎𝑛 are, respectively, the weights and the 

abscissas of the Gauss-Hermite polynomial. The 

approximation becomes more accurate with 

increasing approximation order Np. For sufficient 

approximation, we use Np=12. 

• 𝛾(𝑎𝑛 ) = 10(√2𝜎𝑧𝑎𝑛+𝜇𝑧)/10; 𝜇𝑧 and 𝜎𝑧 are mean 

and variance of Rayleigh-Lognormal random 

variable. 
The associated signal power which a typical user receives 

from its BS at distance 𝑟 in composite Rayleigh-Lognormal 

fading is: 

𝑆 = 𝑃𝑔𝑟−𝛼 (4) 

C. Signal-to-interference-noise ratio (SINR) 

We denote the set of interfering BS as 𝜃; 𝑟𝑢 and 𝑔𝑢 are the 

distance and channel gain from a typical user to interference 

BS respectively. Since a user connect to the closest BS, 𝑟𝑢 >𝑟. The intercell interference that causes a user is obtained by 𝐼𝜃 = �𝑃𝑔𝑢𝑟𝑢−𝛼𝜃  (5) 

Combining (4) and (5), the received instantaneous SINR at 

a typical user is found from Equation (6) 𝑆𝐼𝑁𝑅 =  
𝑃𝑔𝑟−𝛼𝜎2 + 𝐼𝜃 

 (6) 

III. COVERAGE PROBABILITY  

       The coverage probability 𝑃𝑐 of a typical user for a given 

threshold 𝑇 is as the probability of event in which the SINR is 

larger than a threshold. [2] proved that 𝑃𝑐 is a function of 

SINR threshold  𝑇, BS density 𝜆 and attenuation coefficient 𝛼. 

Then 𝑃𝑐 can be written as below: 
 𝑃𝑐(𝑇, 𝜆,𝛼|𝑟) = ℙ(𝑆𝐼𝑁𝑅 > 𝑇) (7) 
 

This coverage probability is exactly the complementary part of 

the CDF of SINR, since the CDF is defined as 𝐹𝑐(𝑇, 𝜆,𝛼|𝑟) =ℙ(𝑆𝐼𝑁𝑅 < 𝑇). 

 

Theorem 1: The coverage probability of a typical user in 

Rayleigh-Lognormal fading is  𝑃𝑐(𝑇, 𝜆,𝛼|𝑟) = �𝑤𝑛√𝜋𝑁𝑝
𝑛=1 e

− 
𝑇 𝛾(𝑎𝑛)

1𝑆𝑁𝑅𝑟𝛼e−𝜋𝜆𝑟2𝑓𝑆𝐹𝑅(𝑇 ,𝑛) (8) 

where 𝑆𝑁𝑅 =
𝑃𝜎2 is the signal-to-noise ratio at the 

transmitter, 𝐶 = 𝑇 𝛾�𝑎𝑛1�𝛾(𝑎𝑛)
, 𝑓𝑆𝐹𝑅(𝑇 , 𝑛) = 

� 𝑤𝑛1√𝜋𝑁𝑝
𝑛1=1   �1𝛼 𝐶1𝛼  

𝜋𝑠𝑖𝑛 �𝜋(𝛼 − 1)𝛼 � − � 𝑐𝑖
2

𝑁𝐺𝐿
𝑛𝐺𝐿=1

𝐶𝐶 + �𝑥𝑖 + 1
2

�𝛼� 
(9) 

where 𝑐𝑖  and 𝑥𝑖 are weights and nodes of Gauss-Legendre rule 

respectively with order 𝑁𝐺𝐿. In this paper, 𝑁𝐺𝐿 = 10 is 

sufficient for accurate computation. 

Proof: See Appendix B 

        It is observed from Theorem 1 that the coverage 

probability of a typical user is inversely proportional to 

exponential function of 
1𝑆𝑁𝑅 and 𝑟𝛼 for cellular network 

with 𝜎2 > 0. In case of negligible noise 𝜎2 = 0, the coverage 

probability does not depend on the BS transmission power 

since 
1𝑆𝑁𝑅 = 0.  

 

Lemma 1: The average coverage probability of a typical user 

over network in composite Rayleigh-Lognormal fading is  𝑃𝑐(𝑇, 𝜆,𝛼) = (10) 



4𝜋𝜆�  
𝑐𝑖(𝑥𝑖 + 1)

(1 − 𝑥𝑖)3 𝑒−𝜋𝜆�𝑥𝑖+1
1−𝑥𝑖�2𝑃𝑐 �𝑇, 𝜆,𝛼|𝑟 =

𝑥𝑖 + 1

1− 𝑥𝑖�𝑁𝐺𝐿
𝑖=1  

Proof: The average coverage probability is achieved by 

integrating 𝑃𝑐(𝑇, 𝜆,𝛼|𝑟) in Equation (9) with variable 𝑟 > 0. 𝑃𝑐(𝑇, 𝜆,𝛼) = � 2𝜋𝜆 𝑟 𝑒−𝜋𝜆 𝑟2𝑃𝑐(𝑇, 𝜆, 𝛼|𝑟)𝑑𝑟∞
0  (11) 

Let 𝑟 =  
𝑡1−𝑡   (0 < t < 1). By using Gauss-Legendre rule, 

we can obtain the desired result. 

 

This closed-form expression for coverage probability of 

a typical user in Rayleigh-Lognormal fading is much more 

simple and general expression than the previous results in [8, 

9].  This result does not only indicate the dependence of 

network coverage on distance between the transmitter and 

receiver, but also shows the impact of transmission SNR on 

cell expansion. 

For  𝜎2 = 0, Equation (10) becomes: 𝑃𝑐(𝑇, 𝜆,𝛼) = � 𝑤𝑛√𝜋𝑁𝑝
𝑛=1

1

1 + 𝑓𝑆𝐹𝑅(𝑇 , 𝑛)
 (12) 

It is observed that in this case, the coverage probability does 

not depend on the density of the BS. This means the coverage 

probability is consistent with the changes of number of BS[2].  

Lemma 2: The coverage probability of a typical user over 

network in Rayleigh fading only. 𝑃𝑐(𝑇, 𝜆,𝛼|𝑟) = e
− 𝑇 1𝑆𝑁𝑅𝑟𝛼e−𝜆𝑟𝑓𝑆𝐹𝑅(𝑇) (13) 

where    𝑓𝑆𝐹𝑅(𝑇) =
𝜋 1𝛼 𝑇1𝛼 𝑠𝑖𝑛 �𝜋(𝛼 − 1)𝛼 � − � 𝑐𝑖

2

𝑁𝐺𝐿
𝑛𝐺𝐿=1

𝑇𝑇 + �𝑥𝑖 + 1
2

�𝛼 (14) 

Proof: Rayleigh fading is a special case of composite 

Rayleigh-Lognormal fading with 𝜎𝑧 = 0 and given 

that ∑ 𝑤𝑛√𝜋𝑁𝑝𝑛1=1
= 1, then the coverage probability in this case is 

derived by Equation (13) and (14). 

The average coverage probability over network is 

calculated by integrating Equation (13) with variable 𝑟 > 0, 

and then its closed-form is expressed as Equation (10) where 𝑃𝑐(𝑇, 𝜆,𝛼|𝑟) is defined in Equation (13). This analytical result 

is comparable to the corresponding result for Rayleigh fading 

given in [2]. 

IV. ERGODIC CAPACITY 

Theorem 2: The average ergodic capacity of a typical user that 

connects to the closest BS is given by: ℂ(𝜆,𝛼) = � 2𝑐1𝑖
(1− 𝑥1𝑖)2𝑁𝐺𝐿 

𝑖=1 𝑃𝑐 �𝑡 = 𝑒𝑥𝑝 �𝑥1𝑖 + 1

1− 𝑥1𝑖� − 1,𝜆,𝛼� (15) 

where c1i and x1i are weights and nodes of Gauss-Legendre 

rule with order 𝑁𝐺𝐿; 𝑃𝑐 as defined in Equation (10). 

 

Proof: The ergodic capacity is defined by Shannon formula 

ℂ(𝜆,𝛼) = 𝔼[𝑙𝑛(1 + 𝑆𝐼𝑁𝑅)]  

in which the average is evaluated over entire PPP 

network and fading distribution. Then the CDF function 

of average rate is: 𝐹𝑐(𝜆,𝛼) = � ℙ[𝑙𝑛(1 + 𝑆𝐼𝑁𝑅) > 𝑡]∞
0 𝑑𝑡  

            = � 𝑃𝑐(𝑇 = 𝑒𝑡 − 1, 𝜆,𝛼)

∞
0 𝑑𝑡 (16) 

 
Processing the same way as in Equation (11), the average 

probability is achieved as in Equation (15). 

V. SIMULATION AND DISCUSSION 

In this section, we use numerical method and Monte 

Carlo simulations to validate the theoretical analysis and to 

visualize the relationship between coverage probability and 

related parameters. In Figure 2, 3 and 4, the solid lines which 

present the theoretical analysis visually match with the dotted 

lines which present the simulation results. These confirm the 

accuracy of theoretical analysis results. 

 

With higher 𝛼, total power of interfering signals sees a 

faster decrease rate over distance than desired signal since the 

user receives only one useful beam from serving cell and often 

suffers more than one interfering beams. The coverage 

probability is, hence, inversely proportional to FSPL 

exponential coefficient 𝛼. Figure 2 indicates that in the case of 

SINR threshold is 0 dB and SNR=10 dB, when 𝛼 increases 

from 3.0 to 3.2 and ends at 3.5, the coverage probability will 

increase by 16.20% and 30.3%. 

 

Figure 2: Variation of coverage probability with threshold for 

 𝜇𝑧 = −7.3683 𝑑𝐵, 𝜎𝑧 = 8 𝑑𝐵 and three values of attenuation 

coefficient 𝛼.  

 

It is observed from Figure 3 that in sparse networks 

(small 𝜆), an increase in transmission power can significantly 

increase the coverage probability while in dense network 



(large 𝜆), the transmission power only has a slight effect on 

coverage probability.   
 

 
Figure 3: Variation of coverage probability with transmission 

SNR for  𝜇𝑧 = −7.3683 𝑑𝐵, 𝜎𝑧 = 8 𝑑𝐵, SINR threshold 𝑇 = 0 𝑑𝐵 and  for many  values of BS density   

 

However, for both sparse and dense networks, the 

coverage probability reaches the upper bound when SNR is 

high (SNR > 20dB) because increasing of transmission power 

is counter-balanced by increasing interference.    

 
Figure 4: Variation of average capacity with SNR and 𝜎𝑧 

 

      From Figure 4, we can see the average capacity is 

inversely proportional with shadowing standard deviation 𝜎𝑧.  
However, it is interesting that the difference between average 

capacities with three values of SNR does not depend on 𝜎𝑧. 
For instant, the gap between average capacity achieving when 

SNR=0 and 5 dB is a constant and equals 0.1370. 

 

VI. CONCLUSION 

       This paper presents a closed-form expression for coverage 

probability of a typical user associated with the closest BS in 

random cellular network in composite Rayleigh-Lognormal 

fading. The exact mathematical analysis for both low SNR and 

high SNR based on two well-known approximation rules, 

called Gauss-Hermite and Gauss- Legendre quadrature shows 

that the average coverage probability is inversely 

proportional to exponential function of 
1𝑆𝑁𝑅  for low SNR , and 

only depends on SINR threshold and path loss attenuation 

coefficient in high SNR . These analytical results are also 

expandable for complex PPP networks which enable 

frequency reuse and with K (K>1) tier. 

 

APPENDIX A 

The probability density function (PDF) of power gain 𝑔 in 

Rayleigh-Lognormal fading is shown in Equation (2) 

Let 𝑡 =
10 log10 𝑔−𝜇𝑧√2𝜎𝑧    =>  𝑔 = 10(√2𝜎𝑧𝑡+𝜇𝑧)/10 = 𝛾(𝑡) 

Then  𝑓𝑅−𝐿𝑛(𝑔) = � 1√𝜋 1𝛾(𝑡)∞
0  𝑒𝑥𝑝 �−  

𝑔𝛾(𝑡)� 𝑒𝑥𝑝(− 𝑡2)𝑑𝑥 

By using Gauss-Hermite expansion [7], the PDF equals 𝑓𝑅−𝐿𝑛(𝑔) = �𝑤𝑛√𝜋 1𝛾(𝑎𝑛)
𝑒𝑥𝑝 �−  

𝑔𝛾(𝑎𝑛)
�𝑁𝑝

𝑛=1  

Hence, the CDF of Rayleigh-Lognormal RV is 𝐹𝑅−𝐿𝑛(𝑔) = �𝑤𝑛√𝜋 �1− 𝑒𝑥𝑝 �−  
𝑔𝛾(𝑎𝑛)

��𝑁𝑝
𝑛=1  

 

APPENDIX B ℙ(𝑆𝐼𝑁𝑅 > 𝑇) = ℙ�𝑃𝑔𝑟−𝛼𝐼 + 𝜎2 > 𝑇� (17) 

       = 𝔼��𝑤𝑛√𝜋 𝑒𝑥𝑝 �−  
𝑇𝑟𝛼(𝐼 + 𝜎2)𝑃𝛾(𝑎𝑛)

�𝑁𝑝
𝑛=1 � 

 

       = �𝑤𝑛√𝜋𝑁𝑝
𝑛=1 𝔼 �𝑒𝑥𝑝�−  

𝑇𝑟𝛼(𝐼 + 𝜎2)𝑃𝛾(𝑎𝑛)
�� 

       = �𝑤𝑛√𝜋𝑁𝑝
𝑛=1 𝑒𝑥𝑝 �−  

𝑇𝑟𝛼𝜎2𝑃𝛾(𝑎𝑛)
�𝔼�𝑒𝑥𝑝�−  

𝑇𝑟𝛼𝐼𝑃𝛾(𝑎𝑛)
�� 

Let 
𝑇𝑟𝛼𝑃𝛾(𝑎𝑛)

= 𝑓(𝑛) then  

= �𝑤𝑛√𝜋𝑁𝑝
𝑛=1 𝑒𝑥𝑝(− 𝑓(𝑛)𝜎2)𝔼�𝑒𝑥𝑝(− 𝑓(𝑛) 𝐼)� (18) 



 

Considering the expectation 𝔼�𝑒𝑥𝑝(− 𝑓(𝑛) 𝐼)� = 𝔼�𝑒𝑥𝑝�− 𝑓(𝑛)�𝑃𝑔𝑢𝑟𝑢−𝛼 𝑢∈𝜃 �� 
= 𝔼𝜃 �𝔼𝑔𝑢�𝑒𝑥𝑝(−𝑓(𝑛)𝑃𝑔𝑢𝑟𝑢−𝛼)𝑢∈𝜃 � 

     = 𝔼𝜃 ��𝔼𝑔𝑢�𝑒𝑥𝑝(− 𝑓(𝑛)𝑃𝑔𝑢𝑟𝑢−𝛼)�𝑢∈𝜃 � 
Since 𝑔𝑢 is Rayleigh-Lognormal fading channel then 

= 𝔼𝜃 �� � 𝑤𝑛1√𝜋 1

1 + 𝛾�𝑎𝑛1� 𝑓(𝑛)𝑃𝑟𝑢−𝛼𝑁𝑝
𝑛1=1𝑢∈𝜃 � 

Using the properties of PPP probability generating 

function [10] 

= exp�−𝜋𝜆�� 𝑤𝑛1√𝜋𝑁𝑝
𝑛1=1 � 2 �1− 1

1 + 𝛾�𝑎𝑛1� 𝑓(𝑛)𝑃𝑟𝑢−𝛼�∞
𝑟 �𝑟𝑢𝑑𝑟𝑢 � 

(19) 

Given that 
𝑇 𝑟𝛼𝑃𝛾(𝑎𝑛)

= 𝑓(𝑛) and letting �𝑟𝑢 𝑟 �2 = 𝑡 then the 

integral becomes  

= 𝑟2� �1− 1

1 + 𝛾�𝑎𝑛1� 𝑓(𝑛)𝑃𝑡−𝛼/2 
�𝑑𝑡∞

1  

= 𝑟2 �� � 𝐶𝑡−𝛼/2
1 + 𝐶𝑡−𝛼/2�∞

0 𝑑𝑡 − �� 𝐶𝑡𝛼/2 + 𝐶�1
0 𝑑𝑡� 

= 𝑟2[𝐼1 − 𝐼2] 

in which 𝐶 = 𝑇 𝛾�𝑎𝑛1�𝛾(𝑎𝑛)
 

• 𝐼1 = ∫ � 𝐶𝑡𝛼/2+𝐶�∞0 𝑑𝑡 
Using properties of Gama function [7], we obtain   𝐼1 =

2𝛼 𝐶2𝛼  
𝜋𝑠𝑖𝑛 �𝜋(𝛼 − 2)𝛼 � 

• 𝐼2 = ∫ � 𝐶𝑡𝛼/2+𝐶�𝑑𝑡10  can be approximated by 

using Gauss-Legendre rule [7] 𝐼2 =  � 𝑐𝑖
2

𝑁𝐺𝐿
𝑛𝐺𝐿=1

𝐶𝐶 + �𝑥𝑖 + 1
2

�𝛼/2 

Subsequently, the expectation can be approximated by 

= 𝑒𝑥𝑝⎝⎜
⎛−𝜋𝜆𝑟2 � 𝑤𝑛1√𝜋𝑁𝑝

𝑛1=1   �2𝛼 𝐶2𝛼  
𝜋𝑠𝑖𝑛 �𝜋(𝛼 − 2)𝛼 �

− � 𝑐𝑖
2

𝑁𝐺𝐿
𝑛𝐺𝐿=1

𝐶𝐶 + �𝑥𝑖 + 1
2

�𝛼/2�⎠⎟
⎞

 

= 𝑒𝑥𝑝�−𝜋𝜆𝑟2𝑓𝑆𝐹𝑅(𝑇,𝑛)� (20) 

Substituting (17-20) into (7), we obtain the desired 

result.  
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