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Abstract—Chinese remainder theorem (CRT) reconstructs an
integer from its multiple remainders that is well-known not robust
in the sense that a small error in a remainder may cause a large
error in the reconstruction. A robust CRT has been recently
proposed when all the moduli have a common factor and the
robust CRT is a searching based algorithm and no closed-from is
given. In this paper, a closed-form robust CRT is proposed and
a necessary and sufficient condition on the remainder errors for
the closed-form robust CRT to hold is obtained. Furthermore,
its performance analysis is given. It is shown that the reason for
the robustness is from the remainder differential process in both
searching based and our proposed closed-form robust CRT algo-
rithms, which does no exist in the traditional CRT. We also propose
an improved version of the closed-form robust CRT. Finally, we
compare the performances of the traditional CRT, the searching
based robust CRT and our proposed closed-form robust CRT
(and its improved version) algorithms in terms of both theoretical
analysis and numerical simulations. The results demonstrate
that the proposed closed-form robust CRT (its improved version
has the best performance) has the same performance but much
simpler form than the searching based robust CRT.

Index Terms—Chinese remainder theorem (CRT), phase un-
wrapping, radar signal processing, robustness.

I. INTRODUCTION

C HINESE remainder theorem (CRT) [1], [2] tells that a
positive integer can be uniquely reconstructed from

its remainders modulo positive integers, ,
if lcm where lcm stands for the
least common multiple, and furthermore it provides a simple
reconstruction formula if all moduli are co-prime. CRT has
numerous applications in, such as, cryptography [2], channel
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coding [4], [5], signal processing [1], [6], [8], [21], and radar
systems [9]–[20]. CRT is, however, well known not robust,
i.e., a small error from any remainder may cause a large
reconstruction error. In order to resist remainder errors, two
kinds of methods are proposed in the literature, i.e., remainder
number redundancy methods [4]–[6] and remainder redun-
dancy methods [8]–[10], [18], [20]. The first kind of methods
are based on the fact that if we pick co-prime integers

and , then
can be uniquely recovered by any of the remainders

and errors in the remaining remainders may be cor-
rected. The remainders form a redundant representation
of . Note that the solution of from this kind of methods
is accurate but only a few of the remainders are allowed to
have errors and most of the remainders have to be error-free.
In the classical CRT, the greatest common divisor (gcd) of
any pair and for is 1. In the second kind of
methods, the gcd is assumed to be . This kind of methods
are that if all the moduli have a common gcd ,
then the solution of is robust to the remainder errors, if

lcm and
the remainder error level is less than . In these methods, the
redundancy exists in each remainder value, ,
which will be seen clearly later. Note that the solution from this
kind of methods may not be accurate but robust to the remainder
errors and all the remainders are allowed to have errors that may
not be too large. In terms of channel coding applications, the
first kind methods fit well, while in terms of signal processing
applications including radar signal processing, the second kind
methods may suit better since all remainders may have small
errors in the applications. A different probabilistic approach to
deal with noises in CRT is proposed in [7] where all the moduli
are required to be primes.

In this paper, we are interested in the second kind error resis-
tance of remainders in CRT, i.e., remainder redundancy method.
As a remainder redundancy method, a searching based robust
CRT has been recently proposed in [8], [9], where instead of
the remainders , their differentials , are
used to determine integer . This searching based robust CRT
has been applied in robust phase unwrapping in radar systems
in, for example, [15]–[20]. Although the original 2-D searching
used in [9] is reduced to a 1-D searching in [8] and [10], they
are still searching based and no closed-form solution is pro-
vided. In this paper, motivated from [9], [8], [10], we first pro-
pose a closed-form robust CRT where no searching is needed
by also using the remainder differential process. We present a
necessary and sufficient condition on the remainder errors for
the closed-form robust CRT to hold. In fact, the robustness in
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[9], [8], [10] and this paper is due to the differential process that
is not involved in the traditional CRT. However, it is known that
the differential process, , increases the noise variances
for all . Considering that the above reference remainder is
arbitrarily selected, we can reduce the noise variance by prop-
erly/optimally selecting the reference remainder. Based on this
idea, we then propose an improved robust CRT. We also ob-
tain the theoretical performance analysis for both closed-form
robust CRT and its improved version. Finally, we compare the
performances of the traditional CRT, the searching based ro-
bust CRT and our proposed closed-form robust CRT (and its im-
proved version) algorithms in terms of both theoretical analysis
and numerical simulations. The results show that the proposed
closed-form robust CRT (its improved version has the best per-
formance) has the same performance but much simpler form
than the searching based robust CRT.

The remaining of this paper is organized as follows. In
Section II, we first briefly introduce the traditional CRT and
analyze the reason why they are not robust. We also briefly
describe the searching based robust CRT obtained in [8]. In
Section III, we present a closed-form robust CRT and derive a
necessary and sufficient condition for the closed-form robust
CRT to hold. In Section IV, we present an improved robust
CRT and generalize it from integers to reals. In Section V, we
present the performance analysis for our proposed algorithms.
Lastly, in Section VI, we present some simulation results to
compare the performances of the CRT, the searching based
robust and the closed-form robust CRT (and its improved
version) algorithms.

II. CRT AND SEARCHING BASED ROBUST CRT

In this section, we first briefly describe the traditional CRT
in the cases when all the moduli are co-prime and when all
the moduli have a common factor. We then briefly describe the
searching based robust CRT in [8] and [9].

A. The Conventional CRT and Its Noise Sensitivity

Let be a positive integer, be
moduli, and be the remainders of , i.e.,

or (1)

where and is an unknown integer (called
folding integer), for . It is not hard to see that
can be uniquely reconstructed from its remainders if and only
if lcm . If all the moduli are
co-prime, then CRT has a simple formula (we call it the classical
CRT) [1], [2]. If any pair moduli have gcd (in this case,
all the moduli have gcd ), then the CRT has the following
general form (we call it the traditional CRT or simply CRT for
convenience) [3].

Let

(2)

Then, all , are co-prime, i.e., the gcd of any pair
and for is 1. Define . For ,
let

(3)

Clearly, and are co-prime, so the modular multiplicative
inverse of modulo exists, which is denoted by , i.e.,

or for some (4)

where denotes the set of integers. Define

(5)

where denotes the flooring operation, and then

(6)

where is the common remainder of modulo
for . Define

(7)

Then, according to the classical CRT formula, we have the fol-
lowing conclusion. If and only if can be
uniquely reconstructed as

(8)

Therefore, can be uniquely reconstructed by

(9)

Now a natural question is what will happen to the above CRT
when the remainders have errors. We next consider this problem.
Let the th erroneous remainder be

(10)

where denotes the error or noise and we assume
, where is the maximal error level, called remainder error

bound. In order to reconstruct , from (8) and (9), we first need
to determine from the erroneous remainders for .
With these erroneous remainders, (5) becomes

(11)
If the remainder errors are constrained as

(12)
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then and can be accurately reconstructed by (8).
Therefore, the unknown can be estimated as

(13)

where is the average of the remainders errors, and stands
for the rounding integer, i.e., for any is an integer and
subject to

(14)

In fact, . Clearly we have . In this
case, can be accurately reconstructed and we have a robust
estimation of . Now let us consider the condition (12) for the
accurate determination of . From this condition, we know that
the probability to accurately determine and therefore accu-
rately determine is determined by . Different result in
different remainder error resistance performances. For example,
if needs to satisfy to
guarantee the accuracy of . It is easy to see that if the distri-
bution of , is symmetrical with respect to 0, the
correct probability of determining is less than no matter
how low the variance of is. In other words, even though

has the minimal error level, i.e., can not be ac-
curately determined in the case of . From (8), we
know, as is usually a large integer, a small error in any
for may cause a larger error in and then a large
error in . Hence, the above CRT is noise/error sensitive, i.e.,
not robust, which will be seen from our numerical results later.

B. Searching Based Robust CRT

To provide a robust solution for the above problem, a
searching based robust algorithm (we call it searching based
robust CRT) has been proposed in [8] and [9] that provides an-
other way to reconstruct from erroneous remainders, where
the folding integers , instead of , are first determined. It is
briefly described as follows.

With the erroneous remainders in (10), (1) becomes

(15)

When the folding integers in (15) are accurately solved, the
unknown parameter can be estimated as

(16)

and thus , i.e., is a robust estimate of . We
now show how to accurately determine the folding integers
as in [8]. For each with , define

(17)

Let denote the set of all the first components of the pairs
in set , i.e.,

for some (18)

and define

(19)

It is proved in [8] that if the remainder error bound is less than a
quarter of , i.e., , the folding integers ,
can be accurately determined from and : Set has one and
only one element and if then . Recall
that the remainder error bound . Then, the
estimate error of is thus upper bounded by . The
above estimate error of is due to the remainder errors
that has the maximal level , in other words, the reconstruction
is robust.

According to (17), a 2-D searching process is needed to solve
for . In order to reduce the computational complexity, [8] has
reduced the above 2-D to 1-D searching where the total number
of searches is in the order of . When or gets
large, the computational complexity is still high.

III. A CLOSED-FORM ROBUST CRT

Motivated from [9] and [8], we next present a closed-form
algorithm to solve for and thus robustly reconstruct .

From the definition of in (7), we have
for , which is the solution of the following system of
simultaneous congruences:

...
(20)

Unlike the traditional CRT, which directly reconstructs by
solving the above system of simultaneous congruences, we first
determine for . To do so, we let the last
equations in (20) subtract the first one and we then have

...
(21)

where for . Note that in the above dif-
ferences (or differentials) we arbitrarily select the first equation
(or remainder) to be a reference to subtract. In next section, we
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will show how to improve the performance by selecting a proper
reference equation (or remainder) to differentiate.

As and for are a solution of (20), obviously,
for are also a solution of (21). Assume is

a solution pair of the th equation in (21) for ,
we have the following lemma.

Lemma 1: Consider Equation in (21), . If
and are co-prime, then has the following form:

(22)

where and is the modular multiplicative inverse of
modulo .

Proof: Considering the following Bézout’s identity:

(23)

since and are co-prime, by Bézout’s lemma we know that
(23) has integer solutions and the modular multiplicative inverse
of modulo , i.e., , is a solution of . However, the
solution of is not unique and the other solutions of are given
by for . Therefore, the solutions of are given
by for .

Now, we consider the th equation in (21), .
Multiplying both sides of (23) by and substituting and

by and , respectively, (23) then becomes the
th equation in (21). Therefore, and ,

i.e., (22) are the pairs of solutions of Equation in (21).
From Lemma 1 we know the th equation in (21) has

multiple solutions. As (21) has fewer equations than unknown
variables, it seems to have multiple solutions too. We next show
as for are all constrained to be integers, they can
be uniquely solved by the following algorithm.

Clearly, we can use as an estimate of , i.e.,

(24)

Recall that stands for the rounding integer which is defined in
(14). Let for denote a set of solution of (21) when

is replaced by for . We have the following
algorithm.

Closed-Form Robust Chinese Remainder Theorem Algo-
rithm:

• Step 1: Calculate for in (24) from given
erroneous remainders for .

• Step 2: Calculate the remainder of modulo :

for , where is the modular multiplicative
inverse of modulo and can be calculated in advance.

• Step 3: Calculate :

(25)

where is the modular multiplicative inverse of
modulo , which can be calculated in advance, and is
defined in (3).

• Step 4: Calculate for :

(26)

Then, we have the following result.
Theorem 1: Assume that all , for , are pair-

wisely co-prime and

lcm

(27)

Then, for all if and only if

for all (28)

Proof: From (6), (10), and (24) we have

(29)

We first prove the sufficiency. Considering the condition in
(28) and the definition in (14), we have

and therefore . Then, from Lemma 1, and
have the same remainder modulo . Since

, we have for , which
forms another system of simultaneous congruences.

Considering and , we have
. Thus, according to the classical CRT, can be

uniquely reconstructed by solving the above system of simul-
taneous congruences as (25). Hence, we have .

After is determined, we can obtain other integers for
by substituting back into (21) as (26). Therefore,

, for . Hence, the sufficiency is proved.
We next prove the necessity. Assume there exists at least one

remainder that does not satisfy (28), say, for example, the th
remainder, . Then, and there-
fore . We then have the following two cases.
Case A: There exists one with such that

for any . We want to prove that the re-
mainders of and modulo are different. As-
sume and have the same remainder modulo ,
i.e.,

for some (30)

Multiplying both sides of (30) by and considering
for some , we have

for some (31)

According to (29) we have

for some (32)

This contradicts with the assumption that
for any . Hence, the remainders of and

modulo are different.
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On the other hand, from Lemma 1, we have
. From Step 2 and Step 3 in the algorithm, we

know . Since we have just proved that
the remainders of and modulo are different,
hence, .

Case B: For every
for some but there exists at least one with
such that , i.e., .

From (29), we have for
. Then, from Lemma 1, and have the same

remainder modulo . Since , we have
for , which forms another system

of simultaneous congruences.
Since and , we have .

Thus, according to the classical CRT, can be uniquely recon-
structed by solving the above system of simultaneous congru-
ences as (25). Hence, we have .

Since , from (26) we have . This proves
the necessity.

Although the condition (28) in Theorem 1 is necessary and
sufficient (under the assumption of (27)) for the uniqueness of
the solution of the folding integers from our proposed closed-
form robust CRT, it involves with two remainder errors and hard
to check in practice. We next present a simpler sufficient condi-
tion.

Corollary 1: Assume that all , for , are pair-
wisely co-prime and

lcm

(33)

If

(34)

then, we have for .
Proof: Recall that is the maximal remainder error level,

i.e., , for . If , we have

for (35)

Clearly, (35) implies the sufficient condition (28) in Theorem 1.
Thus, Corollary is proved.

The above sufficient condition is the same as that in [8] for
the searching based robust CRT as we described in Section II.
Similar to the searching based robust CRT, after every for

is uniquely determined, the unknown parameter
can be estimated as (16) and the estimate error of is thus upper
bounder by . Therefore, the above reconstruction
algorithm is robust similar to the searching based robust CRT
obtained in [8].

Comparison With the Traditional CRT: From Section II, for
the traditional CRT, we know that the reason why the traditional
CRT is not robust is because can not be accurately recon-
structed even when the remainder errors are small for some .
In other words, the remainder error resistance performance is
different for different . One might ask why this problem does
not occur in our proposed robust CRT. The main difference be-
tween the traditional CRT and our proposed robust CRT is that,

in our proposed robust CRT, we do not determine these in
(5)–(6) directly as what is done in the traditional CRT, but we
determine their differentials. Since the common remainder
of mod is canceled in the differentials of and , i.e.,

, the condition of accurately determining is independent
to . Therefore, the above problem is avoided in our proposed
robust CRT in this paper.

Comparison With the Searching Based CRT: The searching
based CRT in [8] also involves with the differentials of and
to determine and by performing searching. So, it is also
robust as shown in [8]. The main difference with our proposed
robust CRT in this paper is that the searching based one is to
solve for by searching via (17) and does not have a closed-
form, while the one in this paper is to determine via (21) with
a closed-form solution as shown in the above algorithm from
Step 1 to Step 4 and no searching is needed.

In both searching based and closed-form robust CRTs,
for every is a sufficient condition to

guarantee accurately determining the folding integers . The
larger , i.e., the larger of the gcd of all the moduli , is,
the more possible values for each remainder exist to accurately
determine . This is what we called remainder redundancy in
Introduction. One can see that when all moduli are co-prime,
i.e., , the remainder error bound is forced to be
zero. This means that only the true remainders can guarantee
the accurate reconstruction, where there is no redundancy in
remainders.

IV. AN IMPROVEMENT AND GENERALIZATION

In this section, we first present an improved algorithm by se-
lecting a proper/optimal reference remainder before performing
the above closed-form robust CRT. We then generalize the pro-
posed closed-form robust CRT (and the improved version) from
integers to reals.

A. Performance Improvement by Reference
Remainder Selection

As we explained in the previous section, the major differ-
ence between our proposed robust CRT and the traditional CRT
described in Section II is that in our proposed CRT, the differ-
ences of two remainders are used, while in the traditional CRT,
the remainders are directly used. Due to the existence of the
gcd between all the moduli , the use of remainder differ-
ences provides the robustness of the reconstruction. However,
the noise variances of the differences of two remainders are
larger than those of the remainders themselves. The idea to im-
prove our proposed closed-form robust CRT below is to reduce
the noise variances of the remainder differences. Notice that the
remainder differences used in (24) in our proposed algorithm
are taken with respect to the first remainder , i.e., the first re-
mainder is used as the reference, which is clearly not necessary.
In fact, any remainder can be used as the reference. Therefore,
if we can choose the one with the smallest noise variance as
the reference, all the noise variances of the remainder differ-
ences will be the smallest too. We next show how we choose
the smallest noise variance remainder.
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From (6) we know, all remainders have the common re-
mainder modulo in the error-free case. But, for noisy re-
mainders , their remainders modulo , i.e.,

may be different from each other due to the errors. We first need
to estimate the common remainder from . Since for

are folded integers, we can not estimate by simply
averaging them. Instead, we define a special averaging operation
of as

(36)

where is a kind of distance function that is defined as
follows. For integers and with and

, the distance of to is defined as

(37)

where

(38)

In fact, it is not hard to see that

(39)

is always a solution of (38) and is always used in what follows.
Note that in the above, the non-absolute-valued is used

for convenience later but is in fact the distance effec-
tively involved in the above and the following optimizations.
Then, the optimal remainder is the one whose remainder modulo

is closest to , i.e.,

(40)

is the index of the optimal remainder (with the smallest noise
variance) among the erroneous remainders for .
Then, we select as the reference remainder. If , we
exchange the indexes of and 1 for and , and
then perform the closed-form robust CRT. We call this method
as an improved version of the closed-form robust CRT. Since
with this improved version, all the noise variances of the re-
mainder differences are smaller than those in the closed-form
robust CRT, it has a better performance as we will see from our
theoretical and simulation results later. Note that if we apply the
above remainder selection scheme to the searching based robust
CRT, its performance will be improved as well.

B. Generalization to Reals

The above studies are all for integers. In some applications, an
unknown, such as the phase in phase unwrapping in radar sys-
tems [9], [13], is real valued in general. We next generalize the
above closed-form robust CRT to general real numbers, which

is also helpful for the performance analysis for the closed-form
robust CRT in the next section. To distinguish from integers in
the previous sections, in what follows we use boldface symbols
to denote the corresponding real variables of non-boldface in-
teger variables.

Let be a positive real number, which can be expressed as

(41)

where is an unknown integer (or folding integer) for
and all , are known positive integers

and co-prime, is a known real-valued normalization factor
decided by the system design and denotes the real-valued
remainder with , which is a real-valued version
of the previously appeared integer remainder , for .

Define

(42)

and then

(43)

where is the common remainder of
modulo and is corresponding to the common remainder of
modulo for in integers version. The goal here is to
robustly determine from given noisy real-valued remainders

that are the noised versions of .
Since (24) is just a quantization process, it applies to real

values too. So, we can directly obtain integer :

(44)

where , and for . Note that
, and are not boldfaces since they are all integers. The

proposed closed-form robust CRT can directly apply to these
integers. Therefore, we use Steps 2–4 of the proposed closed-
form robust CRT in Section III to determine for .
For the uniqueness, we have the following result.

Corollary 2: Assume that all , for , are pair-
wisely co-prime and

(45)

Then, for all if and only if

for all (46)

where for . In particular, if

for all (47)

then for all .
Proof: We first derive an equivalent problem in integers.

Define . Then, from (41) we have

(48)
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If we use as an estimate of , we
have

(49)

From (45), we know

(50)

From (46) and (49), we have

for all (51)

If we use these to determine for by Step 2 to
Step 4 of the proposed closed-form robust CRT in Section III,
we then can apply the result and the Proof of Theorem 1. Since
all , for , are assumed pair-wisely co-prime and
(50) holds, then, for all if and only if (51)
holds.

Similar to Corollary 1, when (47) holds, we have for
all .

After every for is uniquely determined, the
unknown real number can be estimated as

(52)

When , the estimate error of is thus upper
bounded by . This means that the above recon-
struction is also robust.

Discussion of the Normalization Factor : The real-valued
normalization factor is the most important system param-
eter which decides the reconstruction performance. First, it
is a parameter for the redundancy level as the gcd in the
closed-form robust CRT for integers in Section III. According
to the condition in (46), we know the larger is, the more
possible values for each remainder exist to accurately determine

and therefore the more robust the reconstruction algorithm
is. Second, is used to define signal-to-noise ratio (SNR).
As the remainders are all folded numbers, we can not directly
use the remainders to measure the signal power. However, as
the signals are all normalized by , the noises should also be
normalized by . Hence, the SNR is defined as

(53)

where is the variance of noise.
At the end of this section, we show that the improved closed-

form robust CRT can also be generalized to reals by the fol-
lowing algorithm.

Improved Closed-Form Robust Chinese Remainder Theorem
Algorithm for Reals:

• Step 1: From given noisy remainders , calculate their
remainders modulo by

(54)

• Step 2: Calculate the average of as

(55)

where the distance function for reals is correspond-
ingly defined as follows. For real numbers and with

and , the distance of to is
defined as

(56)

where

(57)

• Step 3: Select the reference remainder index by

(58)

• Step 4: If , exchange the indexes of and 1 for
and , and calculate by (44). Then, use

Step 2 to Step 4 of the proposed closed-form robust CRT
in Section III to determine for .

• Step 5: Estimate by (52).
Similar to (38) and (39), it is not hard to see that

(59)

is always a solution of (57) and is always used in what follows.

V. PERFORMANCE ANALYSIS

Since the above robust CRT algorithms are similar for both
integers and reals and the uniqueness of the folding integer de-
termination is the same, for convenience we only study the per-
formance analysis for real values.

The robust CRT is to robustly reconstruct from its multiple
noisy remainders. Here we assume that the noises for different
remainders are independently and identically distributed (i.i.d.)
random variables, whose expectation, variance and probability
density function (pdf) are zero, and , respectively. We
first consider the root mean-square error (RMSE) of , which
is defined as

(60)

where denotes the expectation.
From (52) we know that if every for is ac-

curately determined, the RMSE for closed-form robust CRT is
given by

(61)

By generalizing (13) to reals, we have that if is accurately
determined, the RMSE for the traditional CRT is also given by
(61).
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From (61), it looks like that both traditional CRT and our pro-
posed robust CRT were robust because their RMSE are propor-
tional to . This is in fact not true because obtaining (61) is
conditioned on the fact that or for are accu-
rately determined. Therefore, the probability to accurately de-
termine or for is the key performance for both
methods. Hence, we define the process of determining or
for as a trial. In each trial, if or for
are all accurately determined, the trial is passed, otherwise, the
trial is failed. We take the trial fail rate (TFR) as the performance
measure.

A. Traditional CRT TFR Performance

By generalizing (12) to reals, we have the probability to ac-
curately determine for

(62)

Considering for every must be accurately deter-
mined to uniquely reconstruct , we have the probability to
accurately reconstruct :

for every

(63)

where we use the independence for all noises . Clearly,
depends on . Assume that is the uniform distribution in the
range of . Then, the average TFR is

(64)

If noise is a normal distribution, then can be simpli-
fied as

(65)

where is -function defined by

(66)

B. Closed-Form Robust CRT TFR Performance

According to (46) in Corollary 2, the probability to accurately
determine for is

(67)

Note that in the above probability, two random variables, i.e.,
and are involved. Their difference is

also a random variable. Considering for every

must be accurately determined to uniquely reconstruct , the
probability to accurately reconstruct can be written as

for every (68)

For a given , random variables for
have the same distribution and are independent with

each other. Thus, has the following form:

(69)

Then, is the expectation of and the TFR for closed-
form robust CRT can be written as

(70)

If noise is a uniform distribution with the following pdf:

if
otherwise

(71)

then, has the following simple form:

if
if

otherwise
(72)

In the above uniform distribution case, is just the maximal
error level, i.e., . And the result in (72) when
coincides with the results in Corollaries 1 and 2.

If noise is a normal distribution, then has the fol-
lowing simple form:

(73)

As a remark, for the searching based robust CRT, the above
theoretical performance applies similarly but with a little more
tedious analysis that is omitted here, which will be verified from
our numerical simulations later.

C. Improved Closed-Form Robust CRT TFR Performance

In the improved closed-form robust CRT, a reference re-
mainder is first selected and its noise variance is smaller than
others due to the selection process. We now show how to get its
distribution and corresponding TFR performance.

From the distance function definition in (56) and (59), it is
not hard to see

(74)

Define . From (43) and (54), we have

for some (75)
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Since and are both folded, they are all constrained in the
range . From the distance function definition in (56), it
is easy to see . From the right-hand side of
(75), we have that, if , there exists one and only
one integer such that , and in this
case, from (56) and (59) we then have

. Hence, if , it can be uniquely expressed by
, i.e.,

(76)

Similarly, we can prove that if ,
we have

(77)

and if , we have

(78)

where denotes the error of the common remainder, i.e.,
.

Although and may be
greater than or equal to , the probability is small especially
for the case of the high signal to noise ratio (SNR) and we ig-
nore this case. Therefore, from (74)–(78) we have

for (79)

Assume that is in a neighborhood of , i.e.,
, where is an arbitrarily small positive number, if . If

. It is clear that if
and , then
and . Similar to (77) and (78), we
have

(80)

Hence, if is in a neighborhood of , the derivative of
exists. Note that if , the right derivative

exists. From (55), we have that if reaches the
minimum when , then

(81)

From (80), we have

(82)

Therefore, from (79) we have

(83)

Since for are independent with each
other and have the same pdf , the pdf of is

, where denotes the convo-

lution operation. If is normal distributed, then is also
normal distributed with variance of .

From (79), the reference remainder error has the following
form:

(84)

This means that the error of the reference remainder is the sum
of two random variables. To simplify the notation, let

and . We know that the pdf
of is as we explained before. We next consider .

From (79), we reformulate (58) as

(85)

From (83), the correlation coefficient of with any for
is , which is small especially for a larger . To

simplify the derivations, we assume that and any for
are uncorrelated.

Consider any remainder error with . For a
given and , then if and only if
the other remainders errors satisfy for

and . As the remainders errors are i.i.d. random
variables with pdf , the conditional probability of is

(86)

Since any remainder for has the same probability
to be a reference remainder, the conditional distribution function
of is

(87)

Therefore, the conditional pdf of is

(88)

Then, the joint pdf of can be expressed as

(89)
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Therefore, the pdf of the reference remainder error is

(90)

Thus, similar to the closed-form robust CRT, the TFR for the
improved closed-form robust CRT can be written as

(91)

If noise is a normal distribution, then and have
the following simple forms:

(92)

(93)

VI. SIMULATION RESULTS

The configuration in simulations is ,
and to are .
is a real number and is uniformly distributed between 0 to .
We implement 10 000 trials for different methods.

We first consider the TFR performances of the traditional
CRT, the searching based robust CRT, the closed-form robust
CRT and the improved closed-form CRT. Fig. 1 shows TFR
versus SNR for different methods, where , the remainder
noise is a normal distribution and SNR is defined as in (53). The
theory curves are based on (65), (73), and (92), where numer-
ical integrations are used. Fig. 1 shows that for the TFR per-
formances and one can see that the simulation results match
well with the theoretical performance analyses in Section V. The
TFR of the searching based CRT is close to that of the proposed
closed-form CRT. However, after performing the remainder se-
lection, the performance of the closed-form CRT is remarkably
improved.

In Fig. 2, we show the TFR performance versus the number
of remainders, i.e., . The remainder noise is also a normal
distribution and the SNR for this example is 18 dB. The re-
sults demonstrate that the improvement due to the reference re-
mainder selection is more notable as increases. Fig. 2 also
shows that the closed-form robust CRT TFR increases mono-
tonically as predicted by the theory of Section V. The improved
closed-form robust CRT TFR simulation is close to the theory
prediction as increases, which is due to the assumption of
large in the derivations of the theoretical performance anal-
ysis in Section V-C.

Fig. 1. TFR versus SNR for different methods and remainder noises are
Gaussian.

Fig. 2. TFR versus number of remainders, L, and SNR is 18 dB with Gaussian
noise.

In Fig. 3, we compare the robustness of the traditional CRT
and the proposed closed-form robust CRT by investigating their
RMSE and TFR performances, where . The theory curves
for RMSE and TFR are based on (61) and (72) respectively.
Fig. 3 shows RMSE and TFR versus SNR for the CRT and
the proposed robust CRT. In this simulation, we assume that
the remainder noise is uniformly distributed between .
According to Corollaries 1 and 2, we know that the remainder
error bound is to guarantee accurately recovering for

. When , SNR bound in this example is
16.8 dB as illustrated in the figure. Fig. 3 shows that if the SNR
is larger than the bound, the TFR of the proposed robust CRT is
equal to zero and the corresponding RMSE decreases linearly
with just as predicted by (61). So, the proposed robust CRT
is robust. For the CRT, it has the same form of as the
proposed robust CRT, but it is not robust due to the reason that
the TFR is never 0 no matter how high the SNR is.
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Fig. 3. RMSE and TFR versus SNR and remainder noises have uniform distri-
bution.

VII. CONCLUSION

In this paper, we have proposed a closed-form robust CRT
that can robustly reconstruct an integer from its smaller erro-
neous remainders modulo several moduli. The robustness is
built upon the assumption of the existence of the gcd between
all the moduli. Compared with the traditional CRT, it solves the
noise sensitivity problem. Compared with the searching based
robust CRT, it has a closed-from and much less computational
complexity. The complexity reduction becomes even more
significant when the parameters get larger. We have presented
the theoretical performance analysis. The theoretical analysis
and numerical simulations demonstrate that the remainder
noise/error resistance performance can be significantly im-
proved by performing the reference remainder selection. We
have also generalized the proposed robust CRT from integers
to reals.

As a final remark, in [22], Huang and Wan obtained a different
robust CRT where the integer is robustly solved but not the
folding integers are uniquely solved, while in this paper the
folding integers are uniquely solved.
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