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A closed form shape function 
describing 3D settlement field 
around a deep excavation in sand
Gianpiero Russo* & Marco Valerio Nicotera

Soil movements produced around deep excavations are one of the main issues to be addressed during 
design and construction of underground structures in urban environment. Several methods to predict 
ground movements are currently available. Semi-empirical methods correlate displacements and 
simple geometrical features of the excavation; these methods predict separately transversal and 
longitudinal settlement troughs or at least provide a conservative envelope of them and they are 
mainly based on empirical data of excavations in clay. Numerical methods based on the solutions of 
FEM or DFM models usually provide prediction of the green field subsidence. In this paper existing 
2D semi-empirical methods are first shortly reviewed. Some of these methods are then modified and 
combined into a new 3D analytical description of the subsidence trough around a deep excavation. 
The proposed two variable subsidence function depends on several parameters: four independent 
parameters defining the overall shape and the maximum settlement acting as a scale parameter. 
Settlement fields reproduced by a 3D FEM nonlinear parametric study of deep excavations inspired 
by real case studies are thus presented and discussed. The newly proposed 3D analytical description 
is applied to fit the FEM results and some fundamental relationships among geometrical features 
of the excavation pit and the 3D shape function parameters are identified. These relationships are 
validated via the application to three case studies of deep excavations in sand where the subsidence 
was controlled by the deformation of the retaining structures finding a satisfactory and encouraging 
agreement.

The settlement around a deep excavation in urban environment are among the main construction issues to be 
addressed by the design because of the likely damages to nearby buildings and structures1,2. For the prediction 
of movements around excavations various proposals are available and rely on different approaches. The first and 
the simplest one, the semi-empirical approach, is based on the experience gained by interpreting data from case 
histories where displacement around excavation were measured and related to simple geometrical parameters 
such as the depth of the excavation He , the depth of the bedrock, Hg if any, the size in plan as the length L or the 
width B (see Fig. 1).

Large databases on deep excavations case histories are available since relatively long time3,4 and proposed 
empirical methods have been tested at least partially on this extensive basis. Among the others reference can be 
made to the semi-empirical methods by Ou5, Clough and O’Rourke6 and Bowles7 for the transversal settlement 
trough (i.e., the settlement profile along the direction normal to the excavation edge) and to the method by 
Roboski and Finno8 for the longitudinal settlement trough (i.e., the settlement profile along a direction parallel 
to the excavation edge). Some more specific alternative has been proposed more recently for 2D transversal set-
tlement trough in case of multipropped excavations in clay9,10. In the following section 2D empirical methods 
for the prediction of longitudinal and transversal settlement trough are first shortly reviewed. A combination of 
existing but slightly modified 2D methods was recently proposed by Russo et al.11 to analytically describe the full 
3D subsidence trough around a rectangular deep shaft and is further developed in “A new closed form (shape) 
function describing the 3D subsidence trough” section.

The second approach, the numerical one, consists of the numerical prediction of the green field subsidence 
trough by means of a FEM or DFM model. Early and significant contributions on numerical analysis are those 
proposed by Clough and Hansen12, Finno and Harahap13, Whittle et al.14. As a matter of fact, a 2D simulation 
of the shaft excavation under plane strain assumption is currently a typical and nearly routinely design step15. 
Since the aim of the analysis is not only predicting bending moment and shear force acting on diaphragm wall 
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but also the settlement trough behind the wall, extreme attention should be paid when selecting an appropri-
ate constitutive soil model and simulating even apparently minor construction details16. L’Amante et al.16 for 
instance showed the importance of modelling the very initial stage of the construction of a reinforced concrete 
(i.e. r.c) diaphragm wall because of its large influence on both soil-structure interaction and on displacement 
field around the excavation compared to the simpler wish-in-place modelling option. The large computational 
resources available have recently pushed forward the frontier of numerical simulation capabilities allowing a 
relatively easy access to large 3D models. This has occurred more frequently with reference to the prediction of 
tunnelling settlement trough17,18 but contributions in the field of deep excavation are also available19,20. These 
latter contributions aimed mainly at describing 3D corner effects with reference to the horizontal displacement 
profile of the diaphragm walls.

In this paper 2D semi-empirical methods are reviewed and briefly compared in “Semi-empirical methods for 
2D settlement predictions” section. Purposely selected methods are modified and combined to build a new 3D 
analytical description of the subsidence trough around a deep excavation in “A new closed form (shape) function 
describing the 3D subsidence trough” section. This description consists of a two variable subsidence function 
depending on several parameters; four independent parameters define the overall shape while the maximum 
settlement, usually occurring in the middle of the longer side L of the excavation, is a scale parameter.

In “3D FEM models to test the closed form expression” section 3D FEM nonlinear analyses of a deep excava-
tion are presented and discussed. The subsoil layering is inspired by real soil profile typical of the urban area of 
Napoli (Italy) and the geometry of the excavation shaft is analogous to many metro-stations of the underground 
network developed in the last two decades. The influence of various factors as the props distribution, the depth 
of the excavation, the presence of the openings typically needed for the top-down construction procedure on the 
computed 3D settlement troughs are explored and presented. In “Computed FEM results and shape parameters” 
section the new two variable subsidence function is applied to describe the FEM results by optimised fitting and 
insights on the influence of the various above factors on the shape parameters required to setup the 3D closed 
form expression of the subsidence trough are finally achieved. The proposed closed form expression and some 
findings about the shape parameters are validated in “Validation of the closed form shape function: application 
to case studies” section via the application to three case studies of deep excavations in sand finally obtaining a 
satisfactorily and encouraging agreement.

Semi‑empirical methods for 2D settlement predictions
The deformation field around deep excavations is three-dimensional. The possibility of a simplified but reliable 
prediction by means of a two-dimensional model depends mainly on the two geometrical ratios L/B (i.e., length 
on width) and L/He (i.e., length on excavation depth). In the early excavation stages of an open pit (i.e., for large 
L/He values) the 2D conditions are prevailing along nearly the whole side L and the corner 3D effects are limited 
to a relatively small influence zone. The deeper the excavation the larger the influence zone around the corner 
with 3D effects getting more and more important on the whole displacement field19,21,22. Displacement fields 
around deep excavations have been studied in the past via 3D FEM analysis, but the research focussed on the 
horizontal displacement profile of the deformed supporting wall19,20. For the settlement prediction at ground 
surface simple 2D semi-empirical methods are more popular and more diffused in the engineering practice. For 
this reason, a brief review of semi-empirical methods for 2D settlement prediction around an excavation shaft is 
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Figure 1.   Sketch of the excavation with the main geometric parameters defining the problem.
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here proposed. The settlement field is generally considered strictly linked to the horizontal displacement profile 
of the retaining wall. The prediction of the surface settlement field is generally divided in two separate subprob-
lems: i.e., the prediction of settlement troughs along two horizontal directions, respectively normal and parallel 
to the retaining wall. There are quite evident similarities between this methodology and the usual procedure 
adopted to manage the same issue with reference to a tunnel construction; the evolution of the 3D tunnelling 
excavation process is generally simply linked to the partial development of the transversal gaussian curve while 
the longitudinal settlement trough is considered less important and is simulated, if needed, with a cumulative 
error function. Similarly, in the case of open excavations research has paid more attention to the prediction of 
the settlement profile along the wall normal direction nearly neglecting the problem of settlement trough along 
the direction parallel to the wall. This probably occurred also because of the usually adopted assumption of 
analysing the excavation as a 2D plane strain problem. In the frame of this assumption the plane strain normal 
settlement trough is simply assumed to be invariable along the side itself. On the contrary the displacement field 
around a deep excavation is a full 3D problem.

With reference to the empirical prediction of the settlement trough in the direction normal to the wall the 
classical contribution by Peck23 or the subsequent proposals by Bowles7 and Clough and O’Rourke6 are still 
widely adopted in the preliminary design step of many deep excavation. However, all these works only suggested 
a conservative envelope of the expected settlement trough. Ou5 and Ou and Hsieh24,25 proposed on purely empiri-
cal bases two different shapes of the settlement trough using discontinuous functions and established a clear 
dependence of those shapes on the vertical profile of the diaphragm wall horizontal displacements. They divided 
the settlement trough into a Primary Influence Zone (PIZ) adjacent to the excavation, where large settlements 
occur, followed by a Secondary Influence Zone (SIZ) where settlements fade away. The SIZ and the PIZ were 
assumed with equal extension (see Fig. 1). Hence, they expressed the ground surface settlement δv normalised 
by its maximum value δvmax as a function of the PIZ extension and the distance y from the excavation edge. In 
the original proposal by Ou5 the PIZ was the minimum between the excavation depth multiplied by two, i.e. 
2 · He , and the depth of the bedrock, Hg , if any. Furthermore, the shape of the settlement profile at the ground 
surface and normal to the embedded wall was assumed to be fully controlled by the horizontal displacement 
profile of the wall itself. To this aim Ou and Hsieh25 suggested to evaluate the ratio between the “cantilever area” 
Ac and the difference As between the total area and the cantilever portion on the lateral deflection profile of the 
wall (see Fig. 1): when it resulted that As < 1.6 · Ac a spandrel shaped settlement profile was expected while for 
As > 1.6 · Ac a concave shape was predicted.

The importance of the settlement profile in the direction parallel to the wall was first remarked by Roboski 
and Finno8. The authors8 used the complementary error function f (x) = erfc(x) with its S-shape to describe 
a few in field observations. The only parameter to be fixed was named A and represented the distance of the 
inflexion point of the settlement function from the corner of the excavation. A logarithmic function of the ratio 
L/He calibrated on the limited basis of a couple of case histories of deep excavations in clay was proposed by 
the authors to predict at the design stage the value of the parameter A . As a general remark it is important to 
underline that 2D plane strain analysis might give inaccurate but conservative results in terms of settlement for 
the central section of an excavation wall. On the other hand, for sections near the corners the results of plane 
strain analysis would be much more inaccurate still leading to a conservative overestimate of the settlement 
amount but completely neglecting the potentially dangerous distortions induced by the 3D corner effects. For 
this reason, the 2D plane strain analysis can be considered neither accurate nor conservative.

A new closed form (shape) function describing the 3D subsidence trough
Fast design tools to evaluate potential damage to the surrounding buildings and structures could be very useful 
at the preliminary design phases when, for instance, the exact location of the excavation has not yet been fixed. 
As concluded in the previous section such a tool should consider the 3D nature of the problem and the distor-
tions close to the corner.

In the present section a simple semi-empirical equation is proposed for the description of the three-dimen-
sional subsidence trough. This equation is the result of the combination of two separate proposals introduced 
first to describe the 2D settlement profiles along the normal and the parallel directions to the retaining wall.

The function f (y) proposed to describe the settlement profile in the direction normal to the wall is:

where: δvmax and δv(y) are respectively the maximum settlement value and the settlement value at a distance y 
from the embedded wall in the considered section while a, b and d are three fitting parameters. It is indeed simple 
to show that these three parameters are not independent of each other; as the value of the function f (y) for y ≥ 0 
must lie in the range [0, 1] a simple analytical relationship holds between the values of a, b and d . The abscissa 
ym where the function reaches its maximum value is simply obtained by imposing that the first derivative of the 
function is equal to zero. This leads to the following relationships:
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The proposed function (1) describes the real settlement profile with limitation to positive values of the abscissa 
y ; hence if expression (2) gives a positive value for ym then the predicted shape is concave and the maximum 
settlement occurs at ym . On the other hand, if ym from expression (2) is negative obviously the restriction of f

(

y
)

 
to the positive y axis has a convex spandrel shape. In this second case the actual maximum of f

(

y
)

 coincides with 
the function value f0 = a obtained at y = 0:

As previously observed the maximum normalized settlement maxfy≥0 , must be equal to one and hence it 
results that for concave shape (i.e., if −b/d > 0):

On the contrary for spandrel shape (i.e., if −b/d ≤ 0 ), it results:

and finally, both cases can be summarised as:

In conclusion, as anticipated above, the three parameters are not independent of each other and the value of 
a is either 1 or depends on b and d.

While parameter a has a clear physical meaning in the process of the function definition, parameters b and d 
may be substituted by different parameters, obtained by some algebraic manipulation of the former ones, more 
directly linked to geometrical features of the profile which is very useful when the function is applied to empirical 
monitored profiles; in summary the chosen parameters are:

	 i.	 the function value at y = 0 : f0 = f
(

y = 0
)

= a
	 ii.	 the derivative at y = 0 : f ′0 = f ′

(
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	 iii.	 the value of the function at y = PIZ: f1 = f
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After the above discussion is worth summarizing that in the case of a spandrel profile the shape function is 
completely defined by assigning the values of the two parameters f ′0 (inclination of the settlement trough at the 
diaphragm wall) and f1:

whilst for the concave profile the two parameters to be fixed are conveniently f0 and f ′0:

An example of the proposed function (1) is plotted in Fig. 2 with reference to both concave and spandrel 
shapes. The relationships (8) and (9) are reported in the same figure and the meaning of the parameters defined 
in (i), (ii) and (iii) is graphically illustrated. Moreover, the significant relationship between the fitting parameter 
b and the average slope f ′0m of function f  in the range between the wall and the abscissa of the maximum set-
tlement (i.e., for y ∈

[

0, ym
]

):

is also referred in Fig. 2.
In Fig. 3 the spandrel shape by Ou and Hsieh25 introduced in "Semi-empirical methods for 2D settlement 

predictions" is compared with the one suggested by Bowles7 and the new proposed profile arising from (1). An 
appropriate choice of the fitting parameters (e.g.: a = 1; b = 1; d = 4) in (1) leads to a profile intermediate between 
those of the two previous proposals (see Fig. 3) outlining the capabilities of the proposed function. Furthermore 
the rational form in (1) was selected because it allows to represent with a unique function also the concave set-
tlement profile. In Fig. 4 (1) is capable of reproducing quite closely both the tri-linear discontinuous profile first 
proposed by Ou5 and one of the settlement envelopes proposed by Clough and O’Rourke6

It can be concluded that function (1) can be adapted to reproduce different settlement patterns depending 
on the value of the three parameters a, b and d . Furthermore simple analytical conditions can be imposed on the 
more versatile function (1) to obtain significant similarities with previous proposed empirical settlement profiles. 
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Figure 2.   Settlement profiles in the direction normal to the wall as described by the new shape function.
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For instance, a sort of best fitting was obtained in the case of Fig. 4 adopting the following values of the param-
eters: a = 0.49; b = −3.14; d = 4.78 . An obvious consequence is that the various calibration suggestions for the 
reviewed empirical methods could be easily adapted to the unique Eq. (1) for any transversal settlement pattern.

In the direction parallel to the supporting wall a continuous function representing the settlement profile 
was recently proposed by Russo et al.11; it consisted in a modification of the function proposed by Roboski and 
Finno8. This function has the form:

with x representing the distance from the center of the excavation and A the distance of the function inflection 
point from the corner of the excavation (see Figs. 5, 6). Russo et al.11 introduced the new coefficient � to simu-
late different longitudinal settlement profiles from very smooth (large � ) to very sharp ones (small and even 
negative � ). The closer to the plan strain condition in the middle of the side of the excavation the larger (and 
positive) the value of � .
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By combining the two functions (Eqs. (1) and (11)) it is possible do define a function of two variables x and 
y representing the subsidence surface around an excavation. This combination is represented by the function:

Equation (12) allows to define the overall settlement field around a deep excavation by applying it to both long 
and short sides of a rectangular excavation. Previously published charts based on 3D FEM analysis5,26–28 focused 
on 3D effects on horizontal displacement of the diaphragm walls indicating even a 40–50% reduction of the 
displacement close to the corner compared to the plain strain condition. However, if the focus is on settlements, 
the function δv

(

x, y
)

 reported in (12) represents a new effective proposal to describe the 3D subsidence trough 
including the corner effects which affects mainly the parameters A and � . The overall function (12) depends on 
five parameters, four out of five being independent of the others.

3D FEM models to test the closed form expression
To test the (12) and to create a set of data to explore the variability of its independent parameters numerical 3D 
models were set up and solved in a FEM code (Plaxis 3D ver.20.1). The focus was on the influence on the shape 
of the 3D greenfield settlement trough of the geometry and of the excavation procedure with its apparently minor 
but typical optional construction details.

For empirical methods28,29 the calibration of the parameters is carried out by fitting data collected from case 
histories. On one hand these data are certainly very valuable but on the other hand they are often limited to 
readings performed along simple 2D alignment and furthermore they do not allow for the separate evaluation 
of the influence of various details. Settlement troughs obtained via numerical parametric analyses allow to look 
for 3D trends and to effectively separate the contribution of several different factors. In the present study the 
basic FEM model is inspired by several case histories of stations of the underground network in the urban area of 
Napoli11,16,30–34. It is worth recalling that the case history and the monitored behaviour were already successfully 
back-analysed by35 with a similar FEM model and also mentioning the fact that several station boxes have been 
constructed in recent years with similar geometry and procedure and many others will be in the close future.

The deep shaft to be excavated has a rectangular plan with dimensions L × B = 100 m × 25 m and a depth 
H = 25 m. (see Fig. 7); the model had dimensions in plan of 250 m × 175 m, extended to a depth of 50 m and was 
composed by 80,840 10-nodes tetrahedral (4-stress point) elements with a total of 207,457 nodes.

In Fig. 7 the excavation section shows the geometry of the shaft with the props levels (thick black lines) and 
the subsequent intermediate positions of the excavation bottom (dashed lines).

The constant soil model adopted for the parametric analysis resound like a typical soil profile in the city of 
Napoli: a sequence of granular soil layers (soft to medium stiff sand) overlying a thick soft-rock stratum. The 
three layers sketched in the profile are: layer A, made ground; layer B, granular silty/sandy layer; layer T, soft 
rock bedrock (i.e., Neapolitan Yellow Tuff)36,37. The depth of the bedrock, Hg , was assumed to be 25 m which 
corresponds to the maximum excavation depth. The Hardening Soil Small Strain Model38 was selected to model 
the behaviour of layers A and B whilst the Mohr–Coulomb Model was optioned for the layer T. The physical 
and mechanical parameters (see Tables 1 and 2) were similar to those adopted for characterization of the true 
volcanic materials described in previous studies17. The FEM analyses were performed with the assumption of 
zero pore water pressure everywhere.

The excavation procedure.  A classical top-down procedure was adopted for the shaft construction with 
intermediate rc slabs installed (cast in place) on the excavation temporary bottom. The diaphragm walls were 
modelled as wish in place. For this reason the computed displacements do not include movements generated 
by the excavation and the subsequent construction stage of the r.c. diaphragm walls. L’Amante et al.16 provided 
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Figure 6.   Settlement profiles in the direction parallel to the wall (Russo et al.11, � < 0)
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simple tools to evaluate this type of movements. However, two different construction processes were analysed. 
In the former one, indicated in the following as Top-Propped case (TP), the first prop was installed just after a 
preliminary, very shallow, excavation (1 m below the prop axis). In the latter case, called Top-Unpropped case 
(TU), the first prop was installed after a deeper excavation (down to a depth of 6 m below original ground sur-
face); this latter procedure was in fact used in many sites in Napoli and in other historical cities to allow for the 
mandatory preliminary archaeological checks. The properties of the anisotropic plates adopted for modelling 
the r.c. diaphragm walls are in Table 3. The intermediate slabs were modelled as isotropic linear elastic plate 
(axial stiffness per unit length EA = 6.3 GN/m ). In the central part of each slab two openings 10 m × 15 m are 
sketched in Fig. 7. These openings are generally needed for soil removal but may have different locations and 
sizes. To evaluate the influence of the openings the analyses were repeated also without the openings. Thus, as 
summarized in Table 4, four cases were analysed in greenfield conditions.
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Figure 7.   FEM model.

Table 1.   Parameters for layers modelled with Hardening Soil Small Strain Model.

Layer γ , kN m−3 ϕ , ° c  , MPa G0 , MPa γ0.7 E50 = Eoed , MPa Eur , MPa ν

A 17 37 0 50 1.30× 10−4 16 40 0.3

B 16 37 0 200 2.63× 10−4 68 170 0.3

Table 2.   Parameters for layers modelled with Mohr–Coulomb Model.

Layer γ , kN m−3 ϕ , ° c  , MPa σt , MPa E , GPa ν

T 16 28 2.46 0.65 2.60+ 0.78× (z − z0) 0.3

Table 3.   Properties of plate elements adopted for r.c. diaphragm walls (v vertical direction; h horizontal 
direction contained in plate plan; n horizontal direction normal to plate plane).

Thickness, m Ev , GPa νvh Eh/Ev Gvn , GPa Gvh = Ghn , GPa

0.60 31.4 0 0.1 15.7 1.57
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Computed FEM results and shape parameters
A plan view of the computed settlement at the ground surface is reported with coloured contour maps in Figs. 8 
and 9 for the four analysed cases (i.e., TP, TU, TPNO and TUNO); it is clearly appreciable the three-dimensional 
nature of the deformative phenomenon that develops around the excavation. Figures 8 and 9 show that both the 
investigated details of the excavation affect the subsidence troughs. In the unpropped cases (ie. TU and TUNO) 
the settlements are larger than in the propped cases (i.e., TP and TPNO) and similarly the cases with the openings 
show larger settlement compared to the cases without openings. The different shapes of the 3D settlement troughs 
will be discussed in the following sections. To this aim a best fitting exercise of the 3D computed settlement field 
at the ground surface is presented in the “3D settlement trough” section using Eq. (12) while in the following two 
sections a separate discussion of the computed transversal and longitudinal profiles is first carried out.

Settlement transversal profiles.  A plot of the results along the transversal sections is reported in Fig. 10. 
The vertical component (Uz) of ground surface displacements and the horizontal component (Uy) of the dia-
phragm wall displacements along the transversal section T1,T3 and T2 are plotted in Fig. 10 for the cases TU 
and the case TP.

In the case TU the ratio As/Ac for the two sections x = 0 m (Section T2) and x = ±45 m (Section T1 and 
T3) was computed as 1.56 and 1.52 respectively; these values are below the threshold of 1.6 fixed by Ou5 and 

Table 4.   Analysed cases.

Field condition Propping scheme Openings ID

Greenfield

Top propped Yes

G

TP

Top unpropped Yes TU

Top propped No TPNO

Top unpropped No TUNO

Buildings
Top propped Yes

B
TP

Top unpropped Yes TU
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Figure 8.   Settlement around the excavation, case TU and TUNO.
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confirm the validity of this ratio as a predictor of a spandrel shape of the transversal 2D settlement trough at the 
ground surface. Also in the case TP (Fig. 10) the concave shapes of the profiles are coherent with the value of the 
computed ratio As/Ac = 43, well above the mentioned threshold. On the other hand, it must be recognized that 
both the spandrel and the concave shapes do not follow the profiles (i.e. location of the maximum displacement, 
maximum extension of the profile) predicted by the empirical method proposed by by Ou and Hsieh25. These 
profiles clearly depend on the different excavation procedures and on the geometry of the excavation pit which 
have no role in the above method. The influence of the openings on the transversal profile is nearly negligible 
and is not discussed in this section; it will be considered in the 3D section (“3D settlement trough”).

Settlement longitudinal profiles.  A representation of the results along various longitudinal sections 
(from L1 up to L4) is reported in Fig. 11. The proposed comparison is between propped, TP, and unpropped, 
TU case The general shape of the profile and the relative extension of the central zone, where the concavity is 
upwards is controlled by the two parameters A and � introduced by Russo et al.11 in the definition of the function 
g(x) . Here it is just worth noting that the unpropped case show larger settlement in the central zone of the long 
side while the extension of the central “plateau” zone is larger in the propped case while the parameters A and Δ 
will be determined in the following section by fitting the overall subsidence trough with the Eq. (12).

3D settlement trough.  The settlement data resulting from the 3D FEM analyses were fitted using the 
function (12) (it was used a Matlab R2020 script based on the Curve Fitting Toolbox 3.5.11); the function is 
completely defined by four independent shape parameters (b, d,A,�) plus the maximum settlement δvmax as 
scale factor.

The fitted surface obtained for the case TPNO is plotted as an example on the long side L of the excavations 
in Fig. 12; on left side a grey-scale colour map diagram is plotted, on the right side (top) a straightforward com-
parison between the fitting surface and the computed data is reported while on the right bottom the residuals 
are represented. The quality of the fitting is very satisfactory (see Fig. 12) because: (i) R2 value is very close to 1; 
(ii) the absolute values of residuals is of the order of a few hundredths compared to the fitted settlement; (iii) the 
residuals spatial distribution do not show any hidden trend to be further investigated. Similar comments apply to 
the fitting results of both sides of the excavations and for all the computed cases even if the fitting parameters are 
obviously different. The values of the fitting parameters and of the coefficient of determination R2 are summarized 

1020 Uy: mm

20

10

Uz : mm

L1L2 L3 L4

TU :
     T2
  T1, T3

distance from excavation center line, y: m
0 10 20 30 40 50

1020 Uy: mm

20

10

Uz : mm

L1L2 L3 L4

TP :
     T2
  T1, T3

distance from excavation center line, y: m
0 10 20 30 40 50

a) b)

Figure 10.   Displacements along sections normal to the wall: (a) analyses TU; (b) analyses TP.
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for all the cases analysed via FEM in Table 5. They are referred to both sides of the excavation and to five different 
bottom excavation depths representing ten different cases in terms of the geometrical ratio L/He . In the following 
two subsections, suggestions on how to fix the values of the six parameters f0, f ′0, f1, ym , A and � , as a function 
of the excavation procedure and of the geometrical ratios of the excavation shaft are reported. For the transversal 
part of the profile, it is worth recalling that b and d are preferred as fitting parameters but f0, f ′0, f1, ym , are here 
preferred because have a clear geometrical meaning and in “A new closed form (shape) function describing the 
3D subsidence trough” section analytical relationships among them are investigated and established.

Parameters of f
(

y
)

 profile .  In Figs. 13, 14 and 15 the three parameters f0, f ′0, ym are plotted versus the depth of 
the excavation He . The plots have two side by side windows referred to propped (left side) and unpropped (right 
side) cases, while red symbols are referred to the short side B and black symbols are referred to the long side L.

It is clearly shown by the right side of the three plots that for unpropped cases the settlement transversal profile 
has a spandrel shape with the only exception of the very unrealistic case characterized by the shallowest depth 
(i.e. He = 6 m ) where the profile is concave having at the same time f0 < 1 , f ′0 > 0 and finally ym/PIZ > 0 . 
For propped cases (i.e. TP cases on left side) all available data confirm the occurrence of concave shapes even if 
with different values and a clear trend: the deeper the excavation He the more pronounced the concave shape. 
In the same plots the suggested values by Ou and Hsieh25, are reported for comparisons. A good match is found 
between the computed results and the suggested value for the parameter f ′0 which represent the inclination of 
the settlement transversal trough at the diaphragm wall. The same agreement is not confirmed for the other two 
plotted parameters f0, ym . which respectively show a decreasing and an increasing trend with the excavation 
depth He differently from the suggested constant value by Ou and Hsieh25. Both these dependencies are of purely 
geometrical nature and should be taken into account in the definition of function f

(

y
)

 (1) .
To complete the description of the transversal profile in Fig. 16 the value of the parameter f1 as deduced by 

fitting is plotted versus the excavation depth He. Unpropped cases show a constant value which is smaller than 
the value suggested by Ou and Hsieh25 while propped cases (left side of the plot) show a very good agreement 
with suggested values with the only exception of the very unrealistic case corresponding to He = 6 m . Thus, on 
this parameter the suggestion by Ou and Hsieh25 is either confirmed (for propped cases) or at least conservative 
(for unpropped cases).

The values of the two areas Ac and As , as defined in “Semi-empirical methods for 2D settlement predictions” 
section and calculated from the FEM results, are finally reported in Fig. 17. This diagram permits to complete the 

Figure 12.   Fitted surface, comparison between fitted and computed settlement and residuals distribution (case 
TPNO).
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discussion on f
(

y
)

 function. A similar diagram was proposed on empirical basis by Ou and Hsieh25. According 
to the discussed results it can be simply concluded that the validity of the predictor is here confirmed: all the 
propped cases (i.e. TP) have a pronounced concave shape with the only exception of the case He = 6 m which 
falls close but just outside the purple area; for the unpropped cases the spandrel shape is confirmed with the only 
exception of the case He = 6 m which was however considered as highly unrealistic.

Parameters of the profile g(x) .  In Figs. 18 and 19 the two fitting parameters A and � normalised with reference 
to the length of the pertaining excavation side (i.e., L or B ) are plotted versus the depth of the excavation He 
normalised by the same length.

Roboski and Finno8 for an L wide excavation proposed the following empirical relationship between the 
parameter A and the excavation depth He:

(13)2A/L = −0.069 · ln(He/L)− 0.03

Table 5.   Fitting results.

Side ID Top prop Openings He(m) PIZ(m) R2 δvmax(mm) A
L or

A
B

�
L or

�
B b d

L

TP Yes Yes

6 12 0.986 0.552 − 0.042 0.211 − 0.115 0.828

11 22 0.992 1.678 − 0.093 − 0.260 − 1.583 4.031

16 25 0.991 3.351 − 0.060 − 0.412 − 2.214 4.864

21 25 0.987 4.734 − 0.050 − 0.516 − 2.189 4.344

25 25 0.987 4.978 − 0.048 − 0.593 − 2.179 4.294

TPNO Yes No

6 12 0.986 0.542 − 0.032 0.252 − 0.129 0.818

11 22 0.992 1.515 − 0.036 0.162 − 1.531 3.859

16 25 0.991 2.870 − 0.043 0.057 − 2.142 4.750

21 25 0.987 3.922 − 0.055 − 0.009 − 2.129 4.306

25 25 0.987 4.121 − 0.067 − 0.103 − 2.126 4.242

TU No Yes

6 12 0.996 7.578 0.023 0.324 − 2.309 15.802

11 22 0.998 9.217 0.018 0.285 − 0.545 24.516

16 25 0.995 10.960 0.009 0.191 1.069 14.810

21 25 0.991 11.967 − 0.005 0.048 0.995 9.421

25 25 0.990 12.114 − 0.010 0.008 0.954 9.052

TUNO No No

6 12 0.996 7.578 0.023 0.324 − 2.309 15.802

11 22 0.999 9.163 0.018 0.300 − 0.494 25.133

16 25 0.997 10.812 0.011 0.257 1.274 15.553

21 25 0.993 11.627 0.004 0.214 1.293 10.032

25 25 0.993 11.687 0.003 0.212 1.268 9.747

B

TP Yes Yes

6 12 0.995 0.705 − 0.049 − 0.171 − 0.356 1.530

11 22 0.997 1.846 − 0.063 − 0.341 − 2.116 5.957

16 25 0.994 3.117 − 0.097 − 0.464 − 2.451 6.318

21 25 0.989 4.066 − 0.133 − 0.525 − 2.283 5.257

25 25 0.989 4.205 − 0.140 − 0.530 − 2.254 5.111

TPNO Yes No

6 12 0.995 0.694 − 0.049 − 0.174 − 0.367 1.515

11 22 0.997 1.816 − 0.061 − 0.345 − 2.120 5.918

16 25 0.994 3.063 − 0.096 − 0.469 − 2.471 6.321

21 25 0.990 3.989 − 0.132 − 0.531 − 2.307 5.281

25 25 0.989 4.125 − 0.139 − 0.537 − 2.277 5.136

TU No Yes

6 12 0.996 7.803 0.089 − 0.152 − 2.253 15.553

11 22 0.998 9.385 0.068 − 0.213 − 0.998 25.207

16 25 0.996 10.732 0.045 − 0.264 0.398 17.618

21 25 0.992 11.510 0.021 − 0.305 0.744 11.476

25 25 0.991 11.600 0.017 − 0.310 0.757 10.822

TUNO No No

6 12 0.996 7.803 0.089 − 0.152 − 2.253 15.553

11 22 0.998 9.342 0.069 − 0.212 − 1.035 25.413

16 25 0.996 10.648 0.046 − 0.264 0.358 17.887

21 25 0.992 11.404 0.023 − 0.304 0.716 11.682

25 25 0.991 11.486 0.019 − 0.309 0.727 11.037
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Figure 13.   Dependency on the excavation depth He of the value f0 of the transversal settlement function f  at the 
edge of the excavation.
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Figure 15.   Dependency on the excavation depth He of the normalised distance of the maximum settlement 
location ym/PIZ from the edge of the excavation.
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Figure 16.   Dependency on the excavation depth He of the value f1 of the transversal settlement function f  at a 
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It was based on the measured performance of a couple of excavations in clayey subsoils. The trend of the 
parameter A in Fig. 18 does not agree with the general function (13). In the case of propped excavations, the 
results show a clear simple and linear dependence of the distance A on (i) the excavation depth He with a small 
slope and a nearly 0 intercept IA as summarized in the relationship reported in the Table 6 which is valid no 
matter about the presence of the openings. On the contrary for the Unpropped cases (the triangles in Fig. 18) 
whilst the slope remains constant the exact value of the intercept IA depends on the excavation side lengths ratio 
� ( = Lp/Lt ; i.e. the ratio between the length Lp of the side of the excavation parallel to the settlement trough 
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Figure 17.   Areas of the horizontal displacement profiles of the embedded wall from FEM results: Ac area of the 
cantilever portion of the displacement profile; As difference between the total area and the cantilever portion.
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16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18528  | https://doi.org/10.1038/s41598-022-22003-8

www.nature.com/scientificreports/

and the length of the transversal side Lt ) that is equal to 4 for side L and 0.25 for side B . However, as shown by 
the Fig. 18, in all considered cases the value of A fall in the narrow range [0–0.1]. It is to underline that to fully 
support such a concluding remark some further cases with different values of � (i.e., � = 2.0, 1.5, 1.0, 0.67 and 
0.5) were analysed in addition to the fundamental ones listed in Table 4 and the corresponding A values are 
plotted in Fig. 18 by means of inverted triangle. In Table 6 a summary of the finding for the parameter A for both 
Unpropped and Propped cases is reported.

As regards the parameter � a graphical representation similar to that just commented for the parameter A 
is reported in Fig. 19. The parameter Δ results to be a decreasing function of the excavation depth analogously 
to the parameter A . It is also clearly shown that the presence of the openings affects the relationship in both 
Propped and Unpropped Cases. Similarly, to what observed for the parameter A in the Unpropped cases only, 
the side lengths ratio � affects the relationship between � and the excavation depth He . This relationship results 
to be linear in a semi-log plane but both the slope and the intercept change in a relatively wide range. On the 
contrary for the Propped cases the log-linear relationship between the parameter � and the excavation depth is 
unique (not depending on the ratio λ).

In this case the presence of the opening on the long side L play a very important role (full circles cases). In 
such a case the decreasing trend of Δ with the excavation depth is confirmed but the relationship is significantly 
different from the general equation found above. In Table 6 a summary of the finding for the parameter Δ for 
both Unpropped and Propped cases is reported. Furthermore, it can simply be noted that also for unpropped case 
the openings induce a reduction of the parameter Δ compared to the case without openings (i.e., TU compared 
to TUNO). This is a somewhat expected result because the presence of the openings is responsible for a sharper 
transition across the symmetry axis compared to the case without the openings.

Validation of the closed form shape function: application to case studies
Three case studies of excavations in sand carried out in the city of Napoli are here presented to be used in the 
validation of the functions f

(

y
)

 and g(x) and their combination with parameters calibrated on the FEM results 
application.
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Figure 19.   Normalised plateau length Δ/L (Δ/B).

Table 6.   Relationship between A, Δ and the excavation depth He.

Cases A/Lp and �/Lp Note

Unpropped A/Lp = −0.1 · (He/L)+ IA�/Lp = −0.1 · ln (He/L)+ I�
IA = IA(�) ; A/Lp ∈ [0, 0.1]

I� = I�(�)

Propped A/Lp = −0.1 · (He/L)− 0.02�/Lp = − 1
3
· ln (He/L)− 0.59
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The first one is the case of Montedidio underground car park built with top-down procedure in the historical 
city center. The second one is referred to another underground car park build in the Fuorigrotta borough for 
the San Paolo mall. The third one is referred to an underground metro station excavated in the fashion district 
of Chiaia. In all the cases the excavations were carried out in sand overlying a bedrock. In the first two cases the 
groundwater table was deeper than the excavation depth while for the third case the low permeability of the 
bedrock and the presence of the sea very close to the excavation inhibited the groundwater lowering outside the 
excavation. Hence the settlements outside the excavation shaft were in all the cases governed by the retaining 
system deformations.

Montedidio project.  A multi-storey underground parking was built in a site very close to existing masonry 
buildings in the historical centre of the city of Napoli at the top of the Montediddio hill. The excavation reached a 
maximum depth He = 20 m, about 11.5 m of it was dug in pyroclastic sands and the remaining in the Neapolitan 
yellow tuff bedrock. The walls of the excavation and the pillars that support the floors are made of tam micro-
piles. The excavation was carried out with the top-down technique. The slabs acted as stiff struts and temporary 
ground anchors were also adopted to increase the stiffness and reduce the displacement. Horizontal displace-
ments with electrolevels tilt sensors, subsidence of buildings very close to the edge of the excavation and loads 
in ground anchors with vibrating wire load cells were monitored during construction. More details on the case 
can be found in Russo and Viggiani39.

A plan view of the site is shown in Fig. 20a; the dimension L = 20 m of the excavation shaft is reported and 
benchmarks installed for topographic survey are represented. The horizontal displacement measured at the end 
of the excavation process via electrolevels tilt sensors is plotted in Fig. 20b; it results that the ratio As/Ac = 5,2 
is well above 1.6 and “predict” a concave transversal shape. The transversal settlement profile in Fig. 20c has a 
concave shape which is fitted using the f

(

y
)

 function (1). The value of f0=0.54 is in the range between 0.5 and 
0.7 respectively suggested by Ou and Hsieh25 and obtained by FEM computations presented in the paper (see 
Fig. 13). The same occurs for the parameter ymPIZ = 0.25 that falls in the range 0.20–0.33 (see Fig. 15) and for the 
parameter f1 = 0.19 in the range 0.16–0.20 (see Fig. 16). Finally, the values of A = − 2 m and � = − 12 m can be 
calculated applying the relationships in Table 6. The function g(x) of the Eq. (11) produces the satisfactory fitting 
of the measured longitudinal settlement profile of Fig. 20d). However it has to be recognized that the measured 
performance is certainly affected by the building stiffness in this case.

San Paolo mall project .  A multi-storey underground parking was built during the construction of a shop-
ping center in a site very close to existing reinforced concrete frame buildings in the Fuorigrotta borough in the 
western area of the city of Napoli. The maximum depth of the excavation is variable and ranges from 5 to 18 m 
and it was entirely carried out in sand above the groundwater table. The perimetral walls were made by rein-
forced concrete diaphragm walls. The excavation of the deeper areas was carried out using ground anchors as 
temporary support. Horizontal displacements measured with inclinometric probe and settlement either of the 
soil and of the surrounding buildings were monitored during the construction. More details on the case can be 
found in Fenelli and Ramondini40 and Fenelli and Pagano41.

A plan view of the site is shown in Fig. 21a; the excavation shaft is plotted and the panels of the diaphragm 
wall monitored via inclinometric probe are represented. The horizontal displacements measured at the end of 
the excavation process with reference to the panel J4 (He = 5 m) are reported in Fig. 21b showing a cantilever 
shape as usual for an unpropped excavation wall. Finally the settlement transversal profile measured behind the 
panel J4 and successfully fitted with f

(

y
)

 (Eq. 1) is represented in Fig. 21c. In this case the values obtained by 
fitting are f0 = 1, f1 = 0.13 which are in good agreement with the range of values obtained by FEM and plotted 
in Figs. 13 and 16 respectively.

San Pasquale station project .  A 27  m deep excavation in a pyroclastic sand was constructed in the 
urban area of Napoli (Italy) to be used as station named San Pasquale along the downtown stretch of line 6 
close to the sea. The main excavation is supported by T-section reinforced concrete (RC) diaphragm walls. The 
presence of valuable historical edifices on one side of the excavations suggested the selection of a top-down 
construction procedure. The reinforced concrete intermediate slabs were used as permanent struts and two large 
central openings were needed to allow for soil removal during the excavation stages. Full settlement troughs 
were observed along two different alignments. As a matter of fact, none of the monitored alignments could be 
interpreted exactly as a normal or a parallel settlement trough. A shape function based on the complementary 
error function was thus proposed to fit the observed settlement data in the plane considering both the distances 
x and y respectively parallel and normal to the excavation11.

A plan view of the site is shown in Fig. 22a; the dimensions L = 85.5 m and B = 24.1 m of the excavation shaft 
are reported, and benchmarks installed for topographic survey are represented. The settlement profiles measured 
along the two alignments (i.e.: sea side and buildings side) are simply recalled in Fig. 22c,d. More details may 
be found in the paper by Russo et al.11. Along the sea side, the horizontal displacement profile of the diaphragm 
walls, reported in Fig. 22b, “predicts” a spandrel shape for the transversal profile which in turn should be com-
pared with the prediction (Table 6) derived from the unpropped case. The values of A and ∆ obtained by fitting 
the quasi longitudinal settlement profiles with the function g

(

y
)

 of Eq. (11) span respectively in the range 2 ÷ 6 m 
and in the range 22 ÷ 25 m. Along the building side, the horizontal displacement profile (Fig. 22b) “predicts” a 
concave shape for the transversal profile which should be compared to the prediction (Table 6) derived from the 
propped case. In such a case the fitting on the corresponding quasi longitudinal settlement profile indicates that 
A ranges between 2 and 6 m whilst � between − 43 m and − 59 m. These values are simply plotted in the two 
Figs. 18 and 19 showing a good agreement with the FEM computed results and thus confirming the validity of 
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the analytical relationship summarized in Table 6. It is here recalled for the convenience of the reader that for 
the San Pasquale station He/L = 0.3 and � = 3.5.

Conclusions
After a careful review of the existing literature on semi-empirical indications for separate 2D transversal and 
longitudinal surface settlement pattern around a deep excavation a new two variable function to describe the 
overall 3D settlement profile behind sides of a rectangular deep excavation has been built and discussed. That 
is a combination of two separate functions f(y) and g(x). The new two variables function depend on four inde-
pendent shape parameters and one scale parameter which is the maximum settlement. As widely reported in 
the scientific literature while the maximum settlement depends on soil mechanical parameters the shape of the 
settlement trough is mainly dependent on geometry and constraints.

The quantitative relationships among the shape parameters and the main geometrical features of the excava-
tion pit or the type of the supporting structural system (i.e., Propped or Unpropped) have been explored using 
settlement computed by solving several 3D FEM models inspired by typical and repetitive underground station 
boxes of the transportation network recently developed in the city of Napoli and embedded in pyroclastic sandy 
layers overlying the bedrock of the yellow tuff formation without groundwater table. The fitting toolbox by Matlab 
was used to carry out the least square regressions with the proposed new two variable function applied to the 
subsidence trough produced by Plaxis 3D and adequately sampled via a Python script.

The 3D surface fitted successfully on all the data sets from the cases computed via the FEM code showing high 
values of the R2 coefficient and a random distribution of the residuals. This success clearly indicates the poten-
tiality of the function to be the main element on which to build a semiempirical method. In this paper several 

a) Plan view     b) Horizontal displacement with electrolevels 

L=20 m  

c) Transversal se�lement profile     d)  Longitudinal se�lement profile

Figure 20.   Plan view of the Montedidio site with Horizontal displacement and Settlement: comparison between 
predicted and measured behaviour (after Russo and Viggiani39).
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preliminary but sound indications on how to fix the shape parameters of the 3D function have been obtained and 
proposed, verifying, modifying, and integrating previous suggestions by Ou and Hsieh25 and Roboski and Finno8 
separately provided for the 2D transversal and longitudinal settlement profiles. With regard to the transversal 
function f(y) it has been shown that:

	 i.	 the shape of the horizontal displacement profile of the diaphragm wall summarized by the ratio As/Ac is 
a good predictor of the expected shape of the settlement profile at the ground surface, i.e. for As/Ac > 1.6 
the settlement profile will have a concave shape while for As/Ac < 1.6 the settlement profile will have a 
spandrel shape;

	 ii.	 all the shape parameters of the transversal settlement profile, i.e. the slope f ′0 , the value of the function 
f1 at the transition zone between PIZ and SIZ and the location of the maximum settlement ym at least 
for the concave shapes (nearly corresponding to the top propped cases) maybe defined relying upon the 
suggestions by Ou and Hsieh25 which compared to the FEM computations revealed either exact or at 
least conservative; the same does not hold true for the spandrel shapes (roughly corresponding to the top 
unpropped cases).

a) Plan view b) Horizontal displacement with sunda

c) Transversal se�lement profile 

Figure 21.   Plan view of the San Paolo mall site with Horizontal displacement and Settlement: comparison 
between predicted and measured behaviour (after Fenelli and Ramondini40).
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		    Regarding the two shape parameters A and � defining the longitudinal settlement function g(x) new 
sound indications have been summarized in analytical relationships involving the geometrical features 
He/Hg; He/L; L/B of the excavation shaft. Previous indications by Roboski and Finno8 on the parameter A 
have been integrated and modified recognizing that:

	 iii.	 the value of A for all the analysed propped cases fall in the narrow range [0.1–0] while for all the analysed 
unpropped cases the range is [− 0.1 to 0]; for such a reason the parameter A can be set to 0 as first approxi-
mation when using the suggested empirical approach, while more detailed suggestions are available in 
Table 6;

	 iv.	 the value of � strongly depends on the geometrical features of the excavation and on the constraints (i.e. 
propped or unpropped cases) with preliminary indications on how to fix it summarized in Table 6.

The above findings obtained via a careful scrutiny of the FEM computed results have been applied on three 
case studies of excavations in sand where the settlements at the ground surface are only influenced by the retain-
ing walls deformations, resulting in a general rather satisfactory and encouraging agreement. It is worthy to 
remark that case studies of excavations in sand with good quality monitoring data are by far rarer in the scientific 
literature and as a matter of fact most of the empirical methods recalled at the beginning of the paper are often 
oriented towards excavations in clay. This paper has also contributed to show that this distinction is not that 
important at least in the cases where the excavation in sand does not involve seepage inside the excavation shaft.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Figure 22.   Plan view of the San Pasquale station site with measured longitudinal settlement profiles.
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