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I use a new technique to derive a closed-form solu-
tion for the price of a European call option on an
asset with stochastic volatility. The model allows
arbitrary correlation between volatility and spot-
asset returns. I introduce stochastic interest rates
and show how to apply the model to bond options
and foreign currency options. Simulations show
that correlation between volatility and the spot
asset’s price is important for explaining return
skewness and strike-price biases in the Black-
Scholes (1973) model. The solution technique is
based on characteristic functions and can be
applied to other problems.

Many plaudits have been aptly used to describe Black
and Scholes’ (1973) contribution to option pricing
theory. Despite subsequent development of option
theory, the original Black-Scholes formula for a Euro-
pean call option remains the most successful and
widely used application. This formula is particularly
useful because it relates the distribution of spot returns
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to the cross-sectional properties of option prices. In this article, I

generalize the model while retaining this feature.

Although the Black–Scholes formula is often quite successful in

explaining stock option prices [Black and Scholes (1972)], it does

have known biases [Rubinstein (1985)]. Its performance also is sub-

stantially worse on foreign currency options [Melino and Turnbull
(1990, 1991), Knoch (1992)]. This is not surprising, since the Black-

Scholes model makes the strong assumption that (continuously com-

pounded) stock returns are normally distributed with known mean

and variance. Since the Black–Scholes formula does not depend on

the mean spot return, it cannot be generalized by allowing the mean

to vary. But the variance assumption is somewhat dubious. Motivated

by this theoretical consideration, Scott (1987),  Hull and White (1987),

and Wiggins (1987) have generalized the model to allow stochastic

volatility. Melino and Turnbull (1990, 1991) report that this approach

is successful in explaining the prices of currency options. These

papers have the disadvantage that their models do not have closed-

form solutions and require extensive use of numerical techniques to

solve two-dimensional partial differential equations. Jarrow and

Eisenberg (1991) and Stein and Stein (1991) assume that volatility

is uncorrelated with the spot asset and use an average of Black-

Scholes formula values over different paths of volatility. But since this

approach assumes that volatility is uncorrelated with spot returns, it

cannot capture important skewness effects that arise from such cor-

relation. I offer a model of stochastic volatility that is not based on

the Black-Scholes formula. I t provides a closed-form solution for the

price of a European call option when the spot asset is correlated with

volatility, and it adapts the model to incorporate stochastic interest

rates. Thus, the model can be applied to bond options and currency

options.

1. Stochastic Volatility Model

We begin by assuming  that the spot asset at time t follows the diffusion

(1)

where is a Wiener process. If the volatility follows an Ornstein–
Uhlenbeck process [e.g., used by Stein and Stein (1991)],

dS (t) dt + ,

then Ito’s lemma shows that the variance follows the process
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(3)

This can be written as the familiar square-root process [used by Cox,
Ingersoll, and Ross (1985)]

(4)

where z2(t) has correlation ρ with z1(t). For simplicity at this stage,
we assume a constant interest rate r. Therefore, the price at time t of
a unit discount bond that matures at time t + i s

(5)

These assumptions are still insufficient to price contingent claims
because we have not yet made an assumption that gives the “price
of volatility risk.” Standard arbitrage arguments [Black and Scholes
(1973), Merton (1973)] demonstrate that the value of any asset U(S,
v, t) (including accrued payments) must satisfy the partial differential
equation (PDE)

(6)

The unspecified term (S, v, t) represents the price of volatility risk,
and must be independent of the particular asset. Lamoureux and
Lastrapes (1993) present evidence that this term is nonzero for equity
options. To motivate the choice of (S, v, t), we note that in Breeden’s
(1979) consumption-based model,

(7)

where C(t) is the consumption rate and γ is the relative-risk aversion
of an investor. Consider the consumption process that emerges in
the (general equilibrium) Cox, Ingersoll, and Ross (1985) model

(8)

where consumption growth has constant correlation with the spot-
asset return. This generates a risk premium proportional to v, (S, v,
t )  = v. Although we will use this form of the risk premium, the
pricing results are obtained by arbitrage and do not depend on the
other assumptions of the Breeden (1979) or Cox, Ingersoll, and Ross
(1985) models. However, we note that the model is consistent with
conditional heteroskedasticity in consumption growth as well as in
asset returns. In theory, the parameter could be determined by one
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volatility-dependent asset and then used to price all other volatility-
dependent assets.1

A European call option with strike price K and maturing at time T
satisfies the PDE (6) subject to the following boundary conditions:

(9)

By analogy with the Black-Scholes formula, we guess a solution of
the form

( 1 0 )

where the first term is the present value of the spot asset upon optimal
exercise, and the second term is the present value of the strike-price
payment. Both of these terms must satisfy the original PDE (6). It is
convenient to write them in terms of the logarithm of the spot price

(11)

Substituting the proposed solution (10) into the original PDE (6)
shows that P1 and P2 must satisfy the PDEs

(12)

for j = 1,2, where

For the option price to satisfy the terminal condition in Equation (9),
these PDEs (12) are subject to the terminal condition

(13)

Thus, they may be interpreted as “adjusted” or “risk-neutralized”
probabilities (See Cox and Ross (1976)). The Appendix explains that
when x follows the stochastic process
1 This is analogous to extracting an implied volatility parameter in the Black-Scholes model.
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(14)

where the parameters uj, aj, and bj are defined as before, then Pj is
the conditional probability that the option expires in-the-money:

The probabilities are not immediately available in closed form. How-
ever, the Appendix shows that their characteristic functions, f1(x, v,
T; φ ) and f2(x, v, T; φ ) respectively, satisfy the same PDEs (12), subject
to the terminal condition

The characteristic function solution is

where

(16)

(17)

and

One can invert the characteristic functions to get the desired prob-
abilities:

The integrand in Equation (18) is a smooth function that decays
rapidly and presents no difficulties.2

Equations (10), (17), and (18) give the solution for European call
options. In general, one cannot eliminate the integrals in Equation
(18), even in the Black-Scholes case. However, they can be evaluated
in a fraction of a second on a microcomputer by using approximations
2 Note chat characteristic functions always exist; Kendall and Stuart (1977) establish that the integral
converges.
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similar to the standard ones used to evaluate cumulative normal prob-
abilities.3

One can incorporate stochastic interest rates into the option pricing
model, following Merton (1973) and Ingersoll (1990). In this manner,
one can apply the model to options on bonds or on foreign currency.
This section outlines these generalizations to show the broad appli-
cability of the stochastic volatility model. These generalizations are
equivalent to the model of the previous section, except that certain
parameters become time-dependent to reflect the changing charac-
teristics of bonds as they approach maturity.

To incorporate stochastic interest rates, we modify Equation (1) to
allow time dependence in the volatility of the spot asset:

(19)

This equation is satisfied by discount bond prices in the Cox, Inger-
soll, and Ross (1985) model and multiple-factor models of Heston
(1990). Although the results of this section do not depend on the
specific form of σ s, if the spot asset is a discount bond then σ s must
vanish at maturity in order for the bond price to reach par with prob-
ability 1. The specification of the drift term µ s is unimportant because
it will not affect option prices. We specify analogous dynamics for
the bond price:

(20)

Note that, for parsimony, we assume that the variances of both the
spot asset and the bond are determined by the same variable v(t). In
this model, the valuation equation is
3 Note that when evaluating multiple options with different strike options, one need not recompute
the characteristic functions when evaluating the integral in Equation (18).
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where ρ xy denotes the correlation between stochastic processes x and
y. Proceeding with the substitution (10) exactly as in the previous
section shows that the probabilities P1 and P2 must satisfy the PDE:

for j = 1,2, where

Note that Equation (22) is equivalent to Equation (12) with some
time-dependent coefficients. The availability of closed-form solutions
to Equation (22) will depend on the particular term structure model
[e.g., the specification of σ x(t) ]. In any case, the method used in the
Appendix shows that the characteristic function takes the form of
Equation (17), where the functions satisfy certain
ordinary differential equations. The option price is then determined
by Equation (18). While the functions may not have
closed-form solutions for some term structure models, this represents
an enormous reduction compared to solving Equation (21) numeri-
cally.

One can also apply the model when the spot asset S(t) is the dollar
price of foreign currency. We assume that the foreign price of a foreign
discount bond, F( t; T), follows dynamics analogous to the domestic
bond in Equation (20):

(23)

For clarity, we denote the domestic interest rate by rD and the foreign
interest rate by rF. Following the arguments in Ingersoll (1990), the
valuation equation is
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(24)

Solving this five-variable PDE numericallywould be completely infea-
sible. But one can use Garmen and Kohlhagen’s (1983) substitution
analogous to Equation (10):

Probabilities P1 and P2 must satisfy the PDE

(25)

(26)

for j = 1,2, where

Once again, the characteristic function has the form of Equation (17),
where depend on the specification of and
bj(t) (see the Appendix).
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Although the stochastic interest rate models of this section are
tractable, they would be more complicated to estimate than the sim-
pler model of the previous section. For short-maturity options on
equities, any increase in accuracy would likely be outweighed by the
estimation error introduced by implementing a more complicated
model. As option maturities extend beyond one year, however, the
interest rate effects can become more important [Koch (1992)]. The
more complicated models illustrate how the stochastic volatility model
can be adapted to a variety of applications. For example, one could
value U.S. options by adding on the early exercise approximation of
Barone-Adesi and Whalley (1987). The solution technique has other
applications, too. See the Appendix for application to Stein and Stein’s
(1991) model (with correlated volatility) and see Bates (1992) for
application to jump-diffusion processes.

3. Effects of the Stochastic Volatility Model Options Prices

In this section, I examine the effects of stochastic volatility on options
prices and contrast results with the Black-Scholes model. Many effects
are related to the time-series dynamics of volatility. For example, a
higher variance v(t) raises the prices of all options, just as it does in
the Black-Scholes model. In the risk-neutralized pricing probabili-
ties, the variance follows a square-root process

where

(27)

and

We analyze the model in terms of this risk-neutralized volatility pro-
cess instead of the “true” process of Equation (4), because the risk-
neutralized process exclusively determines prices.4 The variance drifts
toward a long-run mean of θ *, with mean-reversion speed determined
by  K*. Hence, an increase in the average variance θ * increases the
prices of options. The mean reversion then determines the relative
weights of the current variance and the long-run variance on option
prices. When mean reversion is positive, the variance has a steady-
state distribution [Cox, Ingersoll, and Ross (1985)] with mean θ *.
Therefore, spot returns over long periods will have asymptotically
normal distributions, with variance per unit of time given by θ *.
Consequently, the Black-Scholes model should tend to work well
for long-term options. However, it is important to realize that the
4 This occurs for exactly the same reason that the Black-Scholes formula does not depend on the
mean stock return. See Heston (1992) for a theoretical analysis that explains when parameters drop
out of option prices.
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Default parameters for simulation of option prices

(10)
(30)

Parameter Value

Mean reversion
Long-run variance
Current variance
Correlation of z1(t) and z2(t)
Volatility of volatility parameter
Option maturity
Interest rate
Strike price
implied variance θ * from option prices may not equal the variance
of spot returns given by the “true” process (4). This difference is
caused by the risk premium associated with exposure to volatility
changes. As Equation (27) shows, whether θ * is larger or smaller than
the true average variance θ depends on the sign of the risk-premium
parameter One could estimate θ * and other parameters by using
values implied by option prices. Alternatively, one could estimate θ
and K from the true spot-price process. One could then estimate the
risk-premium parameter by using average returns on option posi-
tions that are hedged against the risk of changes in the spot asset.

The stochastic volatility model can conveniently explain properties
of option prices in terms of the underlying distribution of spot returns.
Indeed, this is the intuitive interpretation of the solution (10), since
P2 corresponds to the risk-neutralized probability that the option
expires in-the-money. To illustrate effects on options prices, we shall
use the default parameters in Table 1.5 For comparison, we shall use
the Black-Scholes model with a volatility parameter that matches the
(square root of the) variance of the spot return over the life of the
option.6 This normalization focuses attention on the effects of sto-
chastic volatility on one option relative to another by equalizing “aver-
age” option model prices across different spot prices. The correlation
parameter ρ positively affects the skewness of spot returns. Intuitively,
a positive correlation results in high variance when the spot asset
rises, and this “spreads” the right tail of the probability density.
Conversely, the left tail is associated with low variance and is not
spread out. Figure 1 shows how a positive correlation of volatility
with the spot return creates a fat right tail and a thin left tail in the
5 These parameters roughly correspond to Knoch’s (1992) estimates with yen and deutsche mark
currency options, assuming no risk premium associated with volatility, However, the mean-reversion
parameter is chosen to be more reasonable.

6 This variance can be determined by using the characteristic function.
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Spot Return

Condition probability density of the continuously compounded spot return over a six-
month horizon
Spot-asset dynamics are
Except for the correlation r between z1 and z2 shown, parameter values are shown in Table 1. For
comparison, the probability densities are normalized to have zero mean and unit variance.

Price Difference ($)

Figure 2
Option prices from the stochastic volatility model minus Black-Scholes values with equal
volatility to option maturity
Except for the correlation ρ between z1 and z2 shown, parameter values are shown in Table 1. When
ρ = -.5 and ρ− .5, respectively, the Black-Scholes volatilities are 7.10 percent and 7.04 percent,
and at-the-money option values are $2.83 and $2.81.
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Probability DensityProbability Density

Spot ReturnSpot Return

Conditional probability density of the continuously compounded spot return over a six-

Spot-asset dynamics are
Except for the volatility of volatility parameter σ shown, parameter values are shown in Table 1.
For comparison, the probability densities are normalized to have zero mean and unit variance.

month horizon
distribution of continuously compounded spot returns.7 Figure 2 shows
that this increases the prices of out-of-the-money options and decreases
the prices of in-the-money options relative to the Black-Scholes model
with comparable volatility. Intuitively, out-of-the-money call options
benefit substantially from a fat right tail and pay little penalty for an
increased probability of an average or slightly below average spot
return. A negative correlation has completely opposite effects. It
decreases the prices of out-of-the-money options relative to in-the-
money options.

The parameter σ controls the volatility of volatility. When σ is zero,
the volatility is deterministic, and continuously compounded spot
returns have a normal distribution. Otherwise, σ increases the kurtosis
of spot returns. Figure 3 shows how this creates two fat tails in the
distribution of spot returns. As Figure 4 shows, this has the effect of
raising far-in-the-money and far-out-of-the-money option prices and
lowering near-the-money prices. Note, however, that there is little
effect on skewness or on the overall pricing of in-the-money options
relative to out-of-the-money options.

These simulations show that the stochastic volatility model can
7 This illustration is motivated by Jarrow and Rudd (1982) and Hull (1989).
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Price Difference ($)

Except for the volatility of volatility parameter σ shown, parameter values are shown in Table 1. In
both curves, the Black-Scholes volatility is 7.07 percent and the at-the-money option value is 12.82.
produce a rich variety of pricing effects compared with the Black-
Scholes model. The effects just illustrated assumed that variance was
at its long-run mean, θ *. In practice, the stochastic variance will drift
above and below this level, but the basic conclusions should not
change. An important insight from the analysis is the distinction
between the effects of stochastic volatility per se and the effects of
correlation of volatility with the spot return. If volatility is uncorre-
lated with the spot return, then increasing the volatility of volatility
( σ ) increases the kurtosis of spot returns, not the skewness. In this
case, random volatility is associated with increases in the prices of
far-from-the-money options relative to near-the-money options. In
contrast, the correlation of volatility with the spot return produces
skewness. And positive skewness is associated with increases in the
prices of out-of-the-money options relative to in-the-money options.
Therefore, it is essential to choose properly the correlation ofvolatility
with spot returns as well as the volatility of volatility.

4. Conclusions

I present a closed-form solution for options on assets with stochastic
volatility. The model is versatile enough to describe stock options,
bond options, and currency options. As the figures illustrate, the
model can impart almost any type of bias to option prices. In partic-
ular, it links these biases to the dynamics of the spot price and the

distribution of spot returns. Conceptually, one can characterize the

339



The Review of Financial Studies/ v 6 n 2 1993

A

option models in terms of the first four moments of the spot return
(under the risk-neutral probabilities). The Black-Scholes (1973)
model shows that the mean spot return does not affect option prices
at all, while variance has a substantial effect. Therefore, the pricing
analysis of this article controls for the variance when comparing option
models with different skewness and kurtosis. The Black-Scholes for-
mula produces option prices virtually identical to the stochastic vol-
atility models for at-the-money options. One could interpret this as
saying that the Black-Scholes model performs quite well. Alterna-
tively, all option models with the same volatility are equivalent for
at-the-money options. Since options are usually traded near-the-money,
this explains some of the empirical support for the Black-Scholes
model. Correlation between volatility and the spot price is necessary
to generate skewness. Skewness in the distribution of spot returns
affects the pricing of in-the-money options relative to-out-of-the money
options. Without this correlation, stochastic volatility only changes
the kurtosis. Kurtosis affects the pricing of near-the-money versus far-
from-the-money options.

With proper choice of parameters, the stochastic volatility model
appears to be a very flexible and promising description of option
prices. It presents a number of testable restrictions, since it relates
option pricing biases to the dynamics of spot prices and the distri-
bution of spot returns. Knoch (1992) has successfully used the model
to explain currency option prices. The model may eventually explain
other option phenomena. For example, Rubinstein (1985) found
option biases that changed through time. There is also some evidence
that implied volatilities from options prices do not seem properly
related to future volatility. The model makes it feasible to examine
these puzzles and to investigate other features of option pricing.
Finally, the solution technique itself can be applied to other problems
and is not limited to stochastic volatility or diffusion problems.

ppendix: Derivation of the Characteristic Functions

This appendix derives the characteristic functions in Equation (17)
and shows how to apply the solution technique to other valuation
problems. Suppose that x(t) and v(t) follow the (risk-neutral) pro-
cesses in Equation (15). Consider any twice-differentiable function
f(x, v, t) that is a conditional expectation of some function of x and
v at a later date, T, g(x( T), v(T)):
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Ito’s lemma shows that

By iterated expectations, we know that f must be a martingale:

E[df] = 0. (A3)

Applying this to Equation (A2) yields the Fokker-Planck forward
equation:

(A4)

[see Karlin and Taylor (1975) for more details]. Equation (A1) imposes
the terminal condition

(A5)

This equation has many uses. If g(x, v) = δ (x - x0), then the solution
is the conditional probability density at time t that x(T) = x0. And if

then the solution is the conditional probability at
time t that x(T) is greater than ln[K]. Finally, if g(x, v) = then
the solution is the characteristic function. For properties of charac-
teristic functions, see Feller (1966) or Johnson and Kotz (1970).

To solve for the characteristic function explicitly, we guess the
functional form

(A6)

This “guess” exploits the linearity of the coefficients in the PDE (A2).
Following Ingersoll (1989, p. 397), one can substitute this functional
form into the PDE (A2) to reduce it to two ordinary differential equa-
tions,

(A7)
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subject to

C(0) = 0, D(0) = 0.

These equations can be solved to produce the solution in the text.
One can apply the solution technique of this article to other prob-

lems in which the characteristic functions are known. For example,
Stein and Stein (1991) specify a stochastic volatility model of the form

(A8)

From Ito’s lemma, the process for the variance is

(A9)

Although Stein and Stein (1991) assume that the volatility process is
uncorrelated with the spot asset, one can generalize this to allow
z1(t) and z2(t) to have constant correlation. The solution method of
this article applies directly, except that the characteristic functions
take the form

(A10)

Bates (1992) provides additional applications of the solution tech-
nique to mixed jump-diffusion processes.
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