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Abstract— Here we present a closed-form solution to the
continuous time-varying linear-quadratic regulator problem for
zero-moment point (ZMP) tracking. This generalizes previous
analytical solutions for gait generation by allowing “soft”
tracking (with a quadratic cost) of the desired ZMP, and by
providing the feedback gains for the resulting time-varying op-
timal controller. This enables fast O(n) computation, with n the
number of piecewise polynomial segments in the desired ZMP
trajectory. Results are presented using the Atlas humanoid
robot where dynamic walking is achieved by recomputing the
optimal controller online.

I. INTRODUCTION

Zero-moment point (ZMP) approaches have become a

standard tool for achieving dynamic balance for walking and

manipulation in humanoid robots. Conceptually, the ZMP

defines the point on the ground plane at which the moment

produced by inertial and gravitational forces is parallel to the

surface normal (i.e. the robot is not tipping) [1]. The success

of ZMP stems from the fact that, under certain reasonable

assumptions, the ZMP dynamics are linear and, given a se-

quence of desired footsteps, prescribing ZMP trajectories can

be done efficiently with trajectory optimization or heuristic

methods.

ZMP tracking controllers are often implemented on robots

by directly tracking the sensed center of pressure, which

corresponds to the ZMP when the ground is flat, or stabi-

lizing the robot’s center of mass (COM) along a trajectory

consistent with the planned ZMP trajectory. Computing this

COM trajectory is sometimes referred to as the walking

pattern generation problem [2]. Various methods have been

proposed to design such controllers and to compute COM

trajectories given ZMP trajectories (Section II-A).

In this paper we show that an optimal time-varying linear-

quadratic regulator (LQR) for the continuous ZMP trajectory

has a closed-form solution that can be computed efficiently

with an iterative algorithm. The COM trajectory correspond-

ing to the reference ZMP trajectory can be solved for in
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a similar manner. We describe an implementation on the

Boston Dynamics Atlas that demonstrates online ZMP re-

planning and stabilization with sub-millisecond computation

times.

II. BACKGROUND

In this section we outline related work on ZMP planning

and controller design for bipedal walking robots and briefly

describe the linear ZMP dynamics and trajectory representa-

tion.

A. Related work

There are multiple examples in the literature of algorithms

that efficiently compute COM trajectories, ZMP feedback

controllers, or both. Harada et al. [3] derived an analytical

expression for the COM trajectory given a piecewise poly-

nomial ZMP trajectory. In this solution, the ZMP tracking

was exact, so care is required in designing desired ZMP

trajectories to avoid large COM motions. Kajita et al. [2]

proposed a preview control approach where a discrete-

time, infinite-horizon LQR problem was solved numerically

to stabilize the ZMP. This method required considerably

more computation, but generalized the specification as the

optimization of a quadratic cost which could balance ZMP

tracking against COM acceleration, giving more robust COM

trajectory output. Urata et al. [4] observed that the analytical

results of [3] could be interpretted as the limit where the

input cost R → 0 (the input in this case is the COM jerk),

and provided an explicit solution for the Riccati equation.

Here we demonstrate that the full preview control approach

has a closed-form solution (no limiting arguments required)

and give an efficient algorithm which outputs the feedback

gains as well as the nominal COM trajectory.

Wieber et al. [5], [6] have proposed sparse model-

predictive control (MPC) algorithms that solve finite-horizon

formulations of the discrete-time ZMP LQR problem. Feng

et al. [7] use differential dynamic programming (DDP) to

compute and stabilize COM trajectories online for reced-

ing horizon control. In our approach we solve the full

continuous-time ZMP LQR problem over long (tens of

seconds) time horizons online, which would permit easy

integration with sophisticated receding horizon ZMP opti-

mization algorithms.

B. ZMP Dynamics

The planar COM and ZMP dynamics of a legged rigid

body system on flat ground can be written in state space



form as

ẋ = Ax+Bu

=

[

02×2 I2×2

02×2 02×2

]

x+

[

02×2

I2×2

]

u (1)

y = Cx+D(x,u)

=
[

I2×2 02×2

]

x+
−zcom

z̈com + g
I2×2u, (2)

where x = [xcom, ycom, ẋcom, ẏcom]
T , u = [ẍcom, ÿcom]

T ,

y = [xzmp, yzmp]
T , g is a constant gravitational acceleration,

and zcom is the COM height. Note that unlike the formula-

tions commonly found in the literature (e.g., [2], [4]), we do

not include the 3rd-order derivatives of the COM. Assuming

the COM height, zcom, remains constant, the term D(x,u)
becomes Du, and the ZMP outputs become linear (resulting

in the well-known linear inverted pendulum dynamics). In

practice, this is often a reasonable assumption to make

despite violations that occur during operation. We use this

simplification to derive the closed-form LQR solution in

Section III.

C. Piecewise-Polynomial ZMP Trajectories

Reference ZMP trajectories are typically defined with

respect to a sequence of desired footsteps. One approach is

to use a simple piecewise linear trajectory, where the centers

of each footstep define the knots and the timing is a function

of the desired walking velocity. More generally, we assume

that desired ZMP trajectories, yd(t), can be described by

continuous piecewise polynomial of degree k with n breaks

at tj (with t0 = 0 and tn = tf ):

yd(t) =

k
∑

i=0

cj,i(t− tj)
i, (3)

for j = 0, ..., n − 1 and ∀t ∈ [tj , tj+1). Figure 1 illustrates

example piecewise linear and cubic spline ZMP trajectories

defined with respect to a sequence of planned footsteps.

(a) Piecewise linear (b) Piecewise cubic spline

Fig. 1. Reference ZMP trajectories for a footstep plan. The ZMP
trajectory (blue line) passes through each stance foot in sequence and can
be represented as a piecewise linear function (left), cubic spline (right), or
other piecewise polynomial.

III. LQR DESIGN

We formulate the optimal ZMP tracking controller by

solving a continuous-time LQR problem. Given desired ZMP

trajectory, yd(t), we formulate:

minimize
u(t)

∫

∞

0

(

‖y(t)− yd(t)‖
2
Q + ‖u(t)‖2R

)

dt

subject to Q = QT > 0

R = RT > 0

yd(t) = yd(tf ), ∀t ≥ tf

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(4)

and initial conditions x(0) = x0. Here Q and R explicitly

trade off ZMP tracking performance against cost of acceler-

ating the COM. Note that we have placed a more restrict

requirement on Q that it be positive definite. As shown

below, this is important to guarantee that our closed-form

solution exists. Observing the third constraint in (4), this

problem can be rewritten with a cost on state in coordinates

relative to the final conditions:

x̄(t) = x(t)−

[

yd(tf )
02×1

]

(5)

ȳd(t) = yd(t)− yd(tf ). (6)

We then have the LQR problem:

minimize
u(t)

∫

∞

0

g(x̄(t),u(t))dt

subject to Q = QT > 0

R = RT > 0

yd(t) = yd(tf ), ∀t ≥ tf

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(7)

where

g(x̄(t),u(t)) = x̄T (t)Q1x̄(t) + x̄T (t)q2(t) + (8)

q3(t) + uT (t)R1u(t) +

u(t)T r2(t) + 2x̄T (t)Nu(t)

and

Q1 ≡ CTQC (9)

q2(t) ≡ −2CTQȳd(t) (10)

q3(t) ≡ ‖ȳd(t)‖
2
Q (11)

R1 ≡ R+DTQD (12)

r2(t) ≡ −2DQȳd(t) (13)

N ≡ CTQD. (14)

Note that this implies that limt→∞ x̄(t) = 0 in order for the

cost to be finite. From standard LQR theory [8], we know

that the optimal cost-to-go for this problem has the general

form

J(x̄(t), t) = x̄T (t)S1(t)x̄(t) + x̄T (t)s2(t) + s3(t). (15)

The optimal controller is defined as

u∗(t) = −R−1
1 (NBx̄(t) + rs(t)), (16)



where NB = NT +BTS1 and rs(t) =
1
2 (r2(t) +BT s2(t))

and the S1, s2, and s3 terms are computed via the Riccati

differential equation:

Ṡ1 = −Q1 +NT
BR

−1
1 NB − S1A−ATS1 (17)

ṡ2(t) = −q2(t) + 2NT
BR

−1
1 rs(t)−AT s2(t) (18)

ṡ3(t) = −q3(t) + rs(t)
TR−1

1 rs(t). (19)

The key observation here is that there are no time-dependent

terms in (17), so S1 is a constant, given by the steady-state

solution of the algebraic Riccati equation. Furthermore, it

depends on Q, R, and zcom, but does not depend on the ZMP

trajectory, so it can be computed offline and simply used as

a constant at runtime. The optimal feedback controller (16)

can therefore be expressed as

u∗(t) = K1x̄(t) + k2(t), (20)

where the feedback matrix K1 is a constant and

k2(t) = −R−1
1

(

1

2
BT s2(t)−DQȳd(t)

)

. (21)

We discuss an efficient method for computing the s2(t)
trajectory in the next section.

A. Computing s2(t)

The time-varying linear term in the cost-to-go is given by

the linear differential equation:

ṡ2(t) = A2s2(t) +B2ȳd(t), s2(tf ) = 0 (22)

with

A2 = NT
BR

−1
1 BT −AT (23)

B2 = 2(CT −NT
BR

−1
1 D)Q. (24)

Assuming ȳd(t) is described by a continuous piecewise

polynomial, this system has an explicit solution given by:

s2(t) = eA2(t−tj)αj +

k
∑

i=0

βj,i(t− tj)
i, (25)

for all t ∈ [tj , tj+1) with αj and βj.i vector parameters to

be solved for. Taking

ṡ2(t) = A2e
A2(t−tj)αj +

k
∑

i=0

A2βj,i(t− tj)
i

+

k
∑

i=0

B2cj,i(t− tj)
i (26)

= A2e
A2(t−tj)αj +

k
∑

i=1

iβj,i(t− tj)
i−1 (27)

requires that

βj,0 = B2c0

A2βj,i +B2cj,i = (i+ 1)βj,i+1, i = 0, ..., k − 1

A2βj,k +B2cj,k = 0.

The remaining term for the controller (20) can be straight-

forwardly computed given the solution to s2(t):

k2(t) = −
1

2
R−1

1 BT eA2(t−tj)αj +

k
∑

i=0

γj,i(t− tj)
i, (28)

where

γj,i = R−1
1 DQcj,i −

1

2
R−1

1 BTβj,i. (29)

Algorithm 1 solves for the parameters of s2(t) and k2(t)
backwards in time. The algorithm complexity is O(nk).
Therefore, if the trajectory is piecewise linear (k = 1) with

one segment per footstep, the computation time is linear in

the number of footsteps.

For this algorithm to work, A2 must be full rank. We can

rewrite A2 in block diagonal form as

A2 =

[

0 (S1,2 +QD)R−1
1

−I ST
1,3R

−1
1

]

, (30)

where S1 =

[

S1,1 S1,2

ST
1,2 S1,3

]

. The inverse can be expressed

as,

A−1
2 =

[

[

(S1,2 +QD)R−1
1

]−1
ST
1,3R

−1
1 −I

[

(S1,2 +QD)R−1
1

]−1
0

]

. (31)

We then have that A2 is full rank if and only if (S1,2+QD)
is invertible. Recall that Q = QT > 0 and D is a positive

scaling of the identity matrix. Therefore, A2 is invertible if

S1,2 is full rank. Since S1 is a constant, this property can

be ensured at design time (empirically S1,2 is always full

rank for admissible costs, but a formal statement is difficult

to make since the continuous algebraic Riccati equation does

not have a closed-form solution).

Data: A2, B2, degree k piecewise polynomial ȳd(t)
with n breaks

Result: αj , βi,j , γi,j , ∀j ∈ {1, . . . , n}, ∀i ∈ {0, . . . , k}
for j = n, . . . , 1 do

βj,k = −A−1
2 B2cj,k;

γj,k = R−1
1 DQcj,k − 1

2R
−1
1 BTβj,k;

for i = k − 1, . . . , 0 do

βj,i = A−1
2 ((i+ 1)βj,i+1 −B2cj,i);

γj,i = R−1
1 DQcj,i −

1
2R

−1
1 BTβj,i;

end

if j = n then

αj = eA2(tn−tj)\
(

−
∑k−1

i=0 βj,i(t− tj)
i
)

;

else

αj = eA2(tj+1−tj)\
(

αj+1 + βj+1,1 −
∑k−1

i=0 βj,i(t− tj)
i
)

;

end

end

Algorithm 1: Solve for parameters of s2(t) and k2(t).



B. Computing the COM Trajectory

It is often useful to compute the COM trajectory, x(t),
that corresponds to the desired ZMP trajectory to design

consistent whole-body walking motions. The COM trajectory

can be solved for in a similar manner as the affine terms in

the optimal controller (20).

Substituting (20) into the dynamics (1), we have

ẋ(t) = Ax(t) +B (K1x(t) + k2(t))

= (A+BK1)x(t) +Bk2(t). (32)

Since the solution k2(t) is the result of another linear system

cascaded in front of this one, it is conceptually simplest to

solve them jointly. We define:

z(t) =

[

x(t)
s2(t)

]

(33)

ẏ(t) = Azz(t) +Bzȳd(t), (34)

where

Az =

[

A+BK1 − 1
2BR−1

1 BT

0 A2

]

(35)

Bz =

[

BR−1
1 DQ

B2

]

. (36)

The solution to this system, as in the above, has the general

form:

z(t) = eAz(t−tj)aj +

k
∑

i=0

bj,i(t− tj)
i. (37)

Algorithm 2 solves for the coefficients of (37) forward in

time. Note that it is possible to reuse the parameters, βi,j ,

returned from Algorithm 1 and thereby only solve for the

top half of bj,i.

Data: x(0), Az , Bz , degree k piecewise polynomial

ȳd(t) with n breaks

Result: aj , bi,j , ∀j ∈ {1, . . . , n}, ∀i ∈ {0, . . . , k}
x = x(0);
for j = 1, . . . , n do

bj,k = −A−1
z Bzcj,k;

for i = k − 1, . . . , 0 do

bj,i = A−1
z ((i+ 1)bj,i+1 −Bzcj,i);

end

aj =

[

x− bj,1

αj

]

;

x =

[

I

0

]

eAz(tj+1−tj)aj +
∑k−1

i=0 bj,i(tj+1 − tj)
i;

end

bj,1[1 : 2] = bj,1[1 : 2] + y(tf );

Algorithm 2: Solve for the COM trajectory, x(t).

IV. EXPERIMENTS

Below we describe an application to ZMP stabilization and

trajectory replanning with the Atlas humanoid robot designed

by Boston Dynamics (Figure 2). More information about the

Fig. 2. The Atlas humanoid built by Boston Dynamics, Inc.

controller implementation [9], [10] and footstep planner [11],

[12] are available in previous publications. In addition, code

that implements Algorithms 1 and 2, along with a variety of

Atlas walking examples, is available in the Drake software

library [13].

A. Atlas ZMP tracking and online adjustment

To use the ZMP tracker on Atlas, we first optimize a

footstep plan from the robot’s current pose to a goal pose.

From this footstep plan we generate a reference ZMP tra-

jectory, ȳd(t), that linearly interpolates between the centers

of the desired foot locations. We compute S1 from the

algebraic Riccati equation once offline and solve for s2
online using Algorithm 1. The controller attempts to stabilize

the reference ZMP trajectory by descending the cost-to-go

function (15) subject to the instantaneous dynamics and input

constraints of the system in a quadratic program (QP) [10].

This separation of planning and execution is sufficient when

the desired foot locations and COM trajectory can be tracked

accurately, which is the case in simulation or in hardware

when walking at moderate speeds on flat ground.

However, the real world inevitably causes some error in the

positioning of the feet, and that error increases as the robot

moves its feet faster or traverses uneven terrain. Error in

the foot locations can result in the reference ZMP trajectory

moving to the edge of the foot or even leaving the support

polygon entirely. Fortunately, the closed-form solution for

s2(t) allows the system to recover from foot placement

error online. Any time a foot is in contact with the ground,

we adjust the corresponding foot placement in the footstep

plan to match the current estimated position of that foot.

From this modified foot placement we compute a new ZMP

trajectory, ȳd(t), and a new solution for s2(t). We do not



need to recompute S1 since it is time invariant and does

not depend on ȳd(t). For a ZMP trajectory corresponding to

16 footsteps (with 35 linear ZMP trajectory segments), this

entire process requires approximately 300 microseconds on

an Intel i7 at 3 GHz, allowing us to recompute the optimal

controller alongside our control loop.

Estimated

Planned 

Footsteps ZMP

(a) Simulation

Estimated

Planned 

Footsteps ZMP

(b) Hardware

Fig. 3. Comparison of desired vs achieved footstep and ZMP tracking in
simulation and hardware. In each example, the ZMP trajectory and optimal
tracking controller are being recomputed online after every step.

We demonstrate our approach with a plan consisting of 16

footsteps during which Atlas moves forward 2 meters and

turns 90 degrees to the left. Figure 3 shows the planned and

sensed footstep locations and ZMP trajectory for simulation

and hardware. The sensed positions of the feet were com-

puted from the forward kinematics of the robot’s estimated

state, which fuses information from its onboard IMU and leg

odometry [10]. The robot’s estimated COM position, x, and

velocity, ẋ, were sampled at 60 Hz and filtered using LOESS

smoothing with a span of 30 samples [14]. The smoothed

COM trajectory was used to compute COM acceleration, ẍ,

from which ZMP position, y, was computed using (2).

To demonstrate the effectiveness of the online recomputa-

tion of ȳd(t) and s2(t), we intentionally turn down the gains

that control the position of the robot’s feet by a factor of 10.

This results in very poor foot placement tracking, shown in

Figure 4. By continually recomputing new ZMP trajectories

and optimal controllers for the estimated positions of the feet,

the robot is able to complete the entire walking plan despite

a mean error of 10 cm between the planned and sensed

positions of the feet. Without the online recomputation of

ȳd(t) and s2(t), this level of footstep tracking error causes

the robot to fall after the first footstep.

V. CONCLUSIONS

We derived a closed-form solution for the optimal time-

varying LQR for ZMP trajectories and showed that the

closed-form COM trajectory could be computed with few

additional operations. Sub-millisecond solve times allow

optimal feedback controllers to be recomputed online as the

underlying ZMP trajectory changes due to tracking errors or

Estimated

Planned 

Footsteps ZMP

Fig. 4. Walking with intentionally poor foot tracking. The tracking gains on
the x and y positions of the feet were reduced by a factor of 10 to introduce
substantial error into the footstep positions. By continually recomputing the
ZMP trajectory and tracking controller, we maintain stable walking despite
this disturbance.

changes in the walking pattern. We described an application

to stable walking control on a physical and simulated Atlas

humanoid robot.
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