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 §1. Summary. 

   The problem to select the best population in some specified sense from 
several assigned populations in the light of samples drawn from them is 
very important in practical situations. An experimenter who is faced with 
this problem may select the best population according to a certain statistical 

procedure in view of the informations supplied by samples drawn from 
these populations. 

   In this connection several different statistical procedures have been 
introduced by many authors such as Bahadur [2], Bahadur and Robbins [3], 
Bechhofer [4], [5], Bechhofer and Blumenthal [6], Bechhofer, Dunnett and 
Sobel [7], Dunnett [8], Fabian [9], Girshick [10], Gupta and Sobel [11], 
Mosteller [13] and Paulson [14]—[ 18] Taylor and David [25], Truax [26]. 
They have discussed this problem from several different viewpoints such as 

slippage aspect grouping aspect and ranking aspect. Some of them appeal-
ed to sequential multiple decision procedures which were not necessary 
closed. On the other hand authors such as Armitage [1], Schneiderman 

[21], Schneiderman and Armitage [22], Sobel and Wald [23], Sobel [24] 
appealed to restricted or closed sequential procedures which, however, were 
not necessarily multiple decision procedure. 

   It was Paulson [19], [20] who presented a class of closed sequential 

multiple decision procedures for a set of significance level a in 0<a<1 and 

for a certain configuration of population means for which the probability 

by which the best population (having the largest means) among several 

normal populations is selected is larger than the prescribed value 1–a. 

   The object of this paper is to generalize the results of Paulson [19], 

[20] in two directions. In the first place we shall be concerned with a 
more general class of population distributions, that is, one parameter 
exponential distributions. In the second place we shall discuss with a 
configuration of population parameters which are more general than that 
which Paulson [19], [20] did substantially consider. Such a generalized 
configuration of population parameters is indeed both subtle and necessary 
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in our generalized set-up dealing with one parameter exponential distribution. 
   It is shown in this paper that the essential aspect of our closed 

sequential statistical procedures (CSSP) can be established in the frame of 
additive family of sufficient statistics whose notion was introduced by 
Kitagawa [121. It is also noted that the restrictions on population distrib-
utions are required to establish our results. However these restrictions 
are so mild that we can easily obtain various examples regarding normal 
distributions, Z—distributions, Poisson distributions and binomial distributions.

   §2. Definitions and introduction. 

   Definitions. (I) . Let H, be a population whose probability density 
function with respect to a common measure over the real line is given by 

(2. 1)f(ui, z-,)(111(u,)=exPr,u,+b(ri)+a(u,)}cliqui), 

defined over — co <ui< cc where Ti is a real parameter whose value is 
unknown to us, where b(ri) and a(ui) are real valued known functions of 
Ti and u,, respectively, and where b(7,) has the first and the second 

derivatives b' (Ti) and b'' (Ti) which are continuous and b' (Ti)is strictly 
monotone decreasing with respect to Ti in a certain finite interval of 

      2,• • k). A population is said to be of an exponential type when 
its probability density function is the form (2. 1) . 

   Notation. (I). Let order k values r1, in the ascending order of 
magnitude, and write in the form -1-(1)<1:(2):<'••<7.(k)• 

   Definition. (II). In what follows in this paper, the best population 
among k populations of exponential type means the population which has 

the largest parameter value r(k) in case r(1) -7(2):<'°•—<---r(k) and it means a 
populaton which has been selected by certain chance mechanism among s 
populations whose values of the parameters are equal to r(k), when it holds 
true that -c(1)<•.-< r(k-s)<T(k-s+1)=- = r(k) for some s>1. 

   Notation. (II). We denote by(;64,7(k)21,• • — 54(r(k), 2) where 
 — (21,•••,2k-1), and 2,> .0, 1, 2,• • •, k— 1), a configuration of population 

parameters satisfying the conditions 7i= r(k)- d —2, for a positive constant 
value (i=1, 2,•••,k— 1). 

   In what follows we shall be concerned with a certain type of closed 
sequential statistical procedure whose specification will be given in § 3. A 

general aspect of any closed sequential statistical procedure may be enun-
ciated as follows : 

   (1) There is an assigned positive integer N>2. 

   (2) There is an assigned sequence of positive integers (m1, rn2,••., 
mN)• 

   (3) Let us consider k populations and let us draw a sample of size 
m1 from each population. Let us construct a rejection region from k
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populations which can be determined by means of a preassigned constant 
of significance level a and observed values of the sample. Then we decide 
whether each population is rejected or not, by a test defined by the rejection 
region and by the sample. 

   (a) In this case, if only one population was not rejected, then we do 
not draw any more sample and we can and we shall decide that population 
as the best one. 

   (b) If more than one populations were left as the candidates for the 
best one, then we shall proceed to the following second stage. 

 (ii). In the second stage, let us consider those populations which were 
not rejected at the first stage enunciated in (i). Let us draw an additional 
sample of size rn2 from each population and make a pooled sample of size 
rni + m2 for each population. Let us construct a rejection region for popu-
lations which can be determined by means of a preassigned constant of 
significance level a and observed values of the sample. Then we decide 
whether each population is rejected or not, by a test defined by the rejec-
tion region and by the sample. 

   (a) In this case, if only one population was not rejected, then we do 
not draw any more sample and we can and we shall decide that population 
as to be the best one. 

   (b) If more than one populations were left as the candidates for the 
best one, then we shall proceed to the following third stage and so on. 

   (1'). (3<l<N). We continue these steps in a sequential way, so far 
as the best population has not been decided and the step number 1 is 
smaller than a predetermined integer N. 

   ((N±1)°). If more than one populations were left as the candidates 
for the best one at the N—th stage, we shall decide uniquely the best popu-
lation among those populations which have not been rejected until the 
N—th stage, by use of certain chance mechanism.

   §3. The purpose of this paper. 

   Definition. (III). We denote by 7:)=(T, d) a class of configuration aj 
 r(k), A) of k populations which have the probability density functions of 

exponential type satisfying the following conditions : 

   (1) The parameter 7(k) belongs to a certain finite interval T. 
   (2) The set of (k — 1) parameter ri=r(k)— ZI-2, (i = 1, 2.• • .,k— 1) satisfies 

the condition that 

(3. 1)Min (b'(z-i)—b'(r(k)))-=d(z-(k), 2)�_d. 

   Under these definitions and assumptions, the main results of this paper 
are concerned with the following two purposes (1) and (2) : 

   (1) To give a family of closed sequential statistical procedure such that, 
for each of them, the probability by which the best population is selected
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is larger than 1—a for each assigned a in 0 <a<1 and for each set of k 

populations of exponential type having a configurations zs (T, d), where the 
interval T and the positive constant d are arbitrarily preassigned. We 
shall denote such a class of closed sequential statistical procedures by CSSP 
"(

a ; d, T, d). (2) To specify a closed sequential statistical procedure which 

belongs to a class CSSP (a ; T, d) and which has the minimum number 
of stages for all configurations belonging to d). However it is hard 
to establish this object, therefore we shall present several examples in § 7. 
In what follows, the constants k and d which are enunciated in the previous 
sections are assumed to be given and fixed.

   §4. The enunciation of the closed sequential statistical procedure. 

   Now our closed sequential procedure, which is denoted by S, for each 
value of 0 in the interval 0<e<eo, is defined as follows : 

   (0) Let us define 

(4. 1) N(o) =log(k—1)/a)                             Oh
o(0)J 

and 

(4. 2)X"' (0) ----K(0)+ne, n=1, 2,...,N(0), 

where we put 

(4. 3)K(0) _log((k— 1)/a)                          ho (e)  

and where ho(e) is given as a root of the equation (6. 1. 19) explained 
afterwards. 

   Since the size mi of sample drawn at the i—th stage is equal to a 
certain prescribed constant m, for i-= 1, 2,• • •,N(0), we can and we shall 
assume that m1= • • mN(0)= 1 without loss of generality. 

   (i) In the first stage, let u(,1)—W1) be a statistic defined by a sample 
of size one drawn from the population M1), (i— 1, 2,• • -,k) respectively. Let 
us arrange the set of k values UP),•••,UP) in the ascending order of magni-
tude, and write them in the form UR;<• • •  <V1;. If the following relation 
holds true 

(4. 4)M<V1; + A(1)(0), 

then we reject the population in 1<i<k —1. Now our statistical proce-
dure proceeds in either one of two alternative ways : (i) (a) and (i) (b). 

   (i) (a) In this case, if only one population H was not rejected, then 
we do not draw any more sample and we can and we shall decide that 
population H as to be the best one. 

   (i) (b) If more than one populations were left as the candidates for
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the best one, then we shall proceed to the following second stage. 
   (ii) In the second stage, let us consider those populations which were 

not rejected at the first stage (i), and let (i 1, 2,• • •,k1) be a set of k1 
statistics each of which U,7' came from the population 111," which was not 
rejected at the first stage (i), (i-1, 2,—,k1). Let us now rewrite U;11) and 
11./T as W,'" and 112) (i-1, respectively. Let Tc2i be a statistic 
defined by an additional sample of size one drawn from 11:2), (i— 1, 2,• • •,/?,), 
and put that 

(4. 5)UF=Wi`2)--1-u2), (i -1, 2,•••,k1). 

Let us arrange the set of k1 values U2),•••,U(2,) in the ascending order of 
magnitude, and write them in the form Uti9.;<••°<U,2,),. If the following 
relation holds true 

(4. 6)(I,2;<UT)-!--A")(0), 

then we reject the population with the statistic LI2; (i= 1, 2,•••,k1 — 1) 
respectively. Now our statistical procedure proceeds in either one of two 
alternative ways : (ii) (a) and (ii) (b). 

   (ii) (a) In this case, if only one population HT) was not rejected, 
then we do not draw any more sample and we can and we shall decide 
that population HT) as to be the best one. 

   (ii) (b) If more than one population were left as the candidates for 
the best one, then we shall proceed to the following third stage and so on. 

   (1')(3<l<N(0)). In the l-th stage, let us consider those populations 
which were not rejected at the (/— 1)-th stage and let UT,-1) i for i-1, 2, 

      be a set of k1_1 statistics each of which U;1-1) came from the 
population _11;f-" which was not rejected at the (1-1)-th stage, (i— 1, 2,—, 
k1_1). Let us now rewrite U,ci-') and in " as T47?) and 1I1), i=1, 2,•••k1 
respectively. Let 141) be a statistic defined by an additional sample of size 
one drawn from Hi" (i=1, 2,--,k1_1) and put that 

(4. 7) (i== 1, 2,•••,k1_1). 

Let us arrange the set of k1_1 values TR), •••,Mil)_, in the ascending order of 
magnitude, and write them in the form (14_<•-•<U _1). If the following 
relation holds true 

(4.8)M"<tN_,)± A(1) (e), 

then we reject the population ITV) with the statistic Un (i= 1, 2,• 
respectively. Our statistical procedure proceeds in either one of two alter-
native way : (1') (a) and (1') (b). 

   (1°) (a) In this case, if only one population n_1) was not rejected, 
then we do not draw any more sample and we can and we shall decide 
that population HgLi) as to be the best one. 

   (1') (b) If more than one populations were left as the candidates for 
the best one, then we shall proceed to the following stage. We continue
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these steps in a sequential ways, so far as the best population has not 
been decided and until the step number / is smaller than or equal to a 
predetermined integer N(0). If we came to the case of (N(0)') (b), then 
we proceed to the following (N(0) + 1)-th stage. 

   ((N(@) + ) °). In this stage, let us consider those populations which 
were not rejected at the N(0)-th stage and let U,(iN"" for i= 1, 2,•••,kN(0) 
be a set of k,,,, statistics each of which U;;")) came from the populations 
-11;tv(°)) which was not rejected at the N(0)-th stage, (i= 1, 2, • • •,k,(0)). Let 
us now rewrite U.V'°)) and Hre)) as IT7i(N(')'' and 11T")±1) i-1, 2, • • •,kN(0) 
respectively. Let U,(N")+1) be a statistic defined by an additional sample of 
size one drawn from liN(0)+1) (i= 1, 2,• • •,k(A-0)+1)) and put that 

(4. 9)VTy(0)+1;_ _wr(0)+1)tC(0)-1-1), 

     2,•••,k,(0). Let us arrange the set of kN(0) values M")±1), • • U'4:;+1) in 
the ascending order of magnitude, and write them in the form Ur9)+1)< • • • 
<LT;,\;,,°Z1).Then we can andwe shall decide thepopulationH4v),(7009);=-1)as to 

                           

.
) 

be the best one. 

   In this case, when we use the closed sequential procedure So for k 

populations each of which belongs to the exponential type, we can obtain 
main theorem which we shall enunciate it in the next section.

   §5, The enunciation of theorem. 

   In order to enunciate a main theorem, let us introduce the following 
notations : 

   Let us denote by P[H(k) Se, 64(7(k), 2)] the probability by which the 
best populations of exponential type is rejected by a certain specified 
closed sequential statistical procedure So under the configuration of popula-
tion parameters 54(7(k), A). 

   Then we have the following 
   Theorem. For a set of constants k, a, 0, 4} which were assigned 

previously in 0<a<1, k%2, 0<0<d and d>0, we have 

(5. 1)P[H(k) S0,64(r(k), 2)]<a•

   §6. Proof of the theorem. 

   6. 1. Preliminaries. 

   In this section let us prove the main theorem in case when k = 2 and 
when k>2 separetely. This is done not only because the case when k = 2 
is important in itself, but also because the probability by which the best 

population among k populations of exponential type having a configuration 
of k population parameters 64(7(k), 1) is rejected is not larger than the 

(k-1) times of the probability by which the best population between two 
populations is rejected under the same parameter configuration, as we shall
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varify later. 
   Before we enter into the proof of the theorem in the case when kr-2, 

let us enunciate the following preparations : 
   First of all let us assume -z-2>71 and let us put 

(6. 1. 1)f (u 7h) -'eXP rhu id b(rh) a(7, tij), 

for i, 1, 2 j=1, 2,•- and put that for each 0 in 0<0<d 

                                      8, 71) 
(6. 1. 2) z,-- log .1f(142-l'•j-12••                      f(14,,J, "ri).f(u, i+ 0 , ,2)" 

   Lemma 1. (Wald [27], p. 158) Let z be a random variable such that 
the following three conditions are fulfilled: 

   (A) The expected value exists and is not equal to 0. 
   (B) There exists a positive E such that P[exp z<1—E]>0 and P 

[exp z-;=-1+E]>0. 
   (C) For any real value h the expected value Eexp(hz)—g(h) 

exists. 
   Then there exists one and only one real value h,--;LO such that 

(6. 1. 3).E'exP(hoz) = 1. 

   Lemma 2. Let z; be a set of independent random variables for 
which (6. 1. 1) and (6. 1. 2) are defined. Then each random variable z, 

in a set of z.,} satisfies the three conditions (A), (B) and (C) enunciated 
in Lemma 1. 

   Proof : Ad(A). For each z, we have 

(6. 1. 4) (72 r1)-E/42,j— /41,j— 
                           (r271)b'(71)b'er2) — 0 

                    >a(d—e)>0, 

under the configuration 04(72, 21), where J and d are two specified positive 

constant values given in §3. 
   Ad(B). For any assigned constant value of 0 in 0<e<d and for any 

assigned constant value of e in O<E<1, if we have that the following 

probability 

(6. 1. 5) P[exp 54(7'2, 21)] 
                              (C2 —71)-116g(1-6)54(12, 2,)] 

is equal to 0, then the following equation holds true 

(6. 1. 6) lAtt2,;_>_u1,j+0+ (12— -1)-110g(1— 6) 04(12, 21)] = 1, 

for any constant values 0 and E in 0<0<d and in 0<E<1. This contradicts 
to the definition of the measure P, since the random variables u1,, and u2,; 
are mutually independent. 

   Similarly we can verify the second part of (B). 
   Ad(C). For any real value of h we have
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(6. 1. 7) g(h)---E>exph(7-2- 

               rexp; t (72 - 71)h--HT2u2,1±b(72)-Ha(u2i);diqu2,J) 
                 x exPH7,----72)h-1-7-Yui,,±b(ri)±a(ui,j)}d/qui,J) 

               exp (7 72)0 
             ,,expb(ri) +b(72) -H (ri 1'2) he-b((r2-ri)h+72) 

                  --b((7 1--72)h±1)• 

   The immediate consequence of Lemma 2 is the following 
   Lemma 3. Let 3.z; be a set of independent random variables for 

which (6. 1. 1) and (6. 1. 2) are defined. Then there exists one and only 
one real value ho such that 

(6. 1. 8)Eexphoz.;;-1, (j=1, 2,• • •). 

   Lemma 4. The value ho in (6. 1. 8) is negative. 
   Proof : In virtue of (6. 1. 4), the proof is immediate from the proof of 

Lemma 1 (Wald [27], p. 159). 
   The immediate consequence of Lemma 3 and Lemma 4 is the following 

   Lemma 5. Let B (0) be any assigned positive function defined over 
the interval 0--(0<d. Let us terminate the sampling at the n-th stage, if 

(6. 1. 9)B(0)‹expZ(")k (m=1, 2,•••,n-1), 

and 

(6. 1. 10)expZ(") <B(0), 

where z1, j-1, 2,•••,n are defined by (6. 1. 1) and (6. 1. 2), and where we 

have put Z(n)- zi. 

   Then we have 

   (i) For each 0 in 0<0<d the value of ho(0) is determined so that 
ho(0)<0 and that 

(6. 1. 11) expZ(n)110(0) =1. 

       For every n>_1 we have 
                                    2 n (6. 1. 12)B(6)"")  TH H 

                     exp(Z(n)) <B(0) 

   Proof : Ad (1) Since is a set of independent and identically distri-
buted random variables, we have 

(6. 1. 13) E'expZ(n)ho(0)-11 E'expziho(01)=1. 
                                                     j=1 

   Ad(2). In virtue of (I), we have
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(6. 1. 14) 1=E  exp  Z(n)ho  (0) 

            =I fexp)Z(n)ho(0)n.' 
                                                                               i=11=1 

                    exp (Z(n))< B(0 ) 

                                         2 n                 >B(0)h°'"  TH H f(ui,, , 7j) dgui,j ) •                                                          i=1 j=1 
                           exp (Zot)) <B(0) 

   Lemma 6. (Paulson [19], p.176) If .17.; is a sequence of independent 
and identically distributed random variables with a negative expectation 
and b>0, then we have 

                                 (6. 1. 15)               P EY,>b for some n<00j<exp-hob, 

where ho is the non-zero root of Eexp3hr =1. 

   Lemma 7. Let us put Z(")=-E z, for n=1, 2,••-, where z.,; are defined 
                                                   j=1 

by (6. 1. 1) and (6. 1. 2). Let B(0) be any assigned positive, however 
smaller than one, function defined over the interval 0<e<d. Let ho(0) be 
a value such that ho(e) <0 and that (6. 1. 11) is satisfied. Then we have 

(6. 1. 16) P[Z(n)‹logB(0) for some n‹.0]<B(0)-h0(0) 

   Proof : In Lemma 6, let us put that b--logB(0) and Yi= (j=1, 
2,-). By use of (6. 1. 4), the relation (6. 1. 16) follows immediately from 
the relation (6. 1. 15). 

   Lemma 8. For each assigned 0 in 0<e<d and for any assigned a in 
0<a<1, let us assume that the following relation 

(6. 1. 17)- log B(0)>h,(6)'loga 

hold true. Then we have 

(6. 1. 18)P[Z(n)<log B(0) for some n<cc]<a. 

   Proof : The proof of this lemma follows from Lemma 7 immediately. 
   Lemma 9. For each assigned 0 in 0<0<d, the root ho(0) defined by 

(6. 1. 11) is given by the root of the following functional equation 

(6. 1. 19) b (2 -i) VT-2) =b(ri*) + b(r2*) 0 ho (0) (r2 r1), 

where 

(6. 1. 20)ri* = ± (r1 - 72) ho (0), 

(6. 1. 21)r2*= r2 (r2 ho (e) • 

   Proof : For each assigned 0 in 0<e<d, the proof follows immediately
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from the substitution of ho (0) to h in (6. 1. 7). 

   6. 2. The proof of the theorem in the case when k -2. 

   First of all, in order to prove the theorem when k —2 let us introduce 
the following notations for the sake of convenience : 

   For each / (1</__<N(0) +1), let us denote by D1)((1, 2) ; 1) the 
stochastic event by which both population H1 and H2 are not rejected before 
the l-th stage and which the population H2 is rejected at the l-th stage by 
our statistical procedure S0. Let us denote by Div(0)±1 ( (1, 2) ; 1) the sto-
chastic event by which the population H2 is rejected at a certain stage by 
our statistical procedure S0. 

   In this connection let us denote by P[ H(2) So, 64 (7(2)5 2) the probability 
by which the population H2 is rejected by our statistical procedure S0, 
under the configuration of population parameters 64(7(2), 2). Then we have 
the following 

   Theorem. We have for each assigned a in 0<ce<1 

(6. 2. 1)P[11(2) So, 54(7(2), 2)]<a. 

   Proof : Firstly let us consider the case when 72 = 7(2). 
Then we have 

(6 2. 2) P[H(2)' Se, 54(7(2), 2)] 
         =---P[DN(0)+1((1, 2) ; 1) So, 64(7(2), 2)] 

        ---P[1:4n)((1 , 2) ;1) for some n (1<n<N(0)±1) S9, 64(7(2), 2)] 

        _prEzi<(4i2)K(0) for some n<co ,So, 64(7(2), 2) , 

where we have put 

(6. 2. 3)zi= (T2-71) (u2,1— /11,1 — 0), (i=1, 2,••.). 

For each assigned 0 in 0<0<d, let us consider the root ho(0) of the 
following equation 

(6. 2. 4)E[exp(zho(0))]= 1. 

Since we have 

(6. 2. 5)E[z]= (r2 ri) (b'eri)—b'(r2) —0) 
                   >4(d-0)>0, 

there exists one and only one negative root ho(0) of (6. 2. 4) in virtue of 
Lemma 4. In virtue of (6. 1. 18) the probability in the right hand side of 

(6. 2. 2) does not exceed the following 

(6. 2. 6)exp—h0(0)(4+2)K(0)1 
                      (4+ 2)/dlog(l/a)Ka, 

where ho(0) is calculated from (6. 1. 19)— (6. 1. 21).
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   In case when  71= r(2), we can also verify the theorem by the similar 
discussions to that in case 72— 7(2). 

   6. 3. The proof of the theorem in case when k>2. 

   Let us denote by 54(7k, 2) the parameter configuration (k)= rk—r,+J 

    2,>0 for j — 1, 2,—, k— 1. Paulson [19] has used the following result 

under our notations. 

   Lemma 10. (Paulson [19], p. 176) we have 

(6. 3. 1) P[nk S0, 64(1k, 2)] 
                       k —1 

          EP[Pk")—U;")<A(")(0) for some n (1<n<N(0)--i- 1) S0, 
                        =1 

           64(1k, 2)]. 

   Lemma 11. We have 

(6. 3. 2)P[H(k) SO, 64(7(k), 2)]=-r-P[lik S0, 64(70, 2)]. 

   Proof : Since our closed sequential statistical procedure So defined by 
§4 is symmetric with regard to (k), the proof follows immediately. 

   Hence we have the following main theorem enunciated in §5. 

   Theorem. For a set of constants k, a, 0, z1} which were assigned 
previously in 0<a<1, k>2, 0<e<d and zl>0, we have 

(6. 3. 3)P[11(k) So 04(7(k), 2)]__<a• 

   Proof : The proof is immediate from Lemma 10, Lemma 11 and 
(6. 2. 1). 

   Lemma 12. For any assigned integers ji in 1<js<k — 1, i= 1, 2 ; j1 j2i 
we have 

(6. 3. 4) P[Uin)—U;;')<A(n)(0) for some n (1<nGN(0)± 1) S0, 04(rk, 0)] 
       =P[Mn)—UW<A(n)(0) for some n (1<n<N(0)+1) , So, 04(1k, 0)] 

   Proof : For any assigned numbers n, j1 and j, in 1<n<N(0)+ 1 and 
in 1.<ji<k — 1, i=1, 2 ; j1-/--j2, the random variables U.',z) and U;2) are identi-
cally distributed under the parameter configuration 64(1k, 0). Hence the 
proof is immediate. 

   Corollary. We have 

(6. 3. 5)P[H(k) S00d(k), 0)] 
                          — 1)P[11(2) S©, 04(1(2), 0)]. 

   Proof : The proof is immediate from Lamma 11 and Lemma 12. 

    §7. Examples. 

   Let us give several examples concerning with the specification of the 
closed sequential statistical procedure which has the minimum number of 
stages with regard to 0 in 0<e<d, where d is a preassigned constant
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which was defined by §3. 

   Example 1. (Mean of normal distribution) . Let , (i= 1, 2, • • • , k ; 

j —1, 2, • • •) be k sequences of independent statistics having their probability 
density function of (2. 1), provided that 

(7. 1) b (71) lq/2, (i — 1, 2, • • .,k). 

   In this case let us determine a value of N(B), defined by (4. 1), with 
regard to 0 in 0<0<4, where d is a preassigned positive constant defined 
by §2. 

   In virtue of (6. 1. 19) we have 

(7. 2)h0(0)-----1±0/4, 

and we have 

(7. 3)Min Oho (0) = d/4 
                                     0<0<4 

therefore we have 

(7. 4)Min N(0)=-4 log((k — 1)/a)/42. 

   Example 2. (Variance of normal distribution) . Let , (i= 1, 2, • • • ,k ; 
  1, 2, ---) be k sequences of independent statistics having their probability 

density function (2. 1), provided that 

(7. 5)re= — (20D-1, (0-,>0), b (7z) =2log(— re), 

(i= 1, 2, • • • ,k). In virtue of (8. 1. 19) we have 

(7. 6) — 0110(0) (k)± d ha (0)) (7(k)— dho (0)) / ((T (k) (c) 1 / (2d) . 

Now let us put that 

(7. 7)00,2= 4-11og (27(0— 4)2 / (4z (k)(r (k)— 4)) 

(7. 8)d2= (1/(r(k)—J) — 1/1-(o) /2. 

   Then we have 

(7. 9)Min N(0) = 2log((k— 1)/a)/(00,24). 
               0<0<d2 

   Example 3. (Scale parameter of exponential distribution). Let ui,i , 
(i= 1, 2, • • •,k ; j= 1, 2 • • •) be k sequences of independent statistics having 
their probability density function of (2. 1) , provided that 

(7. 10) (2 >0) , beri) =log(— (i= 1, 2, • • • ,k). 

   By means of the similar method used in Example 2, we have the 
following minimum value of N(0) with regard to 0 in 0<0 <d3, where we 
put 

(7. 11)d3= 1/(7(k) — 4) — 1/7-(k)•
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(7. 12) Min N(°) = 2log((k -1) /a) / (003J). 
                   o<0<d3 

where we have put 

                         003=2log((2r(k)MJ)2 (7. 13)4
7(k)(7-(k)-• 

   Example 4. (Poisson distribution). Let 3 , i 1, 2, • -,k ; j= 1, 2,• • .) 

be k sequences of independent statistics having their probability density 

function of (2. 1), provided that 

(7. 14)7, = log2i, b(ri) - 21, (i= 1,2, • • -,k). 

Let us put that 

(7. 15)00,4=2[exp(r,k)/2) -exP(r(k)- zi) /22]/ 

(7. 16) (1- exP ziOexPz-(k)• 

By means of the similar method used in the previous examples, we have 
the following 

(7. 17) Min N(°) = 2log((k -1)/a)/ (00,44). 
                 0<0<ch 

   Example 5. (Binomial distribution). Let 3 u,,;} , (i= 1, 2,• • •,k ; j= 1, 2,• • .) 
be k sequences of independent statistics having their probability density 
function of (2. 1), provided that 

(7. 18) vi =log(pi/ (1 -p,)), (0<i),<1), b(ri)-log(1-p,), (i- 1, 2,- 
   By means of the similar method used in the previous examples, we 

have the following. Let us put that 

(7. 19)005- 2 log{ (1-i-exPH-(k)0 (1+exPk(k)--40 L 
                             (1 ± exP(r(k)-'61/2))2 

(7. 20) (1 + exp>z-(k))-2exP (k)i — (1 ± exP 7(k)— 2 ) —2exPr(k)-4, 

then we have 

(7. 21) Min N(0) --- 2log((k-1)/a)/(00,54). 
                   0<0<da
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