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§1. Summary.

The problem to select the best population in some specified sense from
several assigned populations in the light of samples drawn from them is
very important in practical situations. An experimenter who is faced with
this problem may select the best population according to a certain statistical
procedure in view of the informations supplied by samples drawn from
these populations.

In this connection several different statistical procedures have been
introduced by many authors such as Bahadur [2], Bahadur and Robbins (3],
Bechhofer (47, (5], Bechhofer and Blumenthal [6], Bechhofer, Dunnett and
Sobel {77, Dunnett (87, Fabian [9], Girshick [10], Gupta and Sobel (117,
Mosteller (18] and Paulson [14]~[18] Taylor and David {25], Truax [26].
They have discussed this problem from several different viewpoints such as
slippage aspect grouping aspect and ranking aspect. Some of them appeal-
ed to sequential multiple decision procedures which were not necessary
closed. On the other hand authors such as Armitage (1], Schneiderman
(217, Schneiderman and Armitage (22], Sobel and Wald (23], Sobel [24]
appealed to restricted or closed sequential procedures which, however, were
not necessarily multiple decision procedure.

It was Paulson [19], [207 who presented a class of closed sequential
multiple decision procedures for a set of significance level « in 0<<a<{1 and
for a certain configuration of population means for which the probability
by which the best population (having the largest means) among several
normal populations is selected is larger than the prescribed value I-«.

The object of this paper is to generalize the results of Paulson [19],
(207 in two directions. In the first place we shall be concerned with a
more general class of population distributions, that is, one parameter
exponential distributions. In the second place we shall discuss with a
configuration of population parameters which are more general than that
which Paulson [197, [20] did substantially consider. Such a generalized
configuration of population parameters is indeed both subtle and necessary

21



22 Yukio Nomacu1

in our generalized set-up dealing with one parameter exponential distribution.

It is shown in this paper that the essential aspect of our closed
sequential statistical procedures (CSSP) can be established in the frame of
additive family of sufficient statistics whose notion was introduced by
Kitagawa [127. Itis also noted that the restrictions on population distrib-
utions are required to establish our resuits. However these restrictions
are so mild that we can easily obtain various examples regarding normal
distributions, #*-distributions, Poisson distributions and binomial distributions.

§2. Definitions and introduction.

Definitions. (I). Let /I, be a population whose probability density
function with respect to a common measure # over the real line is given by

(2. D FQu v)dr(u) =expiru+b(t)+alu)de(u,),

defined over —co<lu;<oc where t; is a real parameter whose value is
unknown to us, where b(r;) and a(u;) are real valued known functions of
7; and wu;, respectively, and where b5(r) has the first and the second
derivatives b'(z;) and b"(r;) which are continuous and &'(z) is strictly
monotone decreasing with respect to r, in a certain finite interval of
t;(1=1, 2,--, k). A population is said to be of an exponential type when
its probability density function is the form (2. 1).

Notation. (I). Let order k values ty, 7,7, in the ascending order of
magnitude, and write in the form 7y, <ru<---<<zq.

Definition. (II). In what follows in this paper, the best population
among k populations of exponential type means the population which has
the largest parameter value 7y, in case tu,<tu<---<t4 and it means a
populaton which has been selected by certain chance mechanism among s
populations whose values of the parameters are equal to 74, when it holds
true that r,<--- <t y<tp_sy="r=1q for some s>I.

Notation. (II). =~ We denote by 08,(ru; A, A1) = 3,(vw, A) where
A=(4y,,4_y), and 4,20, (i=1, 2,---, k—1), a configuration of population
parameters satisfying the conditions r;=r4—4—2, for a positive constant
value 4(i=1, 2,---,k—1).

In what follows we shall be concerned with a certain type of closed
sequential statistical procedure whose specification will be given in § 8. A
general aspect of any closed sequential statistical procedure may be enun-
ciated as follows:

(1) There is an assigned positive integer N>2.

(2) There is an assigned sequence of positive integers (mu, -,
My).

(3) Let us consider k populations and let us draw a sample of size
my from each population. Let us construct a rejection region from £k
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populations which can be determined by means of a preassigned constant
of significance level @ and observed values of the sample. Then we decide
whether each population is rejected or not, by a test defined by the rejection
region and by the sample.

(a) In this case, if only one population was not rejected, then we do
not draw any more sample and we can and we shall decide that population
as the best one.

(b) If more than one populations were left as the candidates for the
best one, then we shall proceed to the following second stage.

(ii). In the second stage, let us consider those populations which were
not rejected at the first stage enunciated in (i). Let us draw an additional
sample of size m, from each population and make a pooled sample of size
mi+m, for each population. Let us construct a rejection region for popu-
lations which can be determined by means of a preassigned constant of
significance level « and observed values of the sample. Then we decide
whether each population is rejected or not, by a test defined by the rejec-
tion region and by the sample.

(a) In this case, if only one population was not rejected, then we do
not draw any more sample and we can and we shall decide that population
as to be the hest one.

(b) If more than one populations were left as the candidates for the
best one, then we shall proceed to the following third stage and so on.

(I"). (B3KLI<N). We continue these steps in a sequential way, so far
as the best population has not been decided and the step number [ is
smaller than a predetermined integer N.

((N+1)7). If more than one populations were left as the candidates
for the best one at the N-th stage, we shall decide uniquely the best popu-
lation among those populations which have not been rejected until the
N-th stage, by use of certain chance mechanism.

§3. The purpose of this paper.

Definition. (III). We denote by F(T, d) a class of configuration 9,
(7w, 4) of k populations which have the probability density functions of
exponential type satisfying the following conditions:

(1) The parameter r belongs to a certain finite interval T.

(2) The set of (k—1) parameter r,=r4,—4—24, (=1, 2.---,k—1) satisfies
the condition that

3. 1) Min (6'(z) —0'(ze)) =d(zy, ) =d.

1=sisk-1
Under these definitions and assumptions, the main results of this paper
are concerned with the following two purposes (1) and (2):
(1) Togive a family of closed sequential statistical procedure such that,
for each of them, the probability by which the best population is selected
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is larger than I—« for each assigned « in 0<<a<{l and for each set of %
populations of exponential type having a configurations (T, d), where the
interval T and the positive constant d are arbitrarily preassigned. We
shall denote such a class of closed sequential statistical procedures by CSSP
(a; 4, T,d). (2) To specify a closed sequential statistical procedure which
belongs to a class CSSP («; 4, T, d) and which has the minimum number
of stages for all configurations belonging to §(7, d). However it is hard
to establish this object, therefore we shall present several examples in § 7.
In what follows, the constants %k and 4 which are enunciated in the previous
sections are assumed to be given and fixed.

§4. The enunciation of the closed sequential statistical procedure.

Now our closed sequential procedure, which is denoted by S, for each
value of 0 in the interval 0<{6<Ce,, is defined as follows:
(0) Let us define

4. D N(6) :,log_(%%ié%/d,@
and
4. 2) AP0 =K(0)+nb, n—=1, 2,---,N(6),
where we put
_log((k—1)/c)
(4. 3) K(0) === T ()4

and where %,(0) is given as a root of the equation (6. 1. 19) explained
afterwards.

Since the size m; of sample drawn at the i~th stage is equal to a
certain prescribed constant m. for i=1, 2,---,N(9), we can and we shall
assume that m, === =mye,=1 without loss of generality.

(i) In the first stage, let #"=U{" be a statistic defined by a sample
of size one drawn from the population 1", (i=1, 2,---,k) respectively. Let
us arrange the set of k2 values U{",---,U{” in the ascending order of magni-
tude, and write them in the form UR<<---<U. If the following relation
holds true

(4. 9 UB<UR+ AP (),

then we reject the population {3, in 1<i<<k—1. Now our statistical proce-
dure proceeds in either one of two alternative ways: (i) (a) and (i) (b).

(i) (a) In this case, if only one population 7§} was not rejected, then
we do not draw any more sample and we can and we shall decide that
population 7{} as to be the best one.

(1) (b) If more than one populations were left as the candidates for
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the best one, then we shall proceed to the following second stage.
(i) In the second stage, let us consider those populations which were

not rejected at the first stage (i), and let {U;”t (G -1, 2,---,k) be a set of &,
statistics each of which U}’ came from the population 7/} ”‘ which was not
rejected at the first stage (1), (t—1, 2,---,k,). Let us now rewrite U’ and
P as W® and I” (=1, 2,---,k1), respectively. Let #® be a statistic
defined by an additional sample of size one drawn from 7, (i1, 2,---.k,),
and put that

(4. 5) UP-=WP2+u?®, (i=1, 2,--,k).

Let us arrange the set of &k, values U{”,---,U;? in the ascending order of
magnitude, and write them in the form UH<---<U%P.. If the following
relation holds true

4. 6) UB<US,+A>(®),

then we reject the population {3 with the statistic U% (=1, 2,--k—1)

respectively., Now our statistical procedure proceeds in either one of two
alternative ways: (ii)(a) and (3i) (b).

(i) (a) In this case, if only one population ), was not rejected,
then we do not draw any more sample and we can and we shall decide
that population 77§, as to be the best one.

(ii) (b) If more than one population were left as the candidates for
the best one, then we shall proceed to the following third stage and so on.

(INHBZLILNG)). In the [-th stage, let us consider those populations
which were not rejected at the (/—1)-th stage and let {U%"{ for i=1, 2,

-k, be a set of ki_; statistics each of which U%™® came from the
populatlon I~ which was not rejected at the (/—1)-th stage, (i1, 2,-
k). Let us now rewrite U™ and H{ Y as WP and I¥, i=1, 2,- k,
respectively. Let u{” be a statistic defined by an additional sample of size
one drawn from 7 (i=1, 2,---,k,_,) and put that

4. D UP=W+u®, (i=1, 2,-kis).

Let us arrange the set of k., values U{”, -, Us”, in the ascending order of
magnitude, aud write them in the form U€{§£ U@ ». If the following
relation holds true

(4. 8) UP<<Ufy .+ AP (),

then we reject the population 7{’ with the statistic U, (=1, 2,---k_))
respectively. Our statistical procedure proceeds in either one of two alter-
native way: ([>)(@) and (") (b).

(I’)(@) In this case, if only one population 7, ,, was not rejected,
then we do not draw any more sample and we can and we shall decide
that population 7}, , as to be the best one.

(I’)(b) If more than one populations were left as the candidates for
the best one, then we shall proceed to the following stage. We continue
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these steps in a sequential ways, so far as the best population has not
been decided and until the step number [ is smaller than or equal to a
predetermined integer N(6). If we came to the case of (N(6)")(b), then
we proceed to the following (N(9)-+1)—th stage.

(N +1)). In this stage, let us consider those populations which
were not rejected at the N(0)—th stage and let (UF®?} for i=1, 2, -k
be a set of ky, statistics each of which U{® came from the populations
T which was not rejected at the N(6)-th stage, (i—1, 2,-kye). Let
us now rewrite UZ® and HI{F® as WHNOTY and TFOD 41, 2, ke
respectively. Let U®@*" be a statistic defined by an additional sample of
size one drawn from IOV (1=1, 2,--.kywe-1) and put that

(4. 9 e R )

i=1, 2,ky@. Let us arrange the set of Ry, values UNP*,..., Uiy in
the ascending order of magnitude, and write them in the form U&®*0<...
<UG@o, Then we can and we shall decide the population ZH%%" as to
be the best one.

In this case, when we use the closed sequential procedure S, for k
populations each of which belongs to the exponential type, we can obtain
main theorem which we shall enunciate it in the next section.

§5, The enunciation of theorem.

In order to enunciate a main theorem, let us introduce the following
notations :

Let us denote by Pli,, So 8,(tw, 4)] the probability by which the
best populations of exponential type is rejected by a certain specified
closed sequential statistical procedure S, under the configuration of popula-
tion parameters 0,(zg, 4).

Then we have the following

Theorem. For a set of constants tk, «, 0, 4% which were assigned
previously in 0<a<l, k=2, 0<0<d and 4>0, we have

(GARY) Pl gy Sp.0,(tg, H]<a.

§6. Proof of the theorem.

6. 1. Preliminaries.

In this section let us prove the main theorem in case when k=2 and
when k>2 separetely. This is done not only because the case when k=9
is important in itself, but also because the probability by which the best
population among k& populations of exponential type having a configuration
of £ population parameters 0,(rw, 4) is rejected is not larger than the
(k—1) times of the probability by which the best population between two
populations is rejected under the same parameter configuration, as we shall
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varify later.

Before we enter into the proof of the theorem in the case when k=2,
let us enunciate the following preparations:

First of all let us assume z,>>7; and let us put

6. 1. 1) Sis w0 =expioa;+b(w) +alui)t,
for i, h=1, 2; j=1, 2,--- and put that for each ¢ in 0<<6<{d

(6. 1. 2) ZJ:logjf(uz:f’,rﬁf(ulfﬂ%Q’ ?1)7 i" ]':1’ 9,

lf(uz,j, Tx)f(ul j“';ﬁa 3) J

Lemma 1. (Wald [27], p. 158) Let z be a random variable such that
the following three conditions are fulfilled:

(A) The expected value Eiz} exists and is not equal to 0.

(B) There exists a positive ¢ such that Plexp z<<1—¢|>0 and P
lexp z>1+¢]>0.

(C) For any real value h the expected value Efexp(hz)i{=g(h)
exists.

Then there exists one and only one real value h, #0 such that

6. 1. 3 Elexp(hz)i = 1.

Lemma 2. Letiz;} be a set of independent random wvariables for
which (6. 1. 1) and (6. 1. 2) are defined. Then each random variable z;
in a set of {z;} satisfies the three conditions (A), (B) and (C) enunciated
in Lemma 1.

Proof : Ad(A). For each z; we have

6. 1. 4) Eizji=(re—t)Eiths;— thr;— 0}
""(72'—71)”?/@1) —b,(f2) —0§
—=4(d—-0)>0,

under the configuration 9,(zs, 2,), where 4 and d are two specified positive
constant values given in §3.

Ad(B). For any assigned constant value of ¢ in 0<<6<{d and for any
assigned constant value of ¢ in 0<<e<{l, if we have that the following
probability

(6. 1. 5) P[exp Zj<l—5 54(72, 21)]
= Pltgs;<<tt1; + 0+ (15— 71) log(1 —€) 5,4(7s, 21)]

is equal to 0, then the following equation holds true
(6. 1. 6) P[uz,j_.>:u1,j+6+(72‘71)_1108'(1_5)64(72’ 7‘1)]:1’

for any constant values 6 and ¢ in 0<{6<(d and in 0<{e<{1. This contradicts
to the definition of the measure #, since the random variables #,; and u.;
are mutually independent.

Similarly we can verify the second part of (B).

Ad(C). For any real value of z we have
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6. 1.7 g(h\ i:E“;exf)gh(Tz —71) (uz,j*ul,jﬁﬁ) § ‘)
= Jﬂ exp’ ) (to=c)h—+ Tl b(7y) + alu: ;) {d* (Us,;)

< [T expiin = e bt mtun b)) + @) Jde (uy)
Xexpt (ty— ) b

== exp%b(n) %—b(fe) + (i — 1) B0 — b((fz‘ T:)h +75)
S I(CEENY EENTE

The immediate consequence of Lemma 2 is the following

Lemma 3. Let iz;i be a set of independent random variables for
which (6. 1. 1) and (6. 1.2) are defined. Then there exists one and only
one real value h, +0 such that

6. 1. 8 Elexpihoz;ii=—1, (j==1, 2,-).

Lemma 4. The value h, in (6. 1. 8) is negative.

Proof : In virtue of (6. 1.4), the proof is immediate from the proof of
Lemma 1 (Wald (27], p. 159).

The immediate consequence of Lemma 3 and Lemma 4 is the following

Lemma 5. Let B(9) be any assigned positive function defined over
the interval 0 <0<d. Let us terminate the sampling at the n—th stage, if

6. 1. 9 B(0)<<expiZ™}, (m=1, 2,-,n—1),
and
(6. 1. 10) expi Z™W{<<B(0),

where z;, =1, 2,--,n are defined by (6. 1. 1) and (6. 1. 2), and where we
have put Z'W-= n;z z;.

Then we hcjz;)e

(1) For each 9 in 0<0<d the value of ho(0) is determined so that
o (6)<<0 and that
(6. 1. 1D EiexplZ@h,(0) 1] =1,

(%) For every n=1 we have

(6. 1. 12) B(@)ho(f’)j ...... ffz I 1f(u,-,,A,r,)d/z(u.-,,.)gﬂl.

J i=1j=
exp{ZW}<B(8)

Proof : Ad (1) Since {z;t is a set of independent and identically distri-
buted random variables, we have

6. 1. 13) EiexplZ®he(0) 1 =11 Etexplizin(0) (=1,

Ad(2). In virtue of (1), we have
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(6. 1. 14) 1=ElexpiZ"h,(0)}}
:J ...... ngp\,Z‘“’ho(a)ié _lﬂ_flf(u,»,,-, )dru,,)
exp(Z) < B(6) ”
ZB(O)"U“”[ ...... ﬁf_]ﬁlf(ui,j, D de (i),

exp{Zm}<B(0)

Lemma 6. (Paulson [19), p.176) If {Y;t is a sequence of independent
and identically distributed randowm wvariables with a negative expectation
and b>0, then we have

(6. 1. 15) P(§E>b for some n<oo\l§exp3—hob%,

where h, is the non-zero root of ElexpihYi|=1.

Lemma 7. Let us put Z“”:Zn z; for n=1, 2,---, where {z;} ave defined
by (6. 1. 1) and (6. 1. 2). Let ]]:91(0) be any assigned positive, however
smaller than one, function defined over the interval 0<<6<d. Let h,(9) be
a value such that h,(9)<<0 and that (6. 1. 11) is satisfied. Then we have

(6. 1. 16) P[Z»<logB(0) for some n<<=o]<B(H) H®

Proof : In Lemma 6, let us put that b—=—logB(#) and Y;,=—z; (j=1,
2,---). By use of (6. 1.4), the relation (6. 1. 16) follows immediately from
the relation (6. 1. 15).

Lemma 8. For each assigned 0 in 0<<0<d and for any assigned « in
0<a<l, let us assume that the following relation

6. 1. 17) —log B(6)=h,(9)loga
hold true. Then we have
(6. 1. 18) PlZ®<log B(8) for some n<c<]Za.

Proof : The proof of this lemma follows from Lemma 7 immediately.

Lemma 9. For each assigned ¢ in 0<0<d, the root h,(0) defined by
(6. 1. 11) is given by the root of the following functional equation

6. 1. 19) b (7)) +b(re) =b(z*) + b(7,*) +0ho(0) (ra— 1),
where

(6. 1. 20) r¥ =14 (1= 1) B (0),

6. 1. 2D To* =1+ (1o —74) B (0).

Proof : For each assigned ¢ in 0<<6<(d, the proof follows immediately
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from the substitution of %,(6) to # in (6. 1. 7).
6. 2. The proof of the theorem in the case when k-=2,

First of all, in order to prove the theorem when k=2 let us introduce
the following notations for the sake of convenience:

For each ! (IZKIKN(@) +1), let us denote by DP(({, 2); 1) the
stochastic event by which both population I, and I, are not rejected before
the /-th stage and which the population 77, is rejected at the /-th stage by
our statistical procedure S,. Let us denote by Dye.: ((1, 2); 1) the sto-
chastic event by which the population I, is rejected at a certain stage by
our statistical procedure S,.

In this connection let us denote by P[/ S, 0,(zs, 2)] the probability
by which the population /I, is rejected by our statistical procedure S,
under the configuration of population parameters 6,(zy, 4). Then we have
the following

Theorem. We have for each assigned « in 0<<a<l

6. 2. D Pl Se, 04(7¢, HD1La.

Preof : Firstly let us consider the case when t:=r7q).
Then we have

(6 2. 2) P[H(Z)‘Sea 5A(T(2>, "-)]
:P[DN(G)—H((I’ 2); 1) Se, 0 (T<°>1 ’1)]
=P[D»((1, 2); 1) for some n (1<n<N()+1)|Ss 0,(rz, )]

= P[3}2< (4t DE®) for some n<oo S, 0,(car D,

where we have put
(6. 2. 3) Z;:<72—T1) (%z,;‘um"e), (i=1, 2,).

For each assigned ¢ in 0<0<ld, let us consider the root #%,(6) of the
following equation

6. 2. 4) Elexp(zh,(0))]=1.

Since we have

(6. 2. 5) Elz]=(ra—7) (0’ (z1) = b'(72) —0)
=>4(d—0)>0,

there exists one and only one negative root /4,(¢) of (6. 2. 4) in virtue of
Lemma 4. In virtue of (6. 1. 18) the probability in the right hand side of
(6. 2. 2) does not exceed the following

(6. 2. 6) expt—ho(0) (4+)K()]
=expl—(4+2)/dlog(l/a) i <a,

where %,(8) is calculated from (6. 1. 19)~(6. 1. 21).
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In case when 7,—ts, we can also verify the theorem by the similar
discussions to that in case 7: =74,

6. 3. The proof of the theorem in case when £>2.

Let us denote by 9,(r;, &) the parameter configuration ry,=r1,=1;+4

+2;, 2,220 for j=1, 2,---, k—1. Paulson [19] has used the following result
under our notations.

Lemma 10. (Paulson [19], p. 176) we have
(6. 3. 1) PlII, So, 04(7, A)]
k-1
ggP[Ué”)~U}”><A“‘>(0) for some n (1<n<N(0)+1)'S,,

04(zy M1
Lemma 11. We have
(6. 3. 2) P[H(Ia) i Se; 54(7(1;), X)]:‘P[H,SG, 5A<Tlu l)]

Proof : Since our closed sequential statistical procedure S, defined by
§4 is symmetric with regard to rw, the proof follows immediately.

Hence we have the following main theorem enunciated in §5.

Theorem. For a set of constants ik, «, 0, 4} which were assigned
previously in 0<a<l, k=2, 0<60<d and 4>0, we have

(6. 3. 3) Pl Sy, 04(tp H]Za.

Proof: The proof is immediate from Lemma 10, Lemma 11 and
6. 2. 1).

Lemma 12. For any assigned integers j; in 1<5<k—1, i=1, 2; 7157}s
we have

(6. 8. 4) PIUP-UP<AD() for some n (1<u<N(®)+1) Sy, 0,(zs, 0)]
=PlUP—-UZP<<A™(0) for some n (1<n<N)+1) S, 8,(rs 0)]

Proof : For any assigned numbers #, 71 and j: in 1<n<N() -+1 and
in 1<5:<k—1, i=1, 2; ji 77, the random variables U} and U% are identi-
cally distributed under the parameter configuration ¢,(r;, 0). Hence the
proof is immediate.

Corollary. We have

(6. 3. 5) P[II(};) Se; 54<T(k): 0)]
(k=D Pl Sy 04(za, 0)].

Proof : The proof is immediate from Lamma 11 and Lemma 12.

§7. Examples.

Let us give several examples concerning with the specification of the
closed sequential statistical procedure which has the minimum number of
stages with regard to ¢ in 0<(60<d, where d is a preassigned constant
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which was defined by §3.

Example 1. (Mean of normal distribution). Let ju.;}, (=1, 2, -+, k;
j=1, 2,---) be k sequences of independent statistics having their probability
density function of (2. 1), provided that

(7- 1) =My, b(fx') = 712‘/2y (i’irl’ 2""rk>'

In this case let us determine a value of N(0), defined by (4. 1), with
regard to 0 in 0<<6<C4, where 4 is a preassigned positive constant defined
by §2.

In virtue of (6. 1. 19) we have

(7. 2) ho(0)—=—1+0/4,
and we have
(7. 3) Minibh,(0)i=4/4
0<o<4
therefore we have
(7. 4) 01<\£[i1;1 N(0)=4log((k—1)/a) /4"

Example 2. (Variance of normal distribution). Let {u;;}, (=1, 2,---.k;
j=1, 2,---) be k sequences of independent statistics having their probability
density function (2. 1), provided that

(7. 5) t=— (207 (0,>0), b(v) =2log(—r),

(t=1, 2,--,k). In virtue of (8.1.19) we have

(7. 6)  —0ho(0)=log} (zay+ 4he(0)) (v —4ho(0)) / ((zy— D) 7ay) 1/ (24).
Now let us put that

(7. D Ooo==47l0g} 2ty —4)%/ 4ty (i —4A))

(7. 8) d2:(1/(7(@_4)_1/?(@)/2-
Then we have

(7.9 Min N(0) == 2log((k—1)/a)/(0o24).

Example 3. (Scale parameter of exponential distribution). Let {u.;},
(1=1, 2,--k; j=1, 2---) be k sequences of independent statistics having
their probability density function of (2. 1), provided that

(7. 10) == (4>0), b(r)=log(—r7), (G=1, 2,-- k).

By means of the similar method used in Example 2, we have the
following minimum value of N(0) with regard to ¢ in 0<<0 <d,;, where we
put

(7. 11) ds=1/(rgy—4) —1/7w.
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(7. 12) Min N(9) = 2log((k—1)/a)/(0o:4).

0<6<ds
where we have put
_ 2 Q2rwp—4)* |
0y ,—= 2 2ty —4)" |
(7. 13) o= = log]| P e B

Example 4. (Poisson distribution). Let {u.,{, i=1, Zk; j=1, 2,
be k£ sequences of independent statistics having their probability density
function of (2. 1), provided that

(7. 14 t,=logh;, (4,>0), b(z)=—4, (=12,k).
Let us put that

(7. 15) Oou=2lexp(rw,/2) —expt (rwy—4)/24°]/4,
(7. 16) di =1 —expi —4D)explzpi.

By means of the similar method used in the previous examples, we have
the following

(7. 17) 0M<9121 N(@) = 2log((k—1)/a)/(6,.4).

Example 5. (Binomial distribution). Let f{u:;{, GGi=1, 2,--k; j=1, 2,--)
be k& sequences of independent statistics having their probability density
function of (2. 1), provided that
(7. 18)  w=log(p:;/(1—p)), O<p; <L), b(z)=log(l—p), G=1, 2,---,k).

By means of the similar method used in the previous examples, we
have the following. Let us put that

,;727 (1+€5€p§7(;¢)€) (1"?‘3952;_7(10_'4%) [
(7. 19) {90,5 A lOg{ (1+exp(r(k)—d/2))2 ;

(7. 20) ds=+expitat) Pexpicw’ — (1 +expiw—41) Pexpire—4i,
then we have

(7. 21) %aig« N =2log((k—1)/c)/(0,54).
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