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Abstract

A standard technique for generating the Pareto set in multicriteria optimization
problems is to minimize �convex� weighted sums of the di�erent objectives for various
di�erent settings of the weights� However� it is well�known that this method succeeds
in getting points from all parts of the Pareto set only when the Pareto curve is convex�
This article provides a geometrical argument as to why this is the case�

Secondly� it is a frequent observation that even for convex Pareto curves� an evenly
distributed set of weights fails to produce an even distribution of points from all parts
of the Pareto set� This article aims to identify the mechanism behind this observation�
Roughly� the weight is related to the slope of the Pareto curve in the objective space
in a way such that an even spread of Pareto points actually corresponds to often very
uneven distributions of weights� Several examples are provided showing assumed shapes
of Pareto curves and the distribution of weights corresponding to an even spread of
points on those Pareto curves�
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� Introduction

Many problems in a wide variety of engineering disciplines are characterized by the need
to minimize several nonlinear functions of the variables simultaneously� For example� a
typical bridge�construction design might involve simultaneously minimizing the total mass
of the structure and maximizing its sti�ness� An airplane design problem might require
maximizing fuel e�ciency� payload� and minimizing the weight of the structure� Such
multicriteria problems can be mathematically expressed as

min
x�C

F �x� 	

�
�����
f��x�
f��x�
���

fn�x�

�
����� � n � 
 � � � �MOP �

where
C 	 fx � h�x� 	 �� g�x�� �� a � x � bg

F � �N �� �n� h � �N �� �ne and g � �N �� �ni are twice continuously di�erentiable
mappings and a � ��� f�	g�N � b � ��� f	g�N � N being the number of variables� n the
number of objectives� ne and ni the number of equality and inequality constraints�

Since no single x� would in general minimize every fi simultaneously� a concept of op�
timality which is useful in the multiobjective framework is that of Pareto optimality� To
acquaint readers not familiar with the concept� it is de
ned below�

De�nition� A point x� � C is said to be �globally� Pareto optimal or a �globally� ef�

cient point or a non�dominated or a non�inferior point for �MOP� if and only if there does
not exist x � C such that F �x� � F �x�� with at least one strict inequality �the � implies
term�by�term inequality��

A very popular approach for converting this multicriteria problem into a scalar opti�
mization problem is to minimize a convex combination of the di�erent objectives �see� for
example� Koski ���� Jahn� et al �
��� In other words� n weights �i are chosen such that
wi � �� i 	 �� � � � � n and

Pn
i��wi 	 � and the following problem is solved�

min
x

nX
i��

wifi�x� 	 wTF �x�

s�t� x � C � � � �LC�

It follows immediately that the global minimizer x� of the above problem is a Pareto
optimal point for �MOP �� since if not� then there must exist a feasible x which improves
on at least one of the �positively weighted� objectives without increasing the others and
hence produces a smaller value of the weighted sum��

A common approach then is to perform the above minimization for an even spread of
� in order to generate several points in the Pareto set �which for a two objective problem
produces points on the Pareto curve or tradeo� curve�� The two major di�culties with this
idea are as follows�

�a unicity assumption on the global minimizer may be required if some of the components of w are zero

�




 If the Pareto curve is not convex� there does not exist any w for which the solution
to problem �LC� lies in the nonconvex part�


 Even if the Pareto curve is convex� an even spread of weights w does not produce an
even spread of points on the Pareto curve�

The following sections attempt to explain geometrically why these happen�

� Failure in Capturing Nonconvex Parts of the Pareto Curve

��� An Equivalent Problem

In order to simplify the analysis it shall henceforth be assumed that there are only two
objectives f��x� and f��x� �i�e� n 	 
�� Then if we let the weights on the two objectives be
represented by � and �� � where � is a scalar � ��� ��� problem �LC� becomes

min
x

��� ��f��x� � �f��x�

s�t� x � C � � � �LC���

An equivalent formulation of the above is

min
cos �

cos � � sin �
f��x� �

sin �

cos � � sin �
f��x�

s�t� x � C � � � �TLC��

where the scalar � varies from � to �
� � We shall call this problem the Trigonometric Linear

Combinations problem �TLC���

For a given value of �� problem �LC�� with

� 	
sin �

cos � � sin �

yields exactly the same solution as problem �TLC��� Thus �LC�� and �TLC�� are equiva�
lent in the sense that a Pareto point is a solution of problem �LC�� for some � � ��� �� if
and only if it is also the solution of problem �TLC�� for some � � ��� �� �� It follows that
if a Pareto point is not a solution to problem �TLC�� for all � � ��� �� �� then it cannot be

obtained by minimizing any convex combination of the two objectives�

��� Geometrical Interpretation of the Trigonometric Linear Combina�

tions Problem

Consider rotating the f��f� axes �anticlockwise� in the objective space by an angle � � ��� �� �
�as in 
g� ��� Let us label the rotated axes as �f�� �f�� Then� an elementary coordinate
transformation gives �

�f�
�f�

�
	

�
cos � sin �
� sin � cos �

� �
f�
f�

�

so that
�f� 	 f� cos � � f� sin �
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Figure �� Getting a Pareto point by solving the Trigonometric Linear Combinations problem

Thus
�f��x�

cos����sin��� is what problem �TLC�� aims to minimize over x � C� which has the

same solution as minx�C �f��x�� Geometrically� it can be seen in 
g� � how minimizing �f�
gets us the Pareto point P �i�e�� we need a feasible point corresponding to which the value of
the �f� coordinate is minimum�� One can imagine this minimization process as translating
the �f� axis parallel to itself until it hits the curve� The point where it hits the curve is a
Pareto point�

Solving problem �TLC�� for all � � ��� �� � is equivalent to repeating the above process
for all axis rotations � ��� �� �� This can be thought of as varying the slope of the tangent
from � to �	 while maintaining contact with the Pareto boundary and picking out the
points of contact� This is illustrated in 
g� 
 for a convex Pareto curve and shows how this
process can yield all the Pareto points�

An alternative characterization�

A given Pareto point is a solution to problem �TLC�� for some � if and only if the tan�
gent to the Pareto curve at that point does not intersect the boundary of the set of attained
vectors at any point where it is not a tangent to the boundary curve� This characterization
relies on the boundary of the set of attained vectors being continuous and di�erentiable
�i�e� �f�

�f�
exists at every point on the boundary of the set of attained vectors�� which will

be assumed throughout the remainder of this treatise�

Justi�cation�

Given the slope of the Pareto curve at the point in question� � and hence the �TLC��
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Figure 
� Getting a convex Pareto curve by solving Trigonometric Linear Combinations
problems

problem gets uniquely de
ned �since � 	 tan���slope� � �
� � as shown in 
g� ��� However

if the tangent at this point intersects another point on the Pareto curve where the slope
is di�erent from the slope of the tangent� then the continuity and di�erentiability of the
boundary curve imply that it is possible to slide the tangent down further �perpendicular
to itself� to get a lower objective function value in problem �TLC��� in which case the point
in question is not a �global� minimum of problem �TLC��� This is illustrated for point P in

g� �� This point cannot solve �TLC�� for any other � since� given the slope at the point�
� has been uniquely de
ned� Hence the justi
cation follows�

��� Inexistence of a �TLC�� subproblem for points in the nonconvex part

It can be argued in two ways that given a point in the nonconvex part of the Pareto set�
there does not exist a �TLC�� subproblem which it solves�

The 
rst uses the aid of 
g� �� Let us recall that solving �TLC�� for all � � ��� �� � is
equivalent to varying the slope of the tangent from � to �	 while maintaining contact
with the Pareto boundary� In 
g� � it is shown that if the slope of the tangent matches
that of the segment AB� it touches the Pareto curve at two distinct points �this is one
characterization of a smooth� nonconvex Pareto curve� i�e� there exists a slope for which
the tangent touches at least two distinct points on the curve�� If the slope of the tangent is
greater �i�e� less negative� than the slope of the segment AB� then it touches points in the
MQ arc of the Pareto curve� If the slope is any less then it touches points in the PR arc
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Figure �� Pareto point P cannot be a solution of any trigonometric linear combinations
problem� since the tangent at P intersects the boundary at Q but does not match the slope
at Q� so the tangent can slide further down and decrease the �TLC�� objective� However
points R or M can be obtained as a solution of a �TLC�� problem�

of the Pareto curve� Thus there does not exist a value of the slope for which the tangent
touches the Pareto points in the RM arc of the Pareto curve� thus missing the nonconvex
part�

The second argument follows from the alternative characterization given earlier� Given
that the boundary of the set of attained vectors is continuous and di�erentiable� a tangent
to any point in the nonconvex part of the Pareto set must intersect the boundary at at
least one point where it does not match the slope of the boundary curve� Thus it cannot
solve a �TLC�� subproblem for any � � ��� �� ��

Finally� given the equivalence between problem �TLC�� and �LC��� it can be concluded
that Pareto points in the nonconvex parts of the Pareto set cannot be obtained by mini�
mizing a convex combination of the objectives�

� Nonuniform Spread of Pareto Points using Uniform Spread

of �

It was shown in the previous section that problem �LC�� fails to 
nd Pareto points in the
nonconvex part of the Pareto set� This section argues that even if the Pareto set is convex�
a uniform spread of � does not guarantee a uniform spread of Pareto points on the Pareto
curve� In many cases it has in fact been observed that the points obtained using a uniformly
spread set of values of � are actually clumped in certain regions of the Pareto set� providing
the user no information about the nature of tradeo� between the two objectives elsewhere�
J� G� Lin in ��� observes that �Pareto�optimal solutions obtained by this method are often
found to be so few� or the corresponding indexes so extreme� that there seems to be no

�
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Figure �� Failure of Trigonometric Linear Combinations in capturing nonconvex parts of
the Pareto set

middle �ground� for any compromise� although such �ground� may actually exist��

As an example consider the biobjective problem given below�

min
x

�
f��x� 	 x�� � x�� � x�� � x�	 � x�


f��x� 	 � x� � 
 x� �
x�
� � ���� �x	 � x
�

�

�

s�t� x� � 
 x� � x� � ��� x	� x
 	 


� x� � 
 x� � ��� x�� ��� x	� ��� x�
 	 �

x�� � x�� � x�� � x�	 � x�
 � ��

The set of Pareto points obtained by minimizing convex combinations of the two ob�
jectives for 
� di�erent weights with � varying from � to � in even increments of ���� are
shown in 
g� �� followed by the corresponding set of Pareto points produced by Normal�
Boundary Intersection �NBI� using an even spread of NBI parameters �see Das and Dennis
��� for details��

��� Relationship between � and the slope of the Pareto curve

An explicit relationship between the slope of the Pareto curve at a Pareto point and the
� for which this point solves �LC�� can be derived based on the development in earlier
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Figure �� Outputs of minimizing linear combinations and NBI respectively on a bi�objective
optimization problem using an even spread of parameters

sections� As shown in 
g� �� the slope of the curve at the Pareto point� denoted by �f�
�f�

� is
related to the parameter � in the �TLC�� subproblem by

�f�

�f�
	 tan�

�



� ��

i�e��
�f�

�f�
	 � cot �

Then� using the relationship between � and ��

� 	
sin �

sin � � cos �

	
�

� � cot �
so�

� 	
�

�� �f�
�f�

���

Thus an even spread of � would correspond to an even spread of points on the Pareto
curve only if the shape of the Pareto curve is such that the quantity �

��
�f�
�f�

is evenly spread

for an even spread of Pareto points�

In order to make this notion concrete let us suppose that the functional form of the
Pareto curve in the objective space is given by the mapping � � f� �� f� �this is denoted
simply by f��f�� in 
g� ��� If the minimum and maximum of f� values on the Pareto set
are f�� and �f� respectively� then the same for f� are �� �f�� and ��f�� �� As shown in 
g� �� we
de
ne a discrete set of Pareto points as being uniformly spread if the projections of the arcs
between two consecutive Pareto points on the f� axis are all equal� This de
nition may not
correspond to the most uniform spread possible �which would be to say that the distances
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between two consecutive Pareto points are all identical�� but provides an adequate sense of
�uniformity� in most practical cases and enables us to make our point without distracting
the reader by meticulous details�

Let us assume that the Pareto points are uniformly spread as de
ned above correspond�
ing to an even spread of �� Then using the fact that the projections of the arcs between
two consecutive Pareto points on the f� axis are all equal� � can be written as a function
of f� �at the Pareto points� as

� 	
�f� � f�� �

� �f� � f�� �

If this above relationship is extended for all f� � �f�� �
�f��� then substitution of ��� in the

above yields
�

�� �f�
�f�

	
f� � f��
�f� � f��

[f1*, f2(f1*)]

f2

f1 [f1, f2(f1)]
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Figure �� De
nition of uniform spread� Projections of the arcs between consecutive Pareto
points on the f� axis are constant

Rewriting �f�
�f�

as ���f�� and rearranging the above equation results in the following
di�erential equation�

���f�� 	 ��
�f� � f��
f� � f��

which has the general solution

��f�� 	 f� � � �f� � f�� � log�f� � f�� � �K�constant�

The above illustrates that only for very speci
c shapes of Pareto curves is it possible to
get an even spread of Pareto points using an even spread of ��

�



��� Distribution of � for uniform spreads of Pareto points

Given that an even spread of Pareto points would correspond to an even spread of � for
only speci
c Pareto curves� we shall try to 
nd out the distribution of � values correspond�
ing to an even spread of Pareto points given some typical Pareto curves� The spread of
Pareto points selected here are even in the sense of NBI� which is a little less naive than the
characterization of even spread in the previous section� Instead of the projections of arcs
between two consecutive Pareto points on the f� axis being constant� the NBI even spread
requires that those projections on the segment joining the extreme points of the Pareto set
be constant �segment AB in 
g� ��� Histogram plots of the � values corresponding to an
even spread of points on the Pareto curve are shown for some assumed shapes of the Pareto
curve in 
gs� �� �� � and ���
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Clearly� without prior knowledge of the shape of the Pareto curve it is impossible to try
to 
nd values of � that map out even a fairly uniform spread of points on the Pareto curve�

��� Spread of � yielding even spread on example problem

If the shape of the Pareto curve for the earlier two objective example were known� it would
be possible to determine the values of � which would yield a uniform spread of Pareto
points� However� since ��f�� is not known for this Pareto curve� we tried to estimate it
roughly by 
tting a nonlinear model of f� to the set of points on the curve obtained using
NBI �as in 
g� ��� The model 
t to the set of points �f�� f�� was the following sum of three
exponentials

�f� 	 ���f�� 	 p� � p�e
�p�f� � p	e

�p�f� � p�e
�p�f�

The quantity �f� � �f��� summed over all the Pareto points was minimized over the
parameters p�� p�� � � � � p� yielding the following nonlinear 
t to the Pareto curve with an
acceptable residual of ������

�f� 	 ��
������ ����
���e�����


f� � �������e����	
�f� � ���
�e����
��f�

Estimating �f�
�f�

by ����f�� at the Pareto points obtained using NBI� a set of predicted �

values were obtained using ���� Minimizing convex combinations of the two objectives for
these values of � now yields the spread shown in 
g� ��� which is a big improvement on
the convex combinations spread in 
g� ��

The distribution for these � values is shown in a histogram in 
g� �
�

� Conclusion

The drawbacks of minimizing weighted convex combinations are obvious� It is quite im�
possible to know the correct weights needed to generate points evenly spread on the Pareto
curve without actually knowing the shape of the Pareto curve� The scene also looks
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bleak for designers who hope to minimize just one weighted sum of objectives and ex�
pect to get a point in the middle region of the Pareto set� An alternative to this can be
Normal�Boundary Intersection�see Das � Dennis ����� a new technique developed recently
which posseses nice properties including that of obtaining an even spread of points �visit
http�  www�owlnet�rice�edu indra NBIhomepage�html for software and papers�� The chief
role of this paper is to caution people who blindly lump several objectives into one using a
weighted combination and the authors hope to have accomplished that�
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