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Abstract. We generalize Ehrhart’s idea ([Eh]) of counting lattice points in dilated rational poly-
topes: Given a rational simplex, that is, an n-dimensional polytope with n+ 1 rational vertices, we
use its description as the intersection of n+ 1 halfspaces, which determine the facets of the simplex.
Instead of just a single dilation factor, we allow different dilation factors for each of these facets. We
give an elementary proof that the lattice point counts in the interior and closure of such a vector-
dilated simplex are quasipolynomials satisfying an Ehrhart-type reciprocity law. This generalizes the
classical reciprocity law for rational polytopes ([Ma], [Mc], [St]). As an example, we derive a lattice
point count formula for a rectangular rational triangle, which enables us to compute the number of
lattice points inside any rational polygon.

1 Introduction

One of the exercises on the greatest integer function [x] in an elementary course in
Number Theory is to prove the statement[

t− 1

a

]
= −

[
−t
a

]
− 1 (1)

for any integers t, a 6= 0. Geometrically, this is a special instance of a much more gen-
eral theme. Consider the interval

[
0, 1

a

]
, viewed as a 1-dimensional rational polytope.

(A rational polytope is a polytope whose vertices are rational.) Now we dilate this
polytope by an integer factor t > 0, and count the number of integer points (”lattice
points”) in the dilated polytope. It is straightforward that this number in the open
dilated polytope is

[
t−1
a

]
, whereas in the closure there are

[
t
a

]
+ 1 integer points.

More generally, let P be an n-dimensional convex rational polytope in Rn. For t ∈
Z>0, let L(P◦, t) = # (tP◦ ∩ Zn) and L(P , t) = #

(
tP ∩ Zn

)
be the number of lattice

points in the interior of the dilated polytope tP = {tx : x ∈ P} and its closure,
respectively. That is, if P denotes the above 1-dimensional polytope, we have

L(P◦, t) =

[
t− 1

a

]
and L(P , t) =

[
t

a

]
+ 1 .
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There are two remarkable features hidden in these expressions: First, we have

Theorem 1 L(P◦, t) and L(P , t) are quasipolynomials in t.

A quasipolynomial is an expression of the form cn(t) tn + . . . + c1(t) t + c0(t), where
c0, . . . , cn are periodic functions in t. Theorem 1 is easily verified for our one-
dimensional polytope by writing [x] = x − {x}, where {x} denotes the fractional
part of x. Moreover, viewing both these quasipolynomials as algebraic expressions in
the integer variable t, (1) becomes a reciprocity law:

Theorem 2 L(P◦,−t) = (−1)nL(P , t).

Both Theorem 1 and 2 are true for any rational polytope P . The proof of Theorem
1 is due to Ehrhart, who initiated the study of the lattice point count in dilated
polytopes ([Eh]). He conjectured Theorem 2, which was first proved by Macdonald
(for the case that P has integer vertices, [Ma]), later also by McMullen ([Mc]), and
Stanley ([St]).

We generalize the notion of dilated polytopes for rational simplices, that is, rational
polytopes of dimension n with n + 1 vertices. We use the description of a simplex
as the intersection of n + 1 halfspaces, which determine the facets of the simplex:
Instead of dilating the simplex by a single factor, we allow different dilation factors
for each facet.

Definition 1 Let the rational simplex SA be given by

SA = {x ∈ Rn : A x ≤ b} ,

with A ∈ M(n+1)×n(Z),b ∈ Zn+1. Here the inequality is understood componentwise.

For t ∈ Zn+1, define the vector-dilated simplex S(t)
A as

S(t)
A = {x ∈ Rn : A x ≤ t} .

For those t for which S(t)
A is nonempty and bounded, we define the number of lattice

points in the interior and closure of S(t)
A as

L (S◦A, t) = #
((
S(t)

A

)◦
∩ Zn

)
and L

(
SA, t

)
= #

(
S(t)

A ∩ Zn
)
,

respectively.

Geometrically, we fix for a given simplex the normal vectors to its facets and consider
all possible positions of these normal vectors that ’make sense’. The previously defined
quantities L(P◦, t) and L(P, t) can be recovered from this new definition by choosing
t = tb. The corresponding result to Theorems 1 and 2 is
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Theorem 3 L (S◦A, t) and L
(
SA, t

)
are quasipolynomials in t ∈ Zn+1, satisfying

L (S◦A,−t) = (−1)nL
(
SA, t

)
. (2)

A quasipolynomial in the d-dimensional variable t is the obvious generalization of a
quasipolynomial in a 1-dimensional variable.

We give an elementary proof of Theorem 3, only relying on (1) and a basic lemma
on quasipolynomials. Theorems 1 and 2 follow as immediate corollaries, considering
the fact that any polytope can be triangulated into simplices. In fact, the original
motivation for Theorem 3 was to construct an elementary proof of Theorem 2.

2 A lemma on quasipolynomials

Lemma 4 Let q(t1, . . . , tm) be a quasipolynomial, and fix a1, . . . , am, c0, . . . , cm, d ∈
Z, d 6= 0. Then

Q1(t) = Q1(t0, t1, . . . , tm) =

[ c0t0+...+cmtm−1
d ]∑

k=1

q (t1 + a1k, . . . , tm + amk)

and

Q2(t) =

[ c0t0+...+cmtm
d ]∑

k=0

q (t1 + a1k, . . . , tm + amk)

are also quasipolynomials.

Remark. Here and in the following we define a finite series
∑b

k=a . . . for both cases
a ≤ b and a > b, in the usual way:

b∑
k=a

. . . =


∑b

k=a . . . if a ≤ b
0 if a = b+ 1

−
∑a−1

k=b+1 . . . if a ≥ b+ 2

(3)

Proof. We will prove the statement for Q2; the proof for Q1 follows in a similar
fashion. After writing q in all its terms and multiplying out the binomial expressions,
it suffices to prove that

Q3(t) =

[ c0t0+...+cmtm
d ]∑

k=0

f (t1 + a1k, . . . , tm + amk) kj

is a quasipolynomial, where j is a fixed nonnegative integer and f is a periodic function
in m variables. Consider a period p which is common to all the arguments of f , that
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is, f (x1 + p, . . . , xm + p) = f (x1, . . . , xm). To see that Q3 is a quasipolynomial, use
the properties of f to write it as

Q3(t) = f (t1, . . . , tm)

[ c0t0+...+cmtm
dp ]∑
k=0

(kp)j

+ f (t1 + a1, . . . , tm + am)

[ c0t0+...+cmtm−d
dp ]∑
k=0

(1 + kp)j +

+ f (t1 + 2a1, . . . , tm + 2am)

[ c0t0+...+cmtm−2d
dp ]∑
k=0

(2 + kp)j + . . . +

+ f
(
t1 + (p− 1)a1, . . . , tm + (p− 1)am

) h
c0t0+...+cmtm−(p−1)d

dp

i∑
k=0

(p− 1 + kp)j .

Upon expanding all the binomials, putting the finite sums into closed forms, and
writing [x] = x−{x}, the only dependency on t is periodic (with period dividing dp)
or polynomial. 2

3 Proof of Theorem 3

We induct on the dimension n. First, a 1-dimensional rational simplex SA is an
interval with rational endpoints. Hence S(t)

A is given by

t1
a1
≤ x ≤ t2

a2
,

so that we obtain

L (S◦A, t) =

[
t2 − 1

a2

]
−
[
t1
a1

]
and L

(
SA, t

)
=

[
t2
a2

]
−
[
t1 − 1

a1

]
.

These are quasipolynomials, as can be seen, again, by writing [x] = x − {x}. Fur-
thermore, by (1),

L (S◦A,−t) =

[
−t2 − 1

a2

]
−
[
−t1
a1

]
= −

[
t2
a2

]
+

[
t1 − 1

a1

]
= −L

(
SA, t

)
.

Now, let SA be an n-dimensional rational simplex. After harmless unimodular trans-
formations, which leave the lattice point count invariant, we may assume that the
defining inequalities for SA are

a11x1 ≤ b1

a21x1 + . . . + a2nxn ≤ b2
...

an+1,1x1 + . . . + an+1,nxn ≤ bn+1 .
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(Actually, we could obtain an lower triangular form for A; however, the above form
suffices for our purposes.) Hence there exists a vertex v = (v1, . . . , vn) with v1 =
b1
a11

and another vertex w = (w1, . . . , wn) whose first component is not b1
a11

. After
switching x1 to −x1, if necessary, we may further assume that v1 < w1. Since w
satisfies all equalities but the first one, it is not hard to see that w has first component
w1 = r2b2 + . . . + rnbn for some rational numbers r2, . . . , rn; write this number as
w1 = c2b2+...+cnbn

d
with c2, . . . , cn, d ∈ Z. Viewing the defining inequalities of the

vector-dilated simplex S(t)
A as

t1
a11
≤ x1 ≤ c2t2+...+cntn

d

a22x2 + . . . + a2nxn ≤ t2 − a21x1
...

an+1,2x2 + . . . + an+1,nxn ≤ tn+1 − an+1,1x1 ,

we can compute the number of lattice points in the interior and closure of S(t)
A as

L (S◦A, t) =

[ c2t2+...+cntn−1
d ]∑

m=
h
t1
a11

i
+1

L (S◦B, t2 − a21m, . . . , tn+1 − an+1,1m) (4)

and

L
(
SA, t

)
=

[ c2t2+...+cntn
d ]∑

m=
h
t1−1
a11

i
+1

L
(
SB, t2 − a21m, . . . , tn+1 − an+1,1m

)
, (5)

respectively, where

B =

 a22 . . . a2n
...

an+1,2 . . . an+1,n

 ∈Mn×(n−1)(Z) .

Note that if we start with some t ∈ Zn+1 which satisfies Definition 1, then the dilation
parameters for SB in (4) and (5) will ensure well-definedness of the lattice point count
operators. L (S◦B, t) and L

(
SB, t

)
are, by induction hypothesis, quasipolynomials

satisfying the reciprocity law (2). Hence, by Lemma 4, L (S◦A, t) and L
(
SA, t

)
are

also quasipolynomials. Note that we again use (3) to define these expressions for all
t ∈ Zn+1. Furthermore,

L (S◦A,−t) =

[−c2t2−...−cntn−1
d ]∑

m=
h
−t1
a11

i
+1

L (S◦B,−t2 − a21m, . . . ,−tn+1 − an+1,1m)

(2),(3)
= −

h
−t1
a11

i∑
[−c2t2−...−cntn−1

d ]+1

(−1)n−1L
(
SB, t2 + a21m, . . . , tn+1 + an+1,1m

)
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(1)
= (−1)n

−
h
t1−1
a11

i
−1∑

m=−[ c2t2+...+cntn
d ]

L
(
SB, t2 + a21m, . . . , tn+1 + an+1,1m

)

= (−1)n
[ c2t2+...+cntn

d ]∑
m=

h
t1−1
a11

i
+1

L
(
SB, t2 − a21m, . . . , tn+1 − an+1,1m

)
= (−1)nL

(
SA, t

)
.

2

4 Some remarks and an example

An obvious generalization of Theorem 3 would be a similar statement for arbitrary
rational polytopes (with any number of facets). However, it is not even clear how
to phrase conditions on t in the definition of a ’vector-dilated polytope’, since the
number of facets/vertices changes for different values of t.

Another variation of the idea of vector-dilating a polytope is to dilate the vertices by
certain factors, instead of the facets. This would most certainly require completely
different methods as the ones used in this paper.

It is, finally, of interest to compute precise formulas (that is, the coefficients of the
quasipolynomials) for L (S◦A, t) and L

(
SA, t

)
, corresponding to the various existing

formulas for L (P◦, t) and L
(
P , t
)
.

To illustrate this, we will compute L
(
SA, t

)
for a two-dimensional rectangular rational

triangle, namely,

SA =

x ∈ R2 :
a1x1 ≥ 1

a2x2 ≥ 1
c1x1 + c2x2 ≤ 1

 .

Here, a1, a2, c1, c2 are positive integers; we may also assume that c1 and c2 are rel-
atively prime. To derive a formula for L

(
SA, t

)
we use the methods introduced in

[Be]. Similarly as in that paper, we can interpret

L
(
SA, t

)
= #

(m1,m2) ∈ Z2 :
a1m1 ≥ t1

a2m2 ≥ t2
c1m1 + c2m2 ≤ t3


as the Taylor coefficient of zt3 of the function ∑

m1≥
h
t1−1
a1

i
+1

zc1m1


 ∑
m2≥

h
t2−1
a2

i
+1

zc2m2

(∑
k≥0

zk

)
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=
z

�h
t1−1
a1

i
+1

�
c1

1− zc1
z

�h
t2−1
a2

i
+1

�
c2

1− zc2
1

1− z .

Equivalently,

L
(
SA, t

)
= Res

(
ze1+e2−t3−1

(1− zc1) (1− zc2) (1− z)
, z = 0

)
, (6)

where we introduced, for ease of notation, ej :=
([

tj−1

aj

]
+ 1
)
cj for j = 1, 2. If the

right-hand side of (6) counts the number of lattice points in S(t)
A , then the remaining

task is computing the other residues of

f(z) :=
ze1+e2−t3−1

(1− zc1) (1− zc2) (1− z)
,

and use the residue theorem for the sphere C∪ {∞}. Besides at 0, f has poles at all
c1, c2’th roots of unity; note that if we start with a t which satisfies Definition 1 then
Res(f(z), z =∞) = 0.

The residue at z = 1 can be easily calculated as

Res
(
f(z), z = 1

)
= Res

(
ezf(ez), z = 0

)
= − 1

2c1c2
(e1 + e2 − t3)2 +

1

2
(e1 + e2 − t3)

(
1

c1
+

1

c2
+

1

c1c2

)
−1

4

(
1 +

1

c1
+

1

c2

)
− 1

12

(
c1

c2
+
c2

c1
+

1

c1c2

)
.

It remains to compute the residues at the nontrivial roots of unity. Let λc1 = 1 6= λ.
Then

Res
(
f(z), z = λ

)
=

λe2−t3−1

(1− λc2) (1− λ)
Res

(
1

1− λc1 , z = λ

)
= − λe2−t3

c1 (1− λc2 ) (1− λ)
.

Adding up all the nontrivial c1’th roots of unity, we obtain∑
λc1=1 6=λ

Res
(
f(z), z = λ

)
= − 1

c1

∑
λc1=1 6=λ

λe2−t3

(1− λc2) (1− λ)
,

a special case of a Fourier-Dedekind sum, which already occurred in [Be-Di-Ro]. In
fact, in the same paper we derived, by means of finite Fourier series,

1

c1

∑
λc1=1 6=λ

λt

(1− λc2) (1− λ)
=

c1−1∑
k=0

((
−c2k − t

c1

))((
k

c1

))
− 1

4c1

,



the electronic journal of combinatorics 6 (1999), #R37 8

where ((x)) = x − [x] − 1/2 is a sawtooth function (differing slightly from the one
appearing in the classical Dedekind sums). The expression on the right is, up to a
trivial term, a special case of a Dedekind-Rademacher sum ([Di], [Me], [Ra]). Hence,

∑
λc1=1 6=λ

Res
(
f(z), z = λ

)
= −

c1−1∑
k=0

((
t3 − e2 − c2k

c1

))((
k

c1

))
+

1

4c1
,

and, similarly, for the nontrivial c2’th roots of unity

∑
µc2 =1 6=µ

Res
(
f(z), z = µ

)
= −

c2−1∑
k=0

((
t3 − e1 − c1k

c2

))((
k

c2

))
+

1

4c2

.

The residue theorem allows us now to rewrite (6) as

L
(
SA, t

)
=

1

2c1c2
(e1 + e2 − t3)2 − 1

2
(e1 + e2 − t3)

(
1

c1
+

1

c2
+

1

c1c2

)
+

1

4
+

1

12

(
c1

c2

+
c2

c1

+
1

c1c2

)
+

c1−1∑
k=0

((
t3 − e2 − c2k

c1

))((
k

c1

))

+

c2−1∑
k=0

((
t3 − e1 − c1k

c2

))((
k

c2

))
.

To see the quasipolynomial character better, we substitute back the expressions for
e1 and e2, and write [x] = x− ((x))− 1/2 for the greatest integer function. After a
somewhat tedious calculation, we obtain

L
(
SA, t

)
=

c1

2a2
1c2

t21 +
c2

2a2
2c1

t22 +
1

2c1c2
t23 +

1

a1a2
t1t2 −

1

a1c2
t1t3 −

1

a2c1
t2t3

+ν1(t) t1 + ν2(t) t2 + ν3(t) t3 + ν0(t) ,

where

ν1(t) = − c1

a2
1c2

(
1 +

((
t1 − 1

a1

)))
− 1

a1

((
t2 − 1

a2

))
− 1

a1a2
− 1

2a1c2

ν2(t) = − c2

a2
2c1

(
1 +

((
t2 − 1

a2

)))
− 1

a2

((
t1 − 1

a1

))
− 1

a1a2

− 1

2a2c1

ν3(t) =
1

a1c2
+

1

a2c1
+

1

2c1c2
+

1

c2

((
t1 − 1

a1

))
+

1

c1

((
t2 − 1

a2

))
ν0(t) = − 1

4c1
− 1

4c2
+

1

a1a2
+

1

2a1c2
+

1

2a2c1
+

1

12c1c2
− c1

24c2
− c2

24c1

+
c1

2a2
1c2

+
c2

2a2
2c1

+

((
t1 − 1

a1

))(
1

a2
+

1

2c2
+

c1

a1c2

)
+

((
t2 − 1

a2

))(
1

a1
+

1

2c1
+

c2

a2c1

)
+

c1

2c2

((
t1 − 1

a1

))2
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+
c2

2c1

((
t2 − 1

a2

))2

+

((
t1 − 1

a1

))((
t2 − 1

a2

))
+
c1−1∑
k=0

((
t3
c1
− t2 − 1

a2c1
+

1

c1

((
t2 − 1

a2

))
− 1

2c1
− c2k

c1

))((
k

c1

))

+
c2−1∑
k=0

((
t3
c2
− t1 − 1

a1c2
+

1

c2

((
t1 − 1

a1

))
− 1

2c2
− c1k

c2

))((
k

c2

))
.

As a final remark, we note that this formula enables us to compute the number
of lattice points inside any rational polygon: Any two-dimensional polytope can be
written as a virtual decomposition of rectangles (which are easy to deal with) and the
right-angled triangles discussed above. Moreover, if the polygon has rational vertices,
so do all these ’pieces’.
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