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Abstract

We examine the role of memorization in deep

learning, drawing connections to capacity, gen-

eralization, and adversarial robustness. While

deep networks are capable of memorizing noise

data, our results suggest that they tend to pri-

oritize learning simple patterns first. In our

experiments, we expose qualitative differences

in gradient-based optimization of deep neural

networks (DNNs) on noise vs. real data. We

also demonstrate that for appropriately tuned

explicit regularization (e.g., dropout) we can

degrade DNN training performance on noise

datasets without compromising generalization on

real data. Our analysis suggests that the notions

of effective capacity which are dataset indepen-

dent are unlikely to explain the generalization

performance of deep networks when trained with

gradient based methods because training data it-

self plays an important role in determining the

degree of memorization.

1. Introduction

The traditional view of generalization holds that a model

with sufficient capacity (e.g. more parameters than training

examples) will be able to “memorize” each example, over-

fitting the training set and yielding poor generalization to

validation and test sets (Goodfellow et al., 2016). Yet deep

neural networks (DNNs) often achieve excellent gener-

alization performance with massively over-parameterized

models. This phenomenon is not well-understood.
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From a representation learning perspective, the general-

ization capabilities of DNNs are believed to stem from

their incorporation of good generic priors (see, e.g., Ben-

gio et al. (2009)). Lin & Tegmark (2016) further suggest

that the priors of deep learning are well suited to the phys-

ical world. But while the priors of deep learning may help

explain why DNNs learn to efficiently represent complex

real-world functions, they are not restrictive enough to rule

out memorization.

On the contrary, deep nets are known to be universal ap-

proximators, capable of representing arbitrarily complex

functions given sufficient capacity (Cybenko, 1989; Hornik

et al., 1989). Furthermore, recent work has shown that the

expressiveness of DNNs grows exponentially with depth

(Montufar et al., 2014; Poole et al., 2016). These works,

however, only examine the representational capacity, that

is, the set of hypotheses a model is capable of expressing

via some value of its parameters.

Because DNN optimization is not well-understood, it is un-

clear which of these hypotheses can actually be reached by

gradient-based training (Bottou, 1998). In this sense, opti-

mization and generalization are entwined in DNNs. To ac-

count for this, we formalize a notion of the effective capac-

ity (EC) of a learning algorithm A (defined by specifying

both the model and the training procedure, e.g.,“train the

LeNet architecture (LeCun et al., 1998) for 100 epochs us-

ing stochastic gradient descent (SGD) with a learning rate

of 0.01”) as the set of hypotheses which can be reached

by applying that learning algorithm on some dataset. For-

mally, using set-builder notation:

EC(A) = {h | ∃D such that h ∈ A(D)} ,

where A(D) represents the set of hypotheses that is reach-

able by A on a dataset D1.

One might suspect that DNNs effective capacity is suffi-

ciently limited by gradient-based training and early stop-

ping to resolve the apparent paradox between DNNs’ excel-

lent generalization and their high representational capacity.

However, the experiments of Zhang et al. (2017) suggest

that this is not the case. They demonstrate that DNNs are

1 Since A can be stochastic, A(D) is a set.
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able to fit pure noise without even needing substantially

longer training time. Thus even the effective capacity of

DNNs may be too large, from the point of view of tradi-

tional learning theory.

By demonstrating the ability of DNNs to “memorize” ran-

dom noise, Zhang et al. (2017) also raise the question

whether deep networks use similar memorization tactics on

real datasets. Intuitively, a brute-force memorization ap-

proach to fitting data does not capitalize on patterns shared

between training examples or features; the content of what

is memorized is irrelevant. A paradigmatic example of

a memorization algorithm is k-nearest neighbors (Fix &

Hodges Jr, 1951). Like Zhang et al. (2017), we do not

formally define memorization; rather, we investigate this

intuitive notion of memorization by training DNNs to fit

random data.

Main Contributions

We operationalize the definition of “memorization” as the

behavior exhibited by DNNs trained on noise, and conduct

a series of experiments that contrast the learning dynamics

of DNNs on real vs. noise data. Thus, our analysis builds

on the work of Zhang et al. (2017) and further investigates

the role of memorization in DNNs.

Our findings are summarized as follows:

1. There are qualitative differences in DNN optimization

behavior on real data vs. noise. In other words, DNNs

do not just memorize real data (Section 3).

2. DNNs learn simple patterns first, before memorizing

(Section 4). In other words, DNN optimization is

content-aware, taking advantage of patterns shared by

multiple training examples.

3. Regularization techniques can differentially hinder

memorization in DNNs while preserving their ability

to learn about real data (Section 5).

2. Experiment Details

We perform experiments on MNIST (LeCun et al., 1998)

and CIFAR10 (Krizhevsky et al.) datasets. We investi-

gate two classes of models: 2-layer multi-layer percep-

trons (MLPs) with rectifier linear units (ReLUs) on MNIST

and convolutional neural networks (CNNs) on CIFAR10.

If not stated otherwise, the MLPs have 4096 hidden units

per layer and are trained for 1000 epochs with SGD and

learning rate 0.01. The CNNs are a small Alexnet-style

CNN2 (as in Zhang et al. (2017)), and are trained using

2Input → Crop(2,2) → Conv(200,5,5) → BN → ReLU →
MaxPooling(3,3) → Conv(200,5,5) → BN→ ReLU→ MaxPool-

SGD with momentum=0.9 and learning rate of 0.01, sched-

uled to drop by half every 15 epochs.

Following Zhang et al. (2017), in many of our experiments

we replace either (some portion of) the labels (with random

labels), or the inputs (with i.i.d. Gaussian noise matching

the real dataset’s mean and variance) for some fraction of

the training set. We use randX and randY to denote datasets

with (100%, unless specified) noisy inputs and labels (re-

spectively).

3. Qualitative Differences of DNNs Trained

on Random vs. Real Data

Zhang et al. (2017) empirically demonstrated that DNNs

are capable of fitting random data, which implicitly neces-

sitates some high degree of memorization. In this section,

we investigate whether DNNs employ similar memoriza-

tion strategy when trained on real data. In particular, our

experiments highlight some qualitative differences between

DNNs trained on real data vs. random data, supporting the

fact that DNNs do not use brute-force memorization to fit

real datasets.

3.1. Easy Examples as Evidence of Patterns in Real

Data

A brute-force memorization approach to fitting data should

apply equally well to different training examples. How-

ever, if a network is learning based on patterns in the data,

some examples may fit these patterns better than others. We

show that such “easy examples” (as well as correspond-

ingly “hard examples”) are common in real, but not in

random, datasets. Specifically, for each setting (real data,

randX, randY), we train an MLP for a single epoch start-

ing from 100 different random initializations and shufflings

of the data. We find that, for real data, many examples

are consistently classified (in)correctly after a single epoch,

suggesting that different examples are significantly easier

or harder in this sense. For noise data, the difference be-

tween examples is much less, indicating that these exam-

ples are fit (more) independently. Results are presented in

Figure 1.

For randX, apparent differences in difficulty are well mod-

eled as random Binomial noise. For randY, this is not the

case, indicating some use of shared patterns. Visualizing

first-level features learned by a CNN supports this hypoth-

esis (Figure 2).

ing(3,3) → Dense(384) → BN → ReLU → Dense(192) → BN
→ ReLU → Dense(#classes) → Softmax. Here Crop(. , .) crops
height and width from both sides with respective values.
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Figure 1. Average (over 100 experiments) misclassification rate

for each of 1000 examples after one epoch of training. This mea-

sure of an example’s difficulty is much more variable in real data.

We conjecture this is because the easier examples are explained

by some simple patterns, which are reliably learned within the

first epoch of training. We include 1000 points samples from a

binomial distribution with n = 100 and p equal to the average

estimated P(correct) for randX, and note that this curve closely

resembles the randX curve, suggesting that random inputs are all

equally difficult.

Figure 2. Filters from first layer of network trained on CIFAR10

(left) and randY (right).

3.2. Loss-Sensitivity in Real vs. Random Data

To further investigate the difference between real and fully

random inputs, we propose a proxy measure of memoriza-

tion via gradients. Since we cannot measure quantitatively

how much each training sample x is memorized, we instead

measure the effect of each sample on the average loss. That

is, we measure the norm of the loss gradient with respect

to a previous example x after t SGD updates. Let Lt be the

loss after t updates; then the sensitivity measure is given by

gt
x
= ‖∂Lt/∂x‖1 .

The parameter update from training on x influences all fu-

ture Lt indirectly by changing the subsequent updates on

different training examples. We denote the average over gt
x

after T steps as ḡx, and refer to it as loss-sensitivity. Note

that we only report ℓ1-norm results, but that results stay

very similar using ℓ2-norm and infinity norm.

We compute gt
x

by unrolling t SGD steps and applying

backpropagation over the unrolled computation graph, as

done by Maclaurin et al. (2015). Unlike Maclaurin et al.

(2015), we only use this procedure to compute gt
x

, and do

not modify the training procedure in any way.

We find that for real data, only a subset of the training set

has high ḡx, while for random data, ḡx is high for virtually

all examples. We also find a different behavior when each

example is given a unique class; in this scenario, the net-

work has to learn to identify each example uniquely, yet

still behaves differently when given real data than when

given random data as input.

We visualize (Figure 3) the spread of ḡx as training pro-

gresses by computing the Gini coefficient over x’s. The

Gini coefficient (Gini, 1913) is a measure of the inequality

among values of a frequency distribution; a coefficient of

0 means exact equality (i.e., all values are the same), while

a coefficient of 1 means maximal inequality among values.

We observe that, when trained on real data, the network has

a high ḡx for a few examples, while on random data the net-

work is sensitive to most examples. The difference between

the random data scenario, where we know the neural net-

work needs to do memorization, and the real data scenario,

where we’re trying to understand what happens, leads us to

believe that this measure is indeed sensitive to memoriza-

tion. Additionally, these results suggest that when being

trained on real data, the neural network probably does not

memorize, or at least not in the same manner it needs to for

random data.

In addition to the different behaviors for real and random

data described above, we also consider a class specific loss-

sensitivity: ḡi,j = E(x,y)
1/T

∑T
t |∂Lt(y = i)/∂xy=j |,

where Lt(y = i) is the term in the crossentropy sum cor-

responding to class i. We observe that the loss-sensitivity

w.r.t. class i for training examples of class j is higher when

i = j, but more spread out for real data (see Figure 4).

An interpretation of this is that for real data there are more

interesting cross-category patterns that can be learned than

for random data.

Figure 3 and 4 were obtained by training a fully-connected

network with 2 layers of 16 units on 1000 downscaled 14×
14 MNIST digits using SGD.

3.3. Capacity and Effective Capacity

In this section, we investigate the impact of capacity and

effective capacity on learning of datasets having different

amounts of random input data or random labels.

3.3.1. EFFECTS OF CAPACITY AND DATASET SIZE ON

VALIDATION PERFORMANCES

In a first experiment, we study how overall model capac-

ity impacts the validation performances for datasets with

different amounts of noise. On MNIST, we found that the

optimal validation performance requires a higher capacity

model in the presence of noise examples (see Figure 5).

This trend was consistent for noise inputs on CIFAR10, but
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Figure 3. Plots of the Gini coefficient of ḡx over examples x (see section 3.2) as training progresses, for a 1000-example real dataset

(14x14 MNIST) versus random data. On the left, Y is the normal class label; on the right, there are as many classes as examples, the

network has to learn to map each example to a unique class.
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Figure 4. Plots of per-class gx (see previous figure; log scale), a

cell i, j represents the average |∂L(y = i)/∂xy=j |, i.e. the loss-

sensitivity of examples of class i w.r.t. training examples of class

j. Left is real data, right is random data.

we did not notice any relationship between capacity and

validation performance on random labels on CIFAR10.

This result contradicts the intuitions of traditional learning

theory, which suggest that capacity should be restricted, in

order to enforce the learning of (only) the most regular pat-

terns. Given that DNNs can perfectly fit the training set in

any case, we hypothesize that that higher capacity allows

the network to fit the noise examples in a way that does

not interfere with learning the real data. In contrast, if we

were simply to remove noise examples, yielding a smaller

(clean) dataset, a lower capacity model would be able to

achieve optimal performance.

3.3.2. EFFECTS OF CAPACITY AND DATASET SIZE ON

TRAINING TIME

Our next experiment measures time-to-convergence, i.e.

how many epochs it takes to reach 100% training accu-

racy. Reducing the capacity or increasing the size of the

dataset slows down training as well for real as for noise

Figure 5. Performance as a function of capacity in 2-layer MLPs

trained on (noisy versions of) MNIST. For real data, performance

is already very close to maximal with 4096 hidden units, but when

there is noise in the dataset, higher capacity is needed.

data3. However, the effect is more severe for datasets con-

taining noise, as our experiments in this section show (see

Figure 6).

Effective capacity of a DNN can be increased by increas-

ing the representational capacity (e.g. adding more hidden

units) or training for longer. Thus, increasing the num-

ber of hidden units decreases the number of training iter-

ations needed to fit the data, up to some limit. We ob-

serve stronger diminishing returns from increasing repre-

sentational capacity for real data, indicating that this limit

is lower, and a smaller representational capacity is suffi-

cient, for real datasets.

Increasing the number of examples (keeping representa-

tional capacity fixed) also increases the time needed to

memorize the training set. In the limit, the representa-

tional capacity is simply insufficient, and memorization is

not feasible. On the other hand, when the relationship be-

tween inputs and outputs is meaningful, new examples sim-

3 Regularization can also increase time-to-convergence; see
section 5.
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Figure 6. Time to convergence as a function of capacity with dataset size fixed to 50000 (left), or dataset size with capacity fixed to 4096

units (right). “Noise level” denotes to the proportion of training points whose inputs are replaced by Gaussian noise. Because of the

patterns underlying real data, having more capacity/data does not decrease/increase training time as much as it does for noise data.

ply give more (possibly redundant) clues as to what the in-

put → output mapping is. Thus, in the limit, an idealized

learner should be able to predict unseen examples perfectly,

absent noise. Our experiments demonstrate that time-to-

convergence is not only longer on noise data (as noted by

Zhang et al. (2017)), but also, increases substantially as a

function of dataset size, relative to real data. Following the

reasoning above, this suggests that our networks are learn-

ing to extract patterns in the data, rather than memorizing.

4. DNNs Learn Patterns First

This section aims at studying how the complexity of the hy-

potheses learned by DNNs evolve during training for real

data vs. noise data. To achieve this goal, we build on the

intuition that the number of different decision regions into

which an input space is partitioned reflects the complexity

of the learned hypothesis (Sokolic et al., 2016). This notion

is similar in spirit to the degree to which a function can scat-

ter random labels: a higher density of decision boundaries

in the data space allows more samples to be scattered.

Therefore, we estimate the complexity by measuring how

densely points on the data manifold are present around the

model’s decision boundaries. Intuitively, if we were to ran-

domly sample points from the data distribution, a smaller

fraction of points in the proximity of a decision boundary

suggests that the learned hypothesis is simpler.

4.1. Critical Sample Ratio (CSR)

Here we introduce the notion of a critical sample, which

we use to estimate the density of decision boundaries as

discussed above. Critical samples are a subset of a dataset

such that for each such sample x, there exists at least one

adversarial example x̂ in the proximity of x. Specifically,

consider a classification network’s output vector f(x) =

(f1(x), . . . , fk(x)) ∈ R
k for a given input sample x ∈ R

n

from the data manifold. Formally we call a dataset sample

x a critical sample if there exists a point x̂ such that,

argmax
i

fi(x) 6= argmax
j

fj(x̂) (1)

s.t. ‖x− x̂‖∞ ≤ r

where r is a fixed box size. As in recent work on adver-

sarial examples (Kurakin et al., 2016) the above definition

depends only on the predicted label argmaxi fi(x) of x,

and not the true label (as in earlier work on adversarial ex-

amples, such as Szegedy et al. (2013); Goodfellow et al.

(2014)).

Following the above argument relating complexity to deci-

sion boundaries, a higher number of critical samples indi-

cates a more complex hypothesis. Thus, we measure com-

plexity as the critical sample ratio (CSR), that is, the frac-

tion of data-points in a set |D| for which we can find a crit-

ical sample:
#critical samples

|D| .

To identify whether a given data point x is a critical sam-

ples, we search for an adversarial sample x̂ within a box

of radius r. To perform this search, we propose using

Langevin dynamics applied to the fast gradient sign method

(FGSM, Goodfellow et al. (2014)) as shown in algorithm

14. We refer to this method as Langevin adversarial sample

search (LASS). While the FGSM search algorithm can get

stuck at a points with zero gradient, LASS explores the box

more thoroughly. Specifically, a problem with first order

gradient search methods (like FGSM) is that there might

exist training points where the gradient is 0, but with a large

2nd derivative corresponding to a large change in prediction

in the neighborhood. The noise added by the LASS algo-

rithm during the search enables escaping from such points.

4In our experiments, we set α = 0.25, β = 0.2 and η is
samples from standard normal distribution.
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(a) Noise added on classification inputs. (b) Noise added on classification labels.

Figure 7. Accuracy (left in each pair, solid is train, dotted is validation) and Critical sample ratios (right in each pair) for MNIST.

(a) Noise added on classification inputs. (b) Noise added on classification labels.

Figure 8. Accuracy (left in each pair, solid is train, dotted is validation) and Critical sample ratios (right in each pair) for CIFAR10.

Algorithm 1 Langevin Adversarial Sample Search (LASS)

Require: x ∈ R
n, α, β, r, noise process η

Ensure: x̂

1: converged = FALSE

2: x̃← x; x̂← ∅
3: while not converged or max iter reached do

4: ∆ = α · sign(∂fk(x)
∂x

) + β · η
5: x̃← x̃+∆
6: for i ∈ [n] do

7: x̃i ←

{

xi + r · sign(x̃i − x
i) if |x̃i − xi| > r

x̃i otherwise
8: end for

9: if argmaxi f(x) 6= argmaxi f(x̃) then

10: converged = TRUE

11: x̂← x̃

12: end if

13: end while

4.2. Critical Samples Throughout Training

We now show that the number of critical samples is much

higher for a deep network (specifically, a CNN) trained on

noise data compared with real data. To do so, we mea-

Figure 9. Critical sample ratio throughout training on CIFAR-10,

random input (randX), and random label (randY) datasets.

sure the number of critical samples in the validation set5,

throughout training6. Results are shown in Figure 9. A

5 We also measure the number of critical samples in the train-
ing sets. Since we train our models using log loss, training points
are pushed away from the decision boundary even after the net-
work learns to classify them correctly. This leads to an initial rise
and then fall of the number of critical samples in the training sets.

6We use a box size of 0.3, which is small enough in a 0-255
pixel scale to be unnoticeable by a human evaluator. Different
values for r were tested but did not change results qualitatively
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higher number of critical samples for models trained on

noise data compared with those trained on real data sug-

gests that the learned decision surface is more complex for

noise data (randX and randY). We also observe that the

CSR increases gradually with increasing number of epochs

and then stabilizes. This suggests that the networks learn

gradually more complex hypotheses during training for all

three datasets.

In our next experiment, we evaluate the performance and

critical sample ratio of datasets with 20% to 80% of the

training data replaced with either input or label noise. Re-

sults for MNIST and CIFAR-10 are shown in Figures 7

and 8, respectively. For both randX and randY datasets,

the CSR is higher for noisier datasets, reflecting the higher

level of complexity of the learned prediction function. The

final and maximum validation accuracies are also both

lower for noisier datasets, indicating that the noise exam-

ples interfere somewhat with the networks ability to learn

about the real data.

More significantly, for randY datasets (Figures 7(b) and

8(b)), the network achieves maximum accuracy on the val-

idation set before achieving high accuracy on the training

set. Thus the model first learns the simple and general pat-

terns of the real data before fitting the noise (which re-

sults in decreasing validation accuracy). Furthermore, as

the model moves from fitting real data to fitting noise, the

CSR greatly increases, indicating the need for more com-

plex hypotheses to explain the noise. Combining this result

with our results from Section 3.1, we conclude that real

data examples are easier to fit than noise.

5. Effect of Regularization on Learning

Here we demonstrate the ability of regularization to de-

grade training performance on data with random labels,

while maintaining generalization performance on real data.

Zhang et al. (2017) argue that explicit regularizations are

not the main explanation of good generalization perfor-

mance, rather SGD based optimization is largely responsi-

ble for it. Our findings extend their claim and indicate that

explicit regularizations can substantially limit the speed of

memorization of noise data without significantly impacting

learning on real data.

We compare the performance of CNNs trained on CIFAR-

10 and randY with the following regularizers: dropout

(with dropout rates in range 0-0.9), input dropout (range 0-

0.9), input Gaussian noise (with standard deviation in range

0-5), hidden Gaussian noise (range 0-0.3), weight decay

(range 0-1) and additionally dropout with adversarial train-

ing (with weighting factor in range 0.2-0.7 and dropout in

and lead to the same conclusions

Figure 10. Effect of different regularizers on train accuracy (on

noise dataset) vs. validation accuracy (on real dataset). Flatter

curves indicate that memorization (on noise) can be capped with-

out sacrificing generalization (on real data).

rate range 0.03-0.5).7 We train a separate model for every

combination of dataset, regularization technique, and regu-

larization parameter.

The results are summarized in Figure 10. For each com-

bination of dataset and regularization technique, the final

training accuracy on randY (x-axis) is plotted against the

best validation accuracy on CIFAR-10 from amongst the

models trained with different regularization parameters (y-

axis). Flat curves indicate that the corresponding regular-

ization technique can reduce memorization when applied

on random labeling, while resulting in the same valida-

tion accuracy on the clean validation set. Our results show

that different regularizers target memorization behavior to

different extent – dropout being the most effective. We

find that dropout, especially coupled with adversarial train-

ing, is best at hindering memorization without reducing the

model’s ability to learn. Figure 11 additionally shows this

effect for selected experiments (i.e. selected hyperparame-

ter values) in terms of train loss.

6. Related Work

Our work builds on the experiments and challenges the in-

terpretations of Zhang et al. (2017). We make heavy use

of their methodology of studying DNN training in the con-

text of noise datasets. Zhang et al. (2017) show that DNNs

can perfectly fit noise and thus that their generalization

ability cannot be explained through traditional statistical

learning theory (e.g., see (Vapnik & Vapnik, 1998; Bartlett

et al., 2005)). We agree with this finding, but show in ad-

dition that the degree of memorization and generalization

in DNNs depends not only on the architecture and training

7We perform adversarial training using critical samples found
by LASS algorithm with default parameters.
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Figure 11. Training curves for different regularization techniques

on random label (left) and real (right) data. The vertical ordering

of the curves is different for random labels than for real data, in-

dicating differences in the propensity of different regularizers to

slow-down memorization.

procedure (including explicit regularizations), but also on

the training data itself 8.

Another direction we investigate is the relationship be-

tween regularization and memorization. Zhang et al.

(2017) argue that explicit and implicit regularizers (includ-

ing SGD) might not explain or limit shattering of random

data. In this work we show that regularizers (especially

dropout) do control the speed at which DNNs memorize.

This is interesting since dropout is also known to prevent

catastrophic forgetting (Goodfellow et al., 2013) and thus

in general it seems to help DNNs retain patterns.

A number of arguments support the idea that SGD-based

learning imparts a regularization effect, especially with a

small batch size (Wilson & Martinez, 2003) or a small

number of epochs (Hardt et al., 2015). Previous work also

suggests that SGD prioritizes the learning of simple hy-

pothesis first. Sjoberg et al. (1995) showed that, for linear

models, SGD first learns models with small ℓ2 parameter

norm. More generally, the efficacy of early stopping shows

that SGD first learns simpler models (Yao et al., 2007). We

extend these results, showing that DNNs trained with SGD

learn patterns before memorizing, even in the presence of

noise examples.

Various previous works have analyzed explanations for the

generalization power of DNNs. Montavon et al. (2011) use

kernel methods to analyze the complexity of deep learn-

ing architectures, and find that network priors (e.g. imple-

mented by the network structure of a CNN or MLP) con-

trol the speed of learning at each layer. Neyshabur et al.

(2014) note that the number of parameters does not con-

trol the effective capacity of a DNN, and that the reason

for DNNs’ generalization is unknown. We supplement this

result by showing how the impact of representational ca-

pacity changes with varying noise levels. While exploring

8We conclude the latter part based on experimental findings in
sections 3 and 4.2

the effect of noise samples on learning dynamics has a long

tradition (Bishop, 1995; An, 1996), we are the first to ex-

amine relationships between the fraction of noise samples

and other attributes of the learning algorithm, namely: ca-

pacity, training time and dataset size.

Multiple techniques for analyzing the training of DNNs

have been proposed before, including looking at gener-

alization error, trajectory length evolution (Raghu et al.,

2016), analyzing Jacobians associated to different lay-

ers (Wang; Saxe et al., 2013), or the shape of the loss min-

ima found by SGD (Im et al., 2016; Chaudhari et al., 2016;

Keskar et al., 2016). Instead of measuring the sharpness

of the loss for the learned hypothesis, we investigate the

complexity of the learned hypothesis throughout training

and across different datasets and regularizers, as measured

by the critical sample ratio. Critical samples refer to real

data-points that have adversarial examples (Szegedy et al.,

2013; Goodfellow et al., 2014) nearby. Adversarial ex-

amples originally referred to imperceptibly perturbed data-

points that are confidently misclassified. (Miyato et al.,

2015) define virtual adversarial examples via changes in

the predictive distribution instead, thus extending the defi-

nition to unlabeled data-points. Kurakin et al. (2016) rec-

ommend using this definition when training on adversarial

examples, and it is the definition we use.

Two contemporary works perform in-depth explorations of

topics related to our work. Bojanowski & Joulin (2017)

show that predicting random noise targets can yield state

of the art results in unsupervised learning, corroborating

our findings in Section 3.1, especially Figure 2. Koh &

Liang (2017) use influence functions to measure the impact

on parameter changes during training, as in our Section 3.2.

They explore several promising applications for this tech-

nique, including generation of adversarial training exam-

ples.

7. Conclusion

Our empirical exploration demonstrates qualitative differ-

ences in DNN optimization on noise vs. real data, all of

which support the claim that DNNs trained with SGD-

variants first use patterns, not brute force memorization, to

fit real data. However, since DNNs have the demonstrated

ability to fit noise, it is unclear why they find generaliz-

able solutions on real data; we believe that the deep learn-

ing priors including distributed and hierarchical represen-

tations likely play an important role. Our analysis suggests

that memorization and generalization in DNNs depend on

network architecture and optimization procedure, but also

on the data itself. We hope to encourage future research on

how properties of datasets influence the behavior of deep

learning algorithms, and suggest a data-dependent under-

standing of DNN capacity as a research goal.
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