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Abstract

Being able to segment unseen classes not observed dur-

ing training is an important technical challenge in deep

learning, because of its potential to reduce the expensive

annotation required for semantic segmentation. Prior zero-

label semantic segmentation works approach this task by

learning visual-semantic embeddings or generative models.

However, they are prone to overfitting on the seen classes

because there is no training signal for them. In this pa-

per, we study the challenging generalized zero-label seman-

tic segmentation task where the model has to segment both

seen and unseen classes at test time. We assume that pixels

of unseen classes could be present in the training images

but without being annotated. Our idea is to capture the la-

tent information on unseen classes by supervising the model

with self-produced pseudo-labels for unlabeled pixels. We

propose a consistency regularizer to filter out noisy pseudo-

labels by taking the intersections of the pseudo-labels gen-

erated from different augmentations of the same image.

Our framework generates pseudo-labels and then retrain

the model with human-annotated and pseudo-labelled data.

This procedure is repeated for several iterations. As a

result, our approach achieves the new state-of-the-art on

PascalVOC12 and COCO-stuff datasets in the challenging

generalized zero-label semantic segmentation setting, sur-

passing other existing methods addressing this task with

more complex strategies. Code can be found at https:

//github.com/giuseppepastore10/STRICT.

1. Introduction

Tremendous progress has been made in semantic seg-

mentation by deep learning [27, 11, 49] on large human-

annotated datasets [8, 13]. As this requires expensive pixel-

wise annotations [13], reducing the pixel-level supervision

becomes important, e.g. weakly supervised [37, 19, 25,

32, 23, 42, 38] and few-shot [42, 38] learning. In the

extreme case, the task is zero-label semantic segmenta-

tion [44, 7, 16] and the goal is to segment the novel classes

not annotated during training. One major limitation of zero-

Figure 1: In generalized zero-label semantic segmentation,

some unseen class pixels are ignored although they might

be relevant at test-time. We approximate the ground truth by

pseudo-labeling the unlabelled pixels, i.e. our Self-Training

with Consistency Constraint (STRICT) is effective. In the

Figure, labeled pixels and GT refers respectively to the

masked and actual ground truth, SPNet and STRICT to the

pseudo-labeled masks produced by SPNet and our method.

label semantic segmentation is that the model is only eval-

uated on unseen classes. This is not realistic as any class

could be present at test time. In generalized zero-label se-

mantic segmentation (GZLSS) the model is required to seg-

ment both seen and unseen classes. GZLSS is challenging

because it suffers from the severe class-imbalanced issue,

leading to a significant performance drop on unseen classes.

SPNet [44] fixes this issue by reducing the prediction scores

of seen classes by a constant factor γ that is sensitive and

hard to tune. CaGNet [16] and ZS3 [7] propose to learn gen-

erative models that synthesize features of unseen classes.

Nevertheless, the generated features may have domain shift

issues because the true distribution is never observed. It is

also worth noting that the training set includes many unla-

beled pixels from unseen classes due to the large amount

of class co-occurrences. While those unlabeled pixels con-

tain complementary information about unseen classes, SP-

Net [44] simply ignores them during training.

We propose to capture the latent information about un-

seen classes by supervising the model with self-produced

pseudo-labels for the unlabeled pixels. Pseudo-labeling is



not a novel concept, and it has been used as a self-training

strategy for semi-supervised learning [22, 3, 35, 39, 18].

However, generating accurate pseudo-labels for unseen

classes in semantic segmentation is difficult because the ac-

curacy on unseen classes is often much lower than in the su-

pervised case. Consequently, pseudo-labels generated from

a pretrained GZLSS model (e.g., SPNet [44]) become noisy

and may hurt the performance (as shown in Figure 1). To

this end, we introduce an efficient consistency constraint to

reduce the noise of pseudo-labels. The key assumption is

that a pseudo-label is more likely to be correct if the model

predicts the same label when presented different augmented

versions of the same image. While being agnostic to com-

plex hyperparameters tuning and robust in pseudo-labeling,

our approach provides an effective fine-tuning of the model

and a higher predictive capability on the unseen classes. By

periodically updating the pseudo-label generator with the

one fine-tuned through this process, we progressively im-

prove the signal robustness for the unseen classes.

Our main contributions are: (a) we devise a self-training

pipeline to obtain strong supervision for unseen classes

from unlabelled pixels in GZLSS. The key component is a

pseudo-label generator that enforces consistency constraints

on data augmentations ; (b) we show that a model finetuned

through such process progressively enhances its ability in

predicting unseen classes, and consequently the quality of

pseudo-labels. (c) we extensively analyze our approach

on PascalVOC12, both excluding and including the back-

ground, and COCO-stuff datasets, demonstrating that our

model stands as the state-of-the-art in GZLSS.

2. Related Works

Zero-Shot Learning. The ZSL models can be divided in

four main categories [45] according to how they transfer

knowledge from seen to unseen categories. The first pro-

vides a two-stage approach to obtain posterior class proba-

bilities from intermediate attributes extracted from images

through additional classifiers [21]. The second tackles the

task as a visual-semantic embedding problem evaluating the

compatibility between the visual space and the semantic

one, so that proximity translates in a semantic relationship

[43, 2, 34, 1, 34, 48]. The third category uses a class-level

semantic conditioned generator to feed additional synthetic

CNN features for unseen classes during the training of a

discriminative classifier [46, 6]. The last category’s models

address the task in a completely generative way, by mod-

eling the class-conditional distributions to capture semantic

relationships among seen and unseen classes [4, 41, 24, 31].

In this work, we refer to the second and third ones as they

inspired the existing methods for GZLSS.

Generalized Zero Label Semantic Segmentation. To the

best of our knowledge, only SPNet [44], ZS3 [7], and

CaGNet [16] directly address GZLSS. SPNet follows the

second category’s approach [34]: a segmentation model is

entrusted to extract the visual features that are then pro-

jected in the semantic space by a matrix multiplication with

a word embedding representation; ZS3 and CaGNet extend

the features-generative approach used by [6] in classifica-

tion: the former uses a Graph Convolutional Network to

embed a contextual prior on categories disposition (”mouse

is commonly close to the keyboard”, ...); the latter does the

same but at pixel-wise level, feeding the generator with a

contextual latent code instead of the random noise. ZS3

and CagNet don’t directly address the GZLSS scenario, but

they propose a variant of their models to do it through self-

training, respectively indicated as ZS5 and CaGNet + ST.

In this work, we rely on SPNet as we want to demonstrate

how an approach as simple as ours can enhance the predic-

tion capability of a segmentation model.

Self-training in semantic segmentation. Pseudo-labeling

has been widely used as a self-supervision strategy in poorly

annotated computer vision scenarios [22, 3, 35, 39, 18]. In

image classification, often a pre-trained reference model

generates pseudo-labels for unlabelled pixels by embed-

ding a fixed target distribution q∗ during training [22, 3]

or one continuously adapting to student pθ’s learning state

[35]. [18] infers pseudo-labels in a transductive setting

through label propagation on a nearest neighbor graph built

with the features extracted by the model for labeled and

unlabeled data. In semi-supervised semantic segmenta-

tion, many works rely on consistency training: PseudoSeg

[50] generates pseudo-labels for unlabelled pixels by wisely

fusing different sources of predictions, decoder and Grad-

CAM, and then it imposes the consistency of the predictions

of multiple augmented images with such pseudo-labels.

[29] proposes to use adversarial training of a segmentation

model that figures as a generator to strengthen the predic-

tions for unlabeled data and to use the discriminator both to

identify as good/fake predictions and as a quality measure to

select most confident predictions. [33] forces an invariance

of the predictions over different encoder’s outputs perturba-

tions. [12] shows that iteratively applying pseudo-labeling

enhances Scene Segmentation in Urban Video Sequences.

In ZSL, [47] subordinates the pseudo-labels selection to

the model’s confidence, in a transductive ZSL scenario.

In GZLSS, [26, 3] enhances the quality of hard pseudo-

labeling by first training its model according to an unbiased

loss in a transductive way. Instead, ZS5 and CaGNet fil-

ter out the p% less confident labels self-produced in a GZS

setting for the unlabelled pixels. We aim to self produce un-

seen labels for the unlabelled pixels as well, but without in-

troducing any sensitive hypeparameters to improve robust-

ness and generating ZS pseudo-labels.



3. Self-training with Consistency Constraints

GZLSS is particularly challenging because of the severe

class-imbalanced issue, leading to a significant performance

drop on unseen classes. SPNet [44] fixes this issue by re-

ducing the prediction scores of seen classes by a constant

factor γ. However, γ is hard to tune due to its sensibility i.e.,

a small perturbation of γ may lead to a significant change

in performance. We argue that the unlabeled pixels ignored

during training contain useful information about the unseen

classes and incorporating those pixels into training would

alleviate the class-imbalanced issue. Thus, we propose a

self-training framework that leverages those unlabeled pix-

els by generating pseudo-labels for them.

3.1. Background: semantic projection network

First, we formally define the task and then describe the

semantic projection network (SPNet) [44].

GZLSS Task formulation. Let S = {1, . . . , Cs} and

U = {Cs + 1, . . . , Cs +Cu} denote two disjoint label sets

of seen and unseen classes respectively. T = {(x, y)|x ∈
X , ymn ∈ {{0},S}} is the training set where x is an im-

age of spatial size N × M in the RGB image space X ,

y is its corresponding label mask with the same size, and

ymn is its corresponding class label at pixel (m,n) belong-

ing to one of the seen classes S or the unlabeled unseen

class denoted as 0. Moreover, each class label is repre-

sented by the word embedding (e.g., word2vec [28]) asso-

ciated to its class name. We denote the word embedding

matrices of seen and unseen classes with W s ∈ R
D×|Cs|

and Wu ∈ R
D×|Cu| with D being the dimension of the

word embedding space. Given T , W s and Wu, the task of

generalized zero-label semantic segmentation (GZLSS) is

to learn a model that is capable to make pixel-wise predic-

tions among both seen and unseen classes at test time.

Semantic projection network. SPNet [44] consists of a

visual-semantic embedding module and a semantic projec-

tion layer. The former (denoted as φ) is based on a CNN

backbone (e.g., DeepLab [10]), mapping an input image x

to D feature maps of size N ×M i.e., φ(x) ∈ R
D×N×M .

This can be interpreted as mapping each pixel at (n,m) to a

D-dimensional feature embedding φ(x)nm in the semantic

embedding space where knowledge transfer can be facili-

tated via word embeddings. The latter computes the inner

product between the pixel embedding and word embeddings

followed by the softmax that outputs the posterior probabil-

ity over training classes,

P (ŷnm = c|x;W s) =
exp(wT

c φ(x)nm)∑
c′∈S exp(wT

c′φ(x)nm)
(1)

where wc ∈ R
D is the c-th row of the matrix W s, corre-

sponding to the word embedding of class c. For a particular

Algorithm 1: STRICT pseudo-code

Pt ← ZLSS model at iteration t;

Pt−1 ← ZLSS model at previous iteration (t-1);

{A1(·), ..., Ak(·)} ← data augmentations;

T ← train set;

T ← number of iterations;

for t = 1, 2, ..., T do

foreach (x, y) in T do

ŷ ← model predictionPt−1(x);
A← augmentations {A1(x), ..., Ak(x)};

Γ← hard pseudo labeled masks{ȳk, ...ȳK};

ȳ ← A−1

1
(ȳk) ∩ . . . ∩A−1

K (ȳK);
L ← LCE(x, y) + λLCE(x, ȳ);
Pt ← SGD model update;

end foreach

Pt−1 ← Pt

end for

training example (x, y), the standard cross-entropy loss is,

LCE =

N,M∑

n,m=1

−1[ynm 6= 0] logP (ŷnm = ynm|x) (2)

where ynm denotes the true class label at pixel (n,m) and

1[ynm 6= 0] is an indicator function that is 1 if ynm 6= 0
otherwise 0. Note that the image x might include pixels

from unseen classes, but those pixels are not labeled (i.e.,

ynm = 0) and their losses are ignored for ZLSS. The net-

work can be trained in an end-to-end manner by optimizing

the above loss on the whole training set T of seen classes.

Inference. At test time, we predict all classes by searching

for the class that yields the highest probability using the

word embeddings of seen and unseen classes,

argmax
c∈S∪U

P (ŷnm = c|x; [W s,Wu]) (3)

3.2. Iterative self­training pipeline

Figure 2 shows an overview of our self-training pipeline

which consists of two major steps: (1) train the SPNet, and

predict pseudo-labels for unlabeled pixels and (2) feed the

pseudo-labels back to the training set and retrain the SPNet.

The last two steps are iterative, which means that the refined

model will be used to generate more accurate pseudo-labels

for retraining the model. Algorithm 1 describes our iterative

training pipeline in details.

Pseudo-label generation. Given the original training set

T and word embeddings W s from seen classes, we train

the SPNet [44] by optimizing LCE defined in Equation 2.

Note that the training set T contains labeled pixels of seen
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Figure 2: An overview of our STRICT model: at the iteration t, the pseudo-label generator Gt produces a pseudo labelled

mask ȳk for the unlabelled pixels of each of the K image’ augmentations {A1(x), . . . , Ak(x)}. We then obtain the final

pseudo-label mask ȳ by applying the intersection operation on them. The model Pt is fine-tuned with the pixel-wise cross-

entropy loss computed both on labeled (y) and pseudo-labeled (ȳ) pixels. At the iteration (t + 1), Pt will be used for the

pseudo-label generator.

classes and unlabeled pixels of unseen classes. The unla-

beled pixels are ignored when computing LSP [44]. In

other words, unseen classes are actually observed by the

network but do not contribute to the training loss, which is

a major difference from ZSL. We denote the model learned

from this step with P0(ŷ|x;W
u) (see Equation 1) that out-

puts the probability distribution over unseen classes. With-

out loss of generality, we assume that the current iteration

is t; in this step, the learned model Pt−1 from the previ-

ous iteration t − 1 is applied to unlabeled pixels to gener-

ate pseudo-labeled examples of unseen classes to finetune

the model. Here, the unlabeled pixels refer to the pixels

in the original training set T with ynm = 0. However,

pseudo-labels produced by simply making predictions with

Pt contain a large amount of label noise which may hurt

the model training. To this end, we propose a pseudo-label

generator (denoted G) with consistency constraints to fil-

ter out potentially wrong pseudo-labels. It is worth noting

that the pseudo-label generator makes predictions among

only unseen classes (i.e., zero-label semantic segmentation

setting) because it is known that the unlabeled pixels in

the training set all belong to unseen classes. Specifically,

for each of the training images containing unlabeled pix-

els, our pseudo-label generator computes ȳ = G(x) where

ȳ ∈ {{0}, U}N×M denotes the pseudo-label mask of un-

seen classes for the image x and ȳnm = 0 if the pixel (n,m)
belongs to a seen class. The technique details of our pseudo-

label generator will be discussed in Section 3.3.

Iterative self-training. After the pseudo-label generation

step, for each training image x, we will have a real label

mask y ∈ {{0}, S}N×M of seen classes and a pseudo-label

mask ȳ ∈ {{0}, U}N×M of unseen classes. y and ȳ are then

used to compute the labeled and pseudo-labeled loss terms

separately. Formally, we optimize the following combined

loss to finetune the model Pt−1,

L = LCE(x, y) + λLCE(x, ȳ) (4)

where LCE is the cross-entropy loss defined in Equation. 2

and λ is a hyperparameter. The first loss term is the same

with the original SPNet loss while the second term is com-

puted on unlabeled pixels with the generated pseudo-labels

being the supervision. The main insight is that the pseudo-

labeled pixels circumvent the need of unseen class data,

yielding a more balanced training set that facilitates the

GZLSS. Intuitively, the better the model is, the more ac-

curate pseudo-labels it can generate. Therefore, we can ap-

ply the finetuned model Pt from current iteration t back to

generate pseudo-labels for the next iteration t+1. The fine-

tuning and pseudo-label generation steps run iteratively ac-

cording to the procedure described in Section 4.

3.3. Consistency constraints

Generating hard pseudo-labels (one-hot prediction) di-

rectly from the model Pt is not ideal because the noise

level of one single prediction is high (as shown in Figure 1).

CagNet [16] and ZS5 [7] address this issue by filtering out

the pixels for which no unseen classes are present among

the top p% softmax activations. Therefore, even if they ig-

nore the predictions seen for the unlabelled pixels they ob-

tain the softmax activations for them in the GZS scenario,

hence including seen classes to the search space of unla-

belled pixels that for sure are background or unseen. More-

over, their strength relies on the hyperparameter p, to be



finetuned according to the confidence of the pseudo-label

generator and to the dataset. We propose a simple approach

to reduce the noise of pseudo-labels based on the consis-

tency regularization [33, 40, 36, 30, 20]. The key assump-

tion is that a pseudo-label is more likely to be correct if the

model makes the same prediction from multiple augmented

variants of the image. More formally, given an image x

containing unlabeled pixels, we apply K different data aug-

mentations (denoted as Ak(·)) to obtain a set of K aug-

mented images i.e., {A1(x), . . . , AK(x)}. Here we denote

A1 as an identity mapping and mainly consider the horizon-

tal mirroring and scaling with different scaling factors as

our data augmentation scheme since we find they work best

in the experiments. We then apply the model Pt to gener-

ate hard pseudo-labels (one-hot labels) for every unlabeled

pixels in each augmented image,

ȳknm = argmax
c∈U

P (ŷnm = c|Ak(x);W
u) (5)

∀k ∈ {1, . . . ,K}, ∀(n,m) ∈ I.

This yields a set of K hard pseudo-labeled masks

{ȳk, . . . , ȳK} for the image x. Intuitively, those data aug-

mentations only transform the image spatially and the se-

mantic of each pixel should remain the same. We then ob-

tain the final pseudo-label mask by applying the intersection

operation on those K masks,

ȳ = A−1

1
(ȳk) ∩ . . . ∩A−1

K (ȳK), (6)

where A−1

k denotes the inverse data augmentation that

transforms augmented masks back to the original coor-

dinates. The intersection operation essentially filters out

the pseudo-labels that are inconsistent across multiple aug-

mented masks, yielding more accurate pseudo-labels. Al-

though a similar consistency regularization has been ex-

plored in semi-supervised learning [5], we are the first to

apply the consistency constraints for the GZLSS task.

4. Experiments

Datasets and metrics. We evaluate our approach on two

datasets, PascalVOC12 [15] and COCO-stuff [8], following

previous works [44, 16] for the data splits and the validation

procedure. PascalVOC12 is an object segmentation bench-

mark, containing images of 20 foreground objects plus the

background class. COCO-stuff is a large-scale dataset for

scene segmentation, with 164K images containing 80 com-

mon objects and 91 stuff classes. Our train/val/test sets

are mutually exclusive classes i.e., 11185/500/1449 images

from 12/3/5 classes on VOC12 and 116287/2000/5000 im-

ages from 155/12/15 classes on COCO-stuff. As train and

val sets belong to disjoint subsets of seen classes, we use

the following two stage procedure for fine tuning: (i) we

first select the best hyperparameters considering as seen the

Method
PascalVOC12 COCO-stuff

S U HM S U HM

SPNet [44] 73.3 15.0 21.8 20.5 14.3 16.8

ZS3 [7] 77.3 17.7 28.7 34.7 9.5 15.0

CaGNet [16] 78.4 25.6 39.7 35.5 12.2 18.2

SPNet+ST 77.8 25.8 38.8 34.6 26.9 30.3

ZS5 [7] 78.0 21.2 33.3 34.9 10.6 16.2

CaGNet + ST [16] 78.6 30.3 43.7 35.6 13.4 19.5

STRICT 82.7 35.6 49.8 35.3 30.3 32.6

Table 1: Comparing with the state of the art on Pas-

calVOC12 and COCO-stuff.

train classes and as unseen the validation ones; (ii) we per-

form training considering as seen both train and validation

classes with fixed hyperparameters (i.e. without looking at

the validation set again). For PascalVOC12, we perform

additional experiments where the background is included

among the set of seen classes. Following [44], we measure

the generalized zero-label performance in terms of mean In-

tersection over Union (mIoU) on the seen (S) and unseen

(U) classes, as well as the harmonic mean (HM) among the

two.

Baselines and implementation details. We compare

our approach with three state-of-the-art GZLSS methods,

namely the baseline SPNet [44], and two generative ap-

proaches, ZS3 [7] and CaGNet [16]. Additionally, we in-

clude the self-training variants of CaGNet (CaGNet+ST)

and ZS3 (ZS5), both using the top percentage of the pixels

assigned to unseen classes as pseudo-labels. Moreover, we

report the results of another baseline, the calibrated SPNet

trained by performing hard pseudo-labelling on unlabeled

pixels, without any consistency strategy (SPNet+ST). For

fair comparison with previous works, we use DeepLabV2

[10] as the segmentation model with an Imagenet [14] pre-

trained ResNet-101 [17] as backbone. We train our network

with SGD, with a momentum of 0.9 and a weight decay of

5 ·10−4. The learning rate is initially set to 2.5 ·10−4 with a

polynomial decay, as in [10]. After training the base model

train the model for 2K iterations on PascalVOC12 and for

22K iterations for COCO-stuff, using a batch-size of 8 im-

ages. After training the network for 20K iterations for VOC

and 100K on COCO with only supervision on seen class

pixels, we keep the same hyperparameters and we fine-tune

the network with our self-training strategy, considering one

cycle of self-training finished after 2K iterations on Pas-

calVOC12 and after 22K iterations for COCO-stuff. Re-

sults for SPNet and SPNet+ST are reported after running

the approach under our framework.



4.1. Comparison with the state of the art

We compare our approach with the state of the art on

both PascalVOC12 and COCO-stuff, reporting the results

in Table 1. A first outcome of the experiments is that self-

training strategies improve the performance of all methods

and for all metrics. In particular, in PascalVOC12, ZS5 im-

proves his not self-trained counterpart by almost 5% in HM

and CaGNet+ST improves CaGNet by almost 4% on the

same metric. Remarkably, SPNet+ST improves the base

SPNet by 17% in HM, with a 11% improvement on the un-

seen classes and a 4.5% on the seen ones, on PascalVOC12.

Similar observations hold for COCO-stuff, where the im-

provements on the HM are of 1.5% for ZS5 over ZS3, 1.3%

of CaGNet over CaGNet and 13.5% of SPNet+ST over SP-

Net. Note that, with this simple strategy, SPNet surpasses

all more complex generative approaches on COCO-stuff for

unseen mIoU and HM, while achieving a lower harmonic

mean than CaGNet on PascalVOC12. These results con-

firm that considering the co-occurrence of seen and un-

seen classes through self-training is always very beneficial.

Moreover, the improvements are larger in non-generative

methods (SPNet) than in generative ones. A second, clear

outcome, is that our STRICT strategy outperforms every

published results by a good margin. On PascalVOC12, it

surpasses of 6.1% on harmonic mean and of 5.3% on un-

seen mIoU the previous state of the art (CaGNet+ST). The

margin is even higher in the large scale COCO-stuff dataset,

with our approach surpassing CaGNet of 16.9% on un-

seen class mIoU and of almost 13.1% on harmonic mean.

If we compare STRICT with the SPNet+ST baseline, we

see that the improvement is higher on PascalVOC12 (4.9%

on seen classes, 9.8% on unseen classes and 11% on har-

monic mean) while being less marked on COCO-stuff, with

a 0.7% improvement on seen class, 3.4% improvement on

unseen class mIoU and 2.3% on the harmonic mean. These

improvements are outstanding, confirming the importance

of equipping any zero-label semantic segmentation model

with an effective self-training strategy. Note that the self-

training approach greatly reduces the bias of the network

on seen classes. Indeed, differently form SPNet, we do

not need a calibration term to balance seen and unseen

class predictions. Similarly, different from generative ap-

proaches, we do not rely on synthesised pixels, but rather

exploit the more precise information coming from the unla-

beled pixels of our images.

Impact of the background on PascalVOC12. Standard

GZLSS approaches for object segmentation usually do

not consider the distinction between foreground and back-

ground, performing evaluation only on pixels of foreground

objects. Here we evaluate the change in performance when

the background class is included in the search space. Note

that this scenario is far more challenging since the pixels of

Method
PascalVOC12

S U HM

SPNet [44] 54.7 2.5 4.7

ZS3 [7] 59.0 4.0 7.5

SPNet+ST 72.7 4.0 7.6

ZS5 66.1 1.7 3.7

STRICT 74.7 14.3 24.0

Table 2: PascalVOC12 results with background class in-

cluded among the seen set.

Mirroring Scaling S U HM

77.8 25.8 38.8

✓ 80.4 27.2 40.7

down 82.1 27.8 41.5

up 82.0 31.1 45.1

random 81.6 29.4 43.2

✓ down 83.7 29.2 43.3

✓ up 82.5 32.9 47.0

✓ random 83.2 31.4 45.6

Table 3: Ablation of different transformations for the con-

sistency constraint of STRICT on PascalVOC12.

unseen classes might be labeled as background, hampering

the model capability to discriminate them.

Results are reported in Table 2, for our method, SP-

Net, ZS3 and their self-trained variants. All methods, both

STRICT and the baselines, suffer a severe performance

degradation when including the background in the classi-

fier. Indeed, if we compare Table 1 with Table 2, we can see

how SPNet achieves only 2.5% of mIoU on unseen classes

(almost 12% lower than Table 1) with an overall 4.7% on

harmonic mean (17% lower). With self-training, results im-

prove only slightly, with SPNet+ST obtaining 4% mIoU on

unseen classes and a 7.6% of harmonic mean. Surprisingly,

ZS3 outperforms its self-trained counterpart ZS5 in this set-

ting as learning a robust classifier for unseen classes in a

generative fashion is difficult in segmentation, due to the

high complexity of the images. Additionally, both the gen-

eration and the pseudo-labeling process are hampered by

the bias of the network toward predicting background in

place of unseen class pixels. Our STRICT approach is ef-

fective even in this setting, with an mIoU on unseen classes

of 14.3% and an overall harmonic mean of 24%. We high-

light how these results are on par with the performance of

the calibrated SPNet on the standard scenario where the

background is ignored, being slightly lower (3% on har-



(a) Pseudo-labels generated with STRICT for PascalVOC12 un-

seen classes when background is ignored.

(b) Pseudo-labels generated with STRICT for PascalVOC12 un-

seen classes when background is included.

Figure 3: Qualitative pseudo-labeling results of STRICT on PascalVOC12 without (left) and with (right) background as seen

class. Train GT refers to labels for the unseen classes.

Figure 4: STRICT mIoU along with the number of iterative

fine-tuning steps i.

monic mean and unseen class mIoU) than ZS3. Despite

these promising results, the gap in performance among our

model on the two scenarios is still large (25% on harmonic

mean and 21% on unseen mIoU). This means that the tech-

nical challenges of GZLSS for object segmentation when

background is included require additional technical compo-

nents, explicitly addressing problems such as the semantic

shift of the background class [9].

4.2. Ablation study

In this section, we study the effect of different compo-

nents of our approach, namely the type of transformations

applied for the consistency procedure and the number of

self-training iterations on PascalVOC12.

Different image transformations. We first evaluate which

image transformations are more effective for applying our

self-training with consistency constraints. In particular, we

consider simple and invertible image-level transformation

such as three variants of multi-scaling (down, up and ran-

dom scaling) and mirroring. We report the results of our

analysis in Table 3. As the table shows, performing multi-

scaling is, in general, more effective than applying only mir-

roring. Among the scaling alternatives, upscaling brings

the best results, with the highest mIoU on unseen classes

(31.1%) and harmonic mean (45.1%). Combining mirroring

and upscaling, we obtain the best performance, with 32.9%

of mIoU on unseen classes and 47% of harmonic mean.

Number of self-training iterations. An important aspect

of our algorithm is the iterative self-training procedure,

with the pseudo-labeling model updated after each itera-

tion. Here, we analyze the impact of the number of self-

training iterations for STRICT in Figure 4, where we report

the results as mIoU on unseen classes and harmonic mean

and in both cases with and without background included.

As the Figure shows, for both metrics and settings perfor-

mances tend to increase as the number of self-training it-

erations does. In particular, performances rapidly increase

until six self-training iterations, after which they saturate

and/or slightly decrease. This decrease can be caused by

the fact that we do not have ground-truth for the unseen

class pixels and noisy predictions can be reduced but not

entirely eliminated by our consistency constraint.

4.3. Qualitative analysis

In this section, we report qualitative analysis on Pas-

calVOC12 regarding i) the pseudo-labels generated by our

model and ii) semantic segmentation results.

Pseudo-labels. Another crucial point of our algorithm is

generating good pseudo-labels as supervision signal for our



Figure 5: Qualitative results of STRICT with the original SPNet and ZS5 on PascalVOC12 when the background is ignored.

model on unseen class pixels. Figure 3a and 3b show

some annotations on unseen classes obtained by our model,

when the background is ignored and included during train-

ing respectively. For each original image, GT is the ac-

tual ground truth y, while labeled pixels represent the an-

notation for seen classes ys that the model sees before the

pseudo-labeling. From the Figures we see that, while our

starting point (SPNet+ST) detects the presence of pixels of

unseen classes, the predictions are noisy, with some pixels

assigned to classes not present in the current image. Our

consistency constraint (STRICT) allows to largely reduce

the noise, eliminating most of the pseudo-labels assigned

to pixels of classes not present in the current image (e.g.

train in third row of Figure 3a, tv/monitor in first and fourth

rows of Figure 3b). With more iterations, STRICT produces

more refined pseudo-labels, where spatially coherent struc-

ture are present. This means the pseudo-label generator cap-

ture global information of unseen classes, something which

is not possible to do with a single stage of pseudo-labeling.

Semantic segmentation. Finally, to compare our model

with the other baselines, we show qualitative semantic seg-

mentation results of our method and ZS5 on Figure 5. As

the Figure shows, our model is able to correctly identify pix-

els of unseen (e.g. sofa) as well as seen (e.g. person) cate-

gories. Moreover, it achieves a good trade-off between seen

and unseen classes. For instance, on the image of the second

row, left, ZS5 misclassifies most of the pixels of the sheep

(unseen class) as a cow (seen class), showing its bias toward

seen classes. On the other hand, our model segments almost

perfectly the sheep, with few pixels misclassified. A similar

example is the table (unseen class) misclassified by ZS5 as

tv/monitor while almost correctly segmented by our model.

These images show also some drawbacks of our approach,

meaning the dependency of the results on the number of

co-occurring pixels. For instance, since plant occupies low

portions of the images, it is hard for the network to pro-

duce consistent pseudo-labels for it, with consequently low

recognition ability of the final model for that class. Future

works might exploit strategies to regularize the supervision

for unseen classes based on the number of pseudo-labels

generated for each of them.

5. Conclusions

In this work, we proposed a self-training approach to

learn the model to segment classes not annotated in the

training set by leveraging on their semantic representation.

Our self-training pipeline is simple, robust and highly scal-

able, as it relies on the ability of the model to predict con-

sistent labeling among different augmented versions of the

same image to filter the generated pseudo-labels and on the

iterative strengthening of the pseudo-label generator. We

demonstrated the effectiveness of this method on two com-

monly used benchmarks for semantic segmentation and we

obtained that applying such simple considerations outper-

forms other more complex strategies in the GZLSS.
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