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A Closer Look at Some Subintuitionistic Logics

Sergio Celani and Ramon Jansana

Abstract In the present paper we study systematically several consequence re-
lations on the usual language of propositional intuitionistic logic that can be
defined semantically by using Kripke frames and the same defining truth condi-
tions for the connectives as in intuitionistic logic but without imposing some of
the conditions on the Kripke frames that are required in the intuitionistic case.
The logics so obtained are called subintuitionistic logics in the literature. We de-
part from the perspective of considering a logic just as a set of theorems and also
depart from the perspective taken by Restall in that we consider standard Kripke
models instead of models with a base point. We study the relations between
subintuitionistic logics and modal logics given by the translation considered by
Došen. Moreover, we classify the logics obtained according to the hierarchy
considered in Abstract Algebraic Logic.

1 Introduction

The expression “subintuitionistic logic” is used in the literature (Restall [10], Wans-
ing [18]) to refer to propositional logics in the propositional language with connec-
tives ∧,∨,→ and propositional constant ⊥ that are defined semantically by using
Kripke frames and the same defining truth conditions for the connectives as in in-
tuitionistic logic but without imposing some of the conditions on the Kripke frames
that are required in the intuitionistic case. For instance, one can dispense with the
reflexivity of the relation R of the Kripke frames or with the transitivity or with the
persistence (heredity) condition that requires that the valuations assign to the vari-
ables sets of points which are closed under R.

In the first section of [18], Wansing argues very convincingly in favor of taking
seriously these weakenings of the usual conditions imposed on Kripke frames for
intuitionistic logic. His proposal is to consider the relation of a frame as describing
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a possible development of information states instead of an expansion of information
states. This last interpretation provides the usual Kripke semantics for intuitionistic
logic. We address the reader to this paper.

To our knowledge, the first logic studied in the literature that is a subintuition-
istic logic in the sense described above is the consequence relation Basic Proposi-
tional Logic introduced in 1981 in Visser [17] and Visser [16]. It is the local con-
sequence relation of the Kripke models that are transitive and whose valuations are
persistent. This logic was rediscovered in 1991 by Ruitenburg [11]. Recently it has
aroused new interest. In [15], Suzuki, Wolter, and Zakharyaschev prove, among sev-
eral other facts, that the logic is not protoalgebraic, and in Ardeshir and Ruitenburg
[1] and [2], Ruitenburg [12], Suzuki [14], and Sazaki [13], several results for it of
proof-theoretic and of model-theoretic nature are obtained. Earlier, in 1976, using
only algebraic means, Epstein and Horn [7] studied the (∧,∨,>,⊥,⊃)-fragment of
Lewis’s systems S4 and S5 and several related systems, where ⊃ is interpreted as
strict implication. All can be seen as subintuitionistic logics. But that paper did not
consider Kripke semantics. Hacking [8] already studied the mentioned fragments,
axiomatizing them using Gentzen systems. A systematic study of several possible
subintuitionistic logics is given in Corsi [4] where a logic is defined to be a set of
theorems. The logics she deals with are defined by means of the notion of validity
in a given class of frames. Moreover, Restall also studies subintuitionistic logics
in [10] but now from the perspective of consequence relations defined by means of
Kripke frames with a base point related to every point. Given a class of these frames
the associated consequence relation is defined by saying that for every model on a
frame of the class, if the premises are forced by its base point, then the conclusion is
forced too. Several of Restall’s logics coincide with several of Corsi’s, as far as their
theorems are concerned.

In [6], Došen also studies some subintuitionistic logics treated as sets of the-
orems, mainly the system K (σ ) whose elements are the formulas valid in every
Kripke model. This logic has the same relation to the modal system K as intuitionis-
tic logic has to S4, namely, there is a translation σ of formulas from the intuitionistic
language into the modal language such that an intuitionistic formula is a theorem of
K (σ ) if and only if its modal translation is a theorem of K. One of Došen’s main
aims in [6] was to find a logic with this property. If the Hilbert-style calculus in-
troduced by Došen to axiomatize K (σ ) is used to define a consequence relation in
the standard way, the consequence relation obtained, which we will also denote by
K (σ ), has some shortcomings. Intuitionistic logic has, via Gödel’s translation, a
stronger relation with S4 than K (σ ) has with K. If τ denotes Gödel’s translation, the
relation between intuitionistic logic and S4 is as follows. For any set of intuitionistic
formulas 0 ∪ {ϕ}, ϕ follows from 0 in intuitionistic logic if and only if τ(ϕ) follows
from τ [0] in the local consequence relation associated with S4 if and only if τ(ϕ)
follows from τ [0] in the global consequence relation associated with S4. The anal-
ogous results do not hold for the translation σ considered by Došen and the systems
K (σ ) and K.

In the present paper we study systematically several subintuitionistic consequence
relations that can be defined considering classes of Kripke models, and some of their
extensions. Therefore we depart from the standard perspective of considering a logic
just as a set of theorems and also depart from the perspective taken by Restall in that
we consider standard Kripke models instead of his models with a base point and his
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consequence relation. One of the goals of the paper is to introduce two subintuition-
istic consequence relations wKσ and sKσ that have the following relations with K
via the translation σ considered by Došen: a formula ϕ follows from a set of formu-
las 0 inwKσ if and only if σ(ϕ) follows from σ [0] in the local consequence relation
associated with K, and ϕ follows from 0 in sKσ if and only if σ(ϕ) follows from
σ [0] in the global consequence relation associated with K. It must be emphasized
that for arbitrary 0 and ϕ it does not hold that σ(ϕ) follows from σ [0] in the local
consequence associated with K if and only if σ(ϕ) follows from σ [0] in the global
consequence associated with K. The logic wKσ will be the local consequence rela-
tion defined by the class of all Kripke frames and sKσ will be the global consequence
relation defined by this class.

Besides these two subintuitionistic logics we will concentrate mainly on the local
and the global consequence relations defined by the class of reflexive Kripke mod-
els and the class of transitive Kripke models. Moreover, we will consider the Basic
Propositional Logic of Visser [17] which following [13] we call Visser’s Proposi-
tional Logic; it turns out also to be the local consequence relation defined by the
class of models with an R-persistent valuation. For all these logics we consider
some weaker versions that do not seem to be characterizable by classes of frames.

We will also classify the logics we obtain according to the hierarchy considered
in Abstract Algebraic Logic, which is becoming increasingly popular today, namely,
as non-protoalgebraic, protoalgebraic, equivalential, and algebraizable. For informa-
tion on the hierarchy we address the reader to Czelakowski [5].

2 Preliminaries

The language of subintuitionistic logics, the si-language for short, is the same lan-
guage as that of intuitionistic logic. It contains the connectives ∧,∨,→ and the
propositional constant ⊥. Moreover, it contains a denumerable set of propositional
variables. The formulas are defined as usual, that is, the set of subintuitionistic for-
mulas is the smallest set X that contains ⊥, all the propositional variables, and if ϕ,
ψ belong to X then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ) ∈ X . We abbreviate the formula
⊥ → ⊥ by >. Let us denote the set of all formulas by Fm.

A logic, or deductive system, in the si-language is a pair S = 〈Fm,`S〉 where `S

is a relation, called the entailment relation or the consequence relation of S, between
sets of formulas and formulas such that

1. if ϕ ∈ 0, then 0 `S ϕ;
2. if 0 `S ϕ and for every ψ ∈ 0, 1 `S ψ , then 1 `S ϕ;
3. if 0 `S ϕ, then for any substitution e, e[0] `S e(ϕ), where a substitution is

a homomorphism from the formula algebra Fm into itself—this property is
called substitution invariance.

From (1) and (2) it follows that

4. if 0 `S ϕ, then for any formula ψ , 0 ∪ {ψ} `S ϕ.

Logics can be defined in many ways using either syntactic or semantic means. A
logic S is said to be finitary if for every set of formulas 0 ∪ {ϕ}, 0 `S ϕ implies that
0′ `S ϕ for some finite 0′ ⊆ 0. All the logics we deal with in the paper are finitary.
We will usually identify a logic with its consequence relation. Given a logic S, an
extension of S is a logic S ′ in the same set of formulas such that `S⊆ `S ′.
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A Hilbert-style rule will be a pair 〈0, ϕ〉 where 0 is a finite set of formulas and ϕ
is a formula. Given a Hilbert-style rule 〈0, ϕ〉 and a substitution e, we say that the
pair 〈e[0], e(ϕ)〉 is a substitution instance of the rule 〈0, ϕ〉. A Hilbert-style calculus
consists of a set of rules closed under substitution instances. The rules of the form
〈∅, ϕ〉 are called axioms; thus axioms can be identified with formulas. When we say
that we add a rule 〈0, ϕ〉 to a Hilbert-style calculus we are implicitly saying that we
add all its substitution instances, that is, we treat the rules as schemata. A Hilbert-
style calculus H defines in the standard way a logic SH , namely, 0 `SH ϕ if and
only if there is a proof of ϕ in H using as premises formulas in 0. A Hilbert-style
calculus H is said to be a Hilbert calculus for a logic S if `S = `SH .

In this paper a sequent is any pair 〈0, ϕ〉 where 0 is a (possibly empty) finite set of
formulas and ϕ is a formula; we will use the standard notation 0 ` ϕ for sequents.
The Gentzen calculi we will consider are calculi for sequents of that form. When
we add a sequent as an axiom to a given Gentzen-style calculus we will also treat it
schematically and assume that we add all its substitution instances as well.

When we say that a logic S has 〈0, ϕ〉 as a rule, or that 〈0, ϕ〉 is a rule of S, we
mean that 0 `S ϕ. Given a logic S and several (Hilbert) rules R1, . . . , Rn , the least
extension of S that also has R1, . . . , Rn as rules is denoted by

S + R1 + · · · + Rn .

Given a Hilbert-style calculus H for S the extension S + R1 + · · · + Rn can be
axiomatized by the Hilbert calculus whose rules are the rules of H plus the rules
R1, . . . , Rn .

We will now introduce the basic notions considered in Abstract Algebraic Logic
for the classification of logics that will be needed in the paper. For each one we take
as definition the one that best suits the purposes of the paper but specialized to the si-
language. For an extensive and detailed exposition of the classification, we address
the reader to [5].

A matrix for a logic S is a pair 〈A, F〉 where A is an algebra of the similarity
type of the si-language and F is a subset of its universe A. A matrix 〈A, F〉 for S

is said to be a model of S, and F is said to be an S-filter of A, if for every set of
formulas 0 and every formula ϕ, if 0 `S ϕ, then for every valuation v from the
set of propositional variables into A such that v[0] ⊆ F , it holds that v(ϕ) ∈ F ; a
valuation is simply a homomorphism from the formula algebra into the algebra A.

The Leibniz congruence of a matrix 〈A, F〉 is the greatest congruence of A which
is compatible with F , that is, one that does not relate elements of F with elements
not in F . As customary we denote the Leibniz congruence of 〈A, F〉 by �A(F).

A logic S is protoalgebraic when for every algebra A the operator �A is mono-
tonic on the set of all S-filters of A, in the sense that if F and G are S-filters and
F ⊆ G then �A(F) ⊆ �A(G). It can be proved that a logic is protoalgebraic if and
only if there is a set of formulas1(p, q) in at most two variables such that

1. for every formula δ(p, q) ∈ 1, `S δ(p, p),
2. p,1(p, q) `S q.

A logic is equivalential if there is a set of formulas1(p, q) in at most two variables
such that

1. for every formula δ(p, q) ∈ 1, `S δ(p, p),
2. for every binary connective ?, 1(p, p′) ∪ 1(q, q ′) `S δ(p ? q, p′ ? q ′), for

every δ(p, q) ∈ 1;
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3. p,1(p, q) `S q.
A set 1 with the above properties is called a set of equivalence formulas for S.

A logic is algebraizable if it is equivalential, say with 1(p, q) as a set of equiv-
alence formulas, and there is a set of equations in at most one variable E(p) such
that for every equation ϕ ≈ ψ ∈ E(p) and every δ(p, q) ∈ 1, p `S δ(ϕ, ψ) and
{δ(ϕ, ψ) : δ(p, q) ∈ 1,ϕ ≈ ψ ∈ E(p)} `S p. This set of equations is called a set
of defining equations.

2.1 Kripke semantics A Kripke frame is a pair 〈W, R〉 where W is a nonempty
set and R is a binary relation on W . A Kripke model is a triple 〈W, R, V 〉 where
〈W, R〉 is a Kripke frame and V is a function that assigns to each propositional
variable a subset of W . This function can be extended to every formula by means of
the following clauses:

1. V (⊥) = ∅,
2. V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ),
3. V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ),
4. V (ϕ → ψ) = {x ∈ W : ∀y(x Ry & y ∈ V (ϕ) ⇒ y ∈ V (ψ))}.

Notice that V (>) = W . Given a model 〈W, R, V 〉 and a set of formulas 0 we define
V (0) by

V (0) =
⋂

ϕ∈0

V (ϕ).

Given a frame 〈W, R〉 and x ∈ W , we denote the set {y ∈ W : x Ry} of R-successors
of x by R(x). Then condition 4 can be written as follows:

V (ϕ → ψ) = {x ∈ W : R(x) ∩ V (ϕ) ⊆ V (ψ)}.

Of a model 〈W, R, V 〉 we say that it is a model based on the frame 〈W, R〉. A formula
ϕ is valid, or holds, in a Kripke model 〈W, R, V 〉, in symbols 〈W, R, V 〉 |H ϕ, if
V (ϕ) = W . If 0 is a set of formulas, 〈W, R, V 〉 |H 0 means that for every ϕ ∈ 0,
〈W, R, V 〉 |H ϕ. A sequent 0 ` ϕ is true at a point x of a model M = 〈W, R, V 〉,
in symbols M |Hx 0 ` ϕ, if x 6∈ V (0) or x ∈ V (ϕ). It is valid in M, in symbols
M |H 0 ` ϕ, if V (0) ⊆ V (ϕ). The rule associated with a sequent is valid in a model
M if every substitution instance of the sequent is valid in M. A formula is valid in a
frame if it is valid in every model on the frame; analogously we speak of a sequent
being valid in a frame.

To any class F of frames we can associate two consequence relations in the si-
language (and therefore two logics), the local one and the global one. They are
defined as follows. Let 0 be a set of formulas and let ϕ be a formula. We say that
ϕ is a local consequence from 0 relative to F, in symbols 0 |HlF ϕ, if for every
model 〈W, R, V 〉 based on a frame in F, V (0) ⊆ V (ϕ). We say that ϕ is a global
consequence form 0 relative to F, in symbols 0 |HgF ϕ, if every model 〈W, R, V 〉

based on a frame in F such that V (0) = W also verifies that V (ϕ) = W . It is not
difficult to show that the relations defined are in fact consequence relations. The
most difficult point is to show that they are substitution invariant. This is achived by
the following lemma.

Lemma 2.1 Let 〈W, R〉 be a frame and e a substitution. Then for every valuation
V on 〈W, R〉 there is a valuation V ′ such that for every formula ϕ,

V (e(ϕ)) = V ′(ϕ).
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It is not necessary that the consequence relations obtained are finitary; they are if the
class of frames is closed under ultraproducts. We will denote by lF and gF the local
and the global consequence relations defined by the class of frames F.

We recall the notions of generated subframe and generated submodel. Given a
frame 〈W, R〉, a frame 〈W ′, R′〉 is said to be a generated subframe of the frame
〈W, R〉 if W ′ is an R-closed subset of W (i.e., W ′ ⊆ W and if x ∈ W ′ and x Ry,
then y ∈ W ′) and R′ is the restriction of R to W ′ (i.e., R′ = R ∩ (W ′ × W ′)).
A model 〈W ′, R′, V ′〉 is said to be a generated submodel of a model 〈W, R, V 〉 if
〈W ′, R′〉 is a generated subframe of 〈W, R〉 and the valuation V ′ is such that for
every propositional variable p, V ′(p) = V (p) ∩ W ′. Given a model 〈W, R, V 〉 and
one of its points x , the submodel generated by x is the model 〈Wx , Rx , Vx 〉 where
Wx is the least subset of W that contains x and is closed under R and 〈Wx , Rx , Vx 〉

is the corresponding generated submodel of 〈W, R〉. We say that 〈Wx , Rx 〉 is the
subframe generated by x of 〈W, R〉. The following lemma is well known.

Lemma 2.2 If 〈W ′, R′, V ′〉 is a generated submodel of a model 〈W, R, V 〉, then
for every formula ϕ,

V ′(ϕ) = V (ϕ) ∩ W ′.

The relations between the local and the global consequence relations associated with
a given class of frames are stated (under certain conditions) in the next proposition.
Let us define for every formula ϕ and every natural number n, >n → ϕ as follows:

>0 → ϕ = ϕ,>n+1 → ϕ = > → (>n → ϕ).

Proposition 2.3 For every class of frames F closed under generated subframes,
every set of formulas 0, and every formula ϕ,

1. if 0 |HlF ϕ, then 0 |HgF ϕ;
2. {>n → ψ : n ∈ ω,ψ ∈ 0} |HlF ϕ iff 0 |HgF ϕ;
3. if |HlF is finitary, |HgF is finitary as well.

Proof (1) follows immediately from the definitions. To prove (2), assume that
{>n → ψ : n ∈ ω,ψ ∈ 0} |HlF ϕ. Let 〈W, R, V 〉 be a model based on a frame in F
and suppose that V (0) = W . Then it is easy to see by induction on n that for every
formula ψ ∈ 0 and every n, V (>n → ψ) = W . Thus, V (ϕ) = W . This proves the
implication from left to right. To prove the other implication assume that 0 |HgF ϕ.
Let 〈W, R, V 〉 be a model based on a frame in F and let x ∈ W be such that for every
ψ ∈ 0 and every n, x ∈ V (>n → ψ). It is easy to show by induction on n that for
every formula δ,

∀n∀z, y ∈ W (z Rn y & z ∈ V (>n → δ) H⇒ y ∈ V (δ)).

Let us consider the submodel generated by x , 〈Wx , Rx , Vx 〉, of 〈W, R, V 〉. By as-
sumption its frame belongs to F. Then for all ψ ∈ 0, Vx (ψ) = Wx . Thus, by
assumption, Vx(ϕ) = Wx . Therefore x ∈ V (ϕ). Finally, (3) follows immediately
from (2). �

Given a class of frames F we have its local consequence relation |HlF. We can extend
it by adding the (Hilbert) rule,

(N) ϕ ` > → ϕ,
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that is, we consider the least consequence relation including |HlF and the sequents of
the form ϕ ` > → ϕ. We denote the logic so obtained by sF. Notice that if lF is
finitary, sF is finitary too.

Lemma 2.4 For any class of frames F closed under subframes and such that its
local consequence relation is finitary and any set of formulas 0 ∪ {ϕ},

0 `sF ϕ iff {>n → ψ : n ∈ ω,ψ ∈ 0} |HlF ϕ.

Proof If {>n → ψ : n ∈ ω,ψ ∈ 0} |HlF ϕ, let 1 be a finite subset of 0 and let m
be such that {>n → ψ : n ≤ m, ψ ∈ 1} |HlF ϕ; they exist because lF is finitary.
Then, using the rule (N) and the rule of lF just mentioned, we obtain that 1 `sF ϕ

and thus the desired result.
To prove the other implication assume that 0 `sF ϕ. Since the rule (N) is clearly

a rule of |HgF, the logic sF is a sublogic of the logic gF. Thus, 0 |HgF ϕ. From
Proposition 2.3 it follows that {>n → ψ : n ∈ ω,ψ ∈ 0} |HlF ϕ. �

The next corollary follows immediately from Lemma 2.4 and Proposition 2.3.

Corollary 2.5 For any class of frames F closed under subframes and such that
its local consequence relation is finitary, the logic sF is precisely the global conse-
quence relation determined by F.

3 Došen’s Logic

In this section we review the system K (σ ) of [6] and prove that it is algebraizable.
It was introduced by Došen to define a logic (as a set of theorems) that has the same
relation to the normal modal logic K as intuitionistic logic has to S4, that is, there is
a translation of the formulas of the intuitionistic language into formulas of the modal
language such that a formula is a theorem K (σ ) if and only if its translation is a
theorem of K. The translation σ considered by Došen is defined by

σ(p) = p
σ(⊥) = ⊥

σ(ϕ ∧ ψ) = σ(ϕ) ∧ σ(ψ)

σ (ϕ ∨ ψ) = σ(ϕ) ∨ σ(ψ)

σ (ϕ → ψ) = �(σ (ϕ) → σ(ψ)).

The set K (σ ) is defined as the set of formulas ϕ such that σ(ϕ) is a theorem of K.
An axiomatization is given by the Hilbert-style calculus Kσ which we display below.
A similar axiomatization is given in [4]. As usual we can associate a consequence
relation with this calculus using the notion of proof with premises, that is, by declar-
ing that a formula ϕ follows from a set of formulas 0, in symbols 0 `Kσ ϕ, if there
is a proof of ϕ in the given calculus Kσ that uses premises in 0. This logic can be
called Došen’s logic and we will also denote it by Kσ . Its consequence relation will
be denoted by `Kσ .

3.1 Hilbert-style calculus

3.1.1 Axioms
1. ϕ → ϕ

2. ((ϕ → ψ) ∧ (ψ → δ)) → (ϕ → δ)

3. ((δ → ϕ) ∧ (δ → ψ)) → (δ → (ϕ ∧ ψ))

4. (ϕ ∧ ψ) → ϕ
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5. (ϕ ∧ ψ) → ψ

6. ϕ → (ϕ ∨ ψ)

7. ψ → (ϕ ∨ ψ)

8. ((ϕ → δ) ∧ (ψ → δ)) → ((ϕ ∨ ψ) → δ)

9. (ϕ ∧ (ψ ∨ δ)) → ((ϕ ∧ ψ) ∨ (ϕ ∧ δ))

10. ⊥ → ϕ

3.1.2 Rules of inference
(MP) ϕ, ϕ → ψ ` ψ

(W) ϕ ` ψ → ϕ

(Ad) ϕ,ψ ` ϕ ∧ ψ

An alternative set of rules consists of (MP) and the rule
ϕ2, (ϕ1 ∧ ϕ2) → ψ ` ϕ1 → ψ .

The following rules are derived rules:
(Rn) ϕn, ϕ1 ∧ · · · ∧ ϕn → ψ ` ϕ1 ∧ · · · ∧ ϕn−1 → ψ

(Pr) ϕ → ψ ` (δ → ϕ) → (δ → ψ)

(Sf) ϕ → ψ ` (ψ → δ) → (ϕ → δ)

Using the rules (Pr) and (Sf) it is easy to see that Došen’s logic is an implicative
logic of Rasiowa [9] and is therefore algebraizable (see Blok and Pigozzi [3]). We
highlight this fact.

Theorem 3.1 Došen’s logic is algebraizable.

We have the following completeness theorem for Došen’s logic, proved in [6].

Theorem 3.2 (Došen) `Kσ ϕ if and only if ϕ holds in every Kripke model.

The relation between Intuitionistic logic (Int) and the modal logic S4 given by
Gödel’s translation τ is such that for every set 0 of intuitionistic formulas and every
intuitionistic formula ϕ,

0 `Int ϕ iff τ [0] `S4 τ(ϕ),

where `S4 is the local consequence of S4; it can be defined syntactically by
0 `S4 ϕ if and only if ϕ is a theorem of S4, or there are ϕ0, . . . , ϕn ∈ 0 such
that ϕ0 ∧ · · · ∧ ϕn → ϕ is a theorem of S4. Došen’s logic and the translation σ do
not have this property with respect to the logic K. For instance, p, p → q `Kσ q
but p,�(p → q) 6`K q, and also p `Kσ q → p but p 6`K �(q → p). Here `K
refers to the local consequence of K, which can be defined syntactically as we did
for the S4 case.

In the next section we define a logic wKσ with the property that

0 `wKσ ϕ iff σ [0] `K σ(ϕ),

and thus with the same set of theorems as Kσ .

4 Weak Došen’s Logic

Although Došen’s logic has as its set of theorems the formulas valid in every Kripke
frame, its entailment relation does not coincide with the local consequence relation
defined by the class of all Kripke frames which we simply denote by |Hl . For
example, modus ponens is not valid for this consequence relation. The model
〈{a},∅, V 〉, where V (p) = {a} and V (q) = ∅, witnesses this fact. For instance,
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V (p) ∩ V (p → q) = {a} 6⊆ V (q). Moreover, Došen’s logic does not coincide with
the global consequence relation defined by the class of all Kripke frames as we will
show later.

4.1 Local consequence The local consequence relation of all Kripke models can
be axiomatized by the following Gentzen-style calculus; this is the content of the
soundness and completeness theorem we will prove below. The calculus operates on
sequents of the form 0 ` ϕ where 0 is a (possibly empty) finite set of formulas and
ϕ is a formula.

4.1.1 Gentzen rules
0 ` ϕ

0,ψ ` ϕ

0 ` ϕ 0, ϕ ` ψ

0 ` ψ

0 ` ⊥

0 ` ϕ

0, ϕ, ψ ` α

0, ϕ ∧ ψ ` α

0 ` ϕ 0 ` ψ

0 ` ϕ ∧ ψ

0, ϕ ` α 0,ψ ` α

0, ϕ ∨ ψ ` α

0 ` ϕ

0 ` ϕ ∨ ψ

0 ` ψ

0 ` ϕ ∨ ψ

ϕ ` ψ

∅ ` ϕ → ψ
(DT0)

4.1.2 Gentzen Axioms

1. (ϕ → ψ), (ϕ → δ) ` ϕ → (ψ ∧ δ)

2. (ϕ → δ), (ψ → δ) ` (ϕ ∨ ψ) → δ

3. (ϕ → ψ), (ψ → δ) ` ϕ → δ

4. ϕ ` ϕ

The following rules are derivable.

(Pre)
ϕ ` ψ

δ → ϕ ` δ → ψ

(Pre2)
∅ ` ψ

∅ ` δ → ψ

(Suf)
ϕ ` ψ

ψ → δ ` ϕ → δ

We can replace (DT0) with (Pre) to obtain an equivalent calculus.
The above calculus defines a logic, which we denote by wKσ , in the standard

way, namely, 0 `wKσ ϕ if and only if there is a finite 1 ⊆ 0 such that the sequent
1 ` ϕ is derivable.

Now we prove the completeness theorem for wKσ mentioned above. The ideas
of the proof are the ideas used by Dosěn to prove the completeness theorem for the
system Kσ .
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A set 0 of formulas is a theory of wKσ if it is closed under the relation `wKσ . A
theory 0 is consistent if there is some formula ϕ 6∈ 0, and it is prime if it is consistent
and for all formulas ϕ,ψ such that ϕ ∨ ψ ∈ 0, ϕ ∈ 0 or ψ ∈ 0.

Let Wc = {0 : 0 is a prime theory of wKσ } and define the binary relation Rc in
Wc as follows:

0Rc1 iff ∀ϕ,ψ(ϕ → ψ ∈ 0 and ϕ ∈ 1 H⇒ ψ ∈ 1).

Let Vc be defined by
Vc(p) = {0 : p ∈ 0},

for every propositional variable p. The frame 〈Wc, Rc〉 is called the canonical Kripke
frame of wKσ and the model 〈Wc, Rc, Vc〉 is called the canonical Kripke model of
wKσ .

Lemma 4.1 For every prime theory 0 and any formula ϕ,

0 ∈ Vc(ϕ) iff ϕ in 0.

Proof The proof is by induction. We only deal with the implication case. If
ϕ → ψ ∈ 0, it is clear that if 0Rc1 and ϕ ∈ 1 then ψ ∈ 1. Therefore,
0 ∈ Vc(ϕ → ψ). On the other hand, if ϕ → ψ 6∈ 0, we see that there is 1 ∈ Wc
such that 0Rc1, ϕ ∈ 1 and ψ 6∈ 1. Let us consider the set

F =

{1 : 1 is a theory, ϕ ∈ 1,ψ 6∈ 1 and ∀δ, ε(δ → ε ∈ 0 & δ ∈ 1 H⇒ ε ∈ 1)}.

This set is nonempty as
00 = {δ : ϕ → δ ∈ 0}

is a theory that verifies the conditions for being an element of F . To see this one has
to use the prefixing rules. Using Zorn’s lemma we obtain a maximal element 1 in
F . Let us see that 1 is prime. Assume that δ ∨ ε ∈ 1, that δ 6∈ 1, and that ε 6∈ 1.
Let

F(1, δ) = {ε : ∃γ ∈ 1 (γ ∧ δ) → ε ∈ 0}.

This set is a theory that includes 1 ∪ {ϕ, δ} and verifies the condition

∀δ1, ε1(δ1 → ε1 ∈ 0 & δ1 ∈ F(1, δ) H⇒ ε1 ∈ F(1, δ)).

This can be seen using the prefixing rules. Therefore, as 1 is properly included in
F(1, δ), ψ ∈ F(1, δ). Analogously, the set

F(1, ε) = {ε1 : ∃γ ∈ 1 (γ ∧ ε) → ε1 ∈ 0}

is a theory that includes 1 ∪ {ϕ, ε} and verifies the condition

∀δ1, ε1(δ1 → ε1 ∈ 0 & δ1 ∈ F(1, δ) H⇒ ε1 ∈ F(1, ε)).

Therefore, as 1 is properly included in F(1, ε), ψ ∈ F(1, ε). Let us now consider
δ1, δ2 ∈ 1 such that

(δ1 ∧ δ) → ψ ∈ 0 and (δ2 ∧ ε) → ψ ∈ 0.

Then
((δ1 ∧ δ2 ∧ δ) ∨ (δ1 ∧ δ2 ∧ ε)) → ψ ∈ 0.

Therefore,
((δ1 ∧ δ2) ∧ (δ ∨ ε)) → ψ ∈ 0.

As (δ1 ∧ δ2), (δ ∨ ε) ∈ 1, we obtain that ψ ∈ 1, which is absurd. �
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Lemma 4.2 1 `wKσ ϕ if and only if for every prime theory 0 such that 1 ⊆ 0,
ϕ ∈ 0.

Proof If 1 6`wKσ ϕ, then ϕ does not belong to the theory generated by 1. Let us
consider the set

F = {0 : 0 is a theory such that 1 ⊆ 0 and ϕ 6∈ 0}.

By Zorn’s lemma there is a maximal set 0 in F in the inclusion order. Let us see
that it is a prime theory. Assume that ψ ∨ δ ∈ 0 and ψ, δ 6∈ 0. Let 11 be the theory
generated by 0 ∪ {ψ} and12 the theory generated by 0 ∪ {δ}. If 11 is inconsistent,
0 ∪ {ψ} `wKσ δ. Therefore 0 ∪ {ψ ∨ δ} `wKσ δ, that is, 0 `wKσ δ, which is not the
case. Hence, 11 is consistent. Analogously it can be seen that 12 is consistent. By
maximality of 0, ϕ ∈ 11 and ϕ ∈ 12. So, 0 ∪ {ψ} `wKσ ϕ and 0 ∪ {δ} `wKσ ϕ.
Therefore, 0 ∪ {ψ ∨ δ} `wKσ ϕ, that is, 0 `wKσ ϕ, which is absurd. �

Theorem 4.3 (Soundness and Completeness) For every set of formulas6 and every
formula ϕ,

6 `wKσ ϕ iff 6 |Hl ϕ.

Proof The soundness part is routine. The completeness part follows from
Lemma 4.2. �

Corollary 4.4 The local consequence of the class of all frames is finitary.

Proof It follows from the soundness and completeness theorem because the logic
wKσ is finitary by definition. It also follows from the fact that the class of all frames
is closed under ultraproducts. �

Theorems 3.2 and 4.3 imply that the theorems of the logic wKσ are exactly the
theorems of the logic Kσ . What is the exact relation between wKσ and Kσ ? To
answer this question, let us show that a restricted version of modus ponens holds in
wKσ .

Proposition 4.5 If `wKσ ϕ → ψ (that is, ϕ → ψ is a theorem of wKσ ), then
ϕ `wKσ ψ .

Proof Assume `wKσ ϕ → ψ . We use completeness. Assume that 〈W, R, V 〉 is
a Kripke model and that x ∈ V (ϕ). To see that x ∈ V (ψ) we construct another
model. Let α 6∈ W . Define Wα = W ∪ {α}, Rα = R ∪ {〈α, z〉 : z ∈ W }, and
Vα by Vα(p) = V (p) for every propositional variable p. Then it is easy to show
by induction that for any formula ϕ, V (ϕ) = Vα(ϕ) ∩ W . By assumption we have
Vα(ϕ → ψ) = Wα . Hence, α ∈ Vα(ϕ → ψ). Since αRαx and x ∈ V (ϕ) ⊆ Vα(ϕ)
we obtain that x ∈ Vα(ψ), but since x ∈ W , x ∈ V (ψ), as desired. �

The proposition implies that Kσ is a proper extension of wKσ .

Proposition 4.6 Kσ is a proper extension of wKσ .

Proof First we observe that

ϕ1, . . . , ϕn `wKσ ψ iff `Kσ (ϕ1 ∧ · · · ∧ ϕn) → ψ. (1)

This holds because ϕ1, . . . , ϕn `wKσ ψ if and only if ϕ1 ∧ · · · ∧ ϕn `wKσ ψ if and
only if `wKσ (ϕ1 ∧ · · · ∧ ϕn) → ψ (by (DT0) and the previous proposition) if and
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only if `Kσ (ϕ1 ∧ · · · ∧ ϕn) → ψ (since by the completeness theorem Kσ and wKσ
have the same theorems). Therefore, if 0 `wKσ ϕ, then there is a finite 0′ ⊆ ϕ

such that 0′ `wKσ ϕ. By (1) and the fact that (MP) and (Ad) are rules of Kσ , we
obtain that 0′ `Kσ ϕ. Therefore 0 `Kσ ϕ. Thus Kσ is an extension of wKσ . That
it is proper follows from the fact that (MP) is not a rule of wKσ as is implied by the
comment at the beginning of the section and the soundness part of Theorem 4.3. �

The relation between Kσ and wKσ established in (1) of the preceding proof allows
us to establish the relation, given by the translation σ considered by Došen, between
wKσ and the local consequence relation associated with the modal logic K that we
denote by `lK .

Theorem 4.7 For every set of subintuitionistic formulas 0 and every subintuition-
istic formula ψ ,

0 `wKσ ψ iff σ [0] `lK σ(ψ).

Proof By (1) we have

ϕ1, . . . , ϕn `wKσ ψ iff `Kσ (ϕ1 ∧ · · · ∧ ϕn) → ψ.

Therefore, by Došen’s result,

ϕ1, . . . , ϕn `wKσ ψ iff `lK σ((ϕ1 ∧ · · · ∧ ϕn) → ψ),

where σ is the translation of the subintuitionistic language into the modal language
considered by Došen. So,

ϕ1, . . . , ϕn `wKσ ψ iff `lK �(σ (ϕ1 ∧ · · · ∧ ϕn) → σ(ψ)).

Since �δ/δ is an admissible rule of l K (i.e., if �δ is a theorem of l K then δ is a
theorem of l K ) we obtain that

ϕ1, . . . , ϕn `wKσ ψ iff `lK σ(ϕ1) ∧ · · · ∧ σ(ϕn) → σ(ψ).

Thus,
ϕ1, . . . , ϕn `wKσ ψ iff σ(ϕ1), . . . , σ (ϕn) `lK σ(ψ).

From this the desired result easily follows. �

The content of Theorem 4.7 can be described in the following way: wKσ is the strict
implication fragment (with ∧, ∨, and ⊥) of the local consequence associated with
the normal modal logic K. A semantic proof can be given by showing that for every
Kripke model 〈W, R, V 〉 and every formula ϕ, if we denote by V ∗ the extension of
V to the modal language, V (ϕ) = V ∗(σ (ϕ)).

We know that the logic wKσ does not satisfy modus ponens. In fact, as we will
see, there is no formula δ(p, q) such that p, δ(p, q) `wKσ q and `wKσ δ(p, p) and
indeed no set 1(p, q) of formulas with these properties. This means that the logic
wKσ is not protoalgebraic (cf. [5]). The proof of the following theorem uses the
algebra that Suzuki, Wolter, and Zacharyaschev use in [15] to prove the analogous
result for the logic BPL, which is an extension of wKσ .

Theorem 4.8 The logic wKσ is not protoalgebraic.

Proof Let us consider the algebra A whose universe A is {1, a, 0}, the infimum and
supremum are defined according to the linear order 0 < a < 1, and the operation
→A is the constant function 1. It is easy to check that the matrices 〈A, {1}〉 and
〈A, {1, a}〉 are models of wKσ . Now, �A({1}) is the congruence that only identifies
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a and 0 and �A({1, a}) is the congruence that only identifies a and 1. Therefore,
�A({1}) 6⊆ �A({1, a}). Since {1} ⊆ {1, a} we conclude that wKσ is not protoalge-
braic. �

4.2 Global consequence The global consequence relation defined by the class of
all Kripke frames will be denoted simply by |Hg. From Proposition 2.3 we obtain the
following.

Proposition 4.9 For every set of formulas 0 and every formula ϕ,

{>n → ψ : n ∈ ω,ψ ∈ 0} `wKσ ϕ iff 0 |Hg ϕ.

The proposition implies that the global consequence defined by the class of all Kripke
frames is a finitary consequence relation. Let us denote by sKσ the logic axiomatized
by all the Hilbert rules of wKσ plus the rule (N). Recall that this rule is ϕ ` > → ϕ.
Thus sKσ = wKσ + (N). Corollary 2.5 and Theorem 4.3 imply the following.

Theorem 4.10 sKσ is the global consequence defined by the class of all Kripke
frames.

Another axiomatization of sKσ can be given by adding the rule (W) towKσ . In fact,
modulo wKσ , the rule (W) and the rule (N) are equivalent.

Proposition 4.11 sKσ = wKσ + (W).

Proof It is clear that rule (N) follows from (W). On the other hand, by completeness
of wKσ one obtains that > → ϕ `wKσ ψ → ϕ (this can also be deduced using
(Suf)). Hence, by the rule (N) we obtain (W). �

At this point a warning is in order. Adding the rule (W) to wKσ spoils the closure
of the logic so obtained under (some of) the Gentzen rules of the calculus used to
define wKσ . For instance, the rule of introduction of the disjunction on the left does
not hold. For example, p |Hg (> → p)∨ (> → q) and q |Hg (> → p)∨ (> → q)
but p ∨ q 6|Hg (> → p)∨ (> → q). Thus sKσ does not have what in some contexts
is called the property of disjunction. In addition, the rule (DT0) does not hold. We
have p |Hg > → p, but 6|Hg p → (> → p).

Since the new rule (N) of sKσ is an instance of the rule (W) of Kσ we obtain that
Kσ is an extension of sKσ too. In fact, it is a proper extension since, as we will see
in the next proof, modus ponens is not a rule of sKσ . The exact extension relation
between the three logics considered thus far is the following.

Theorem 4.12 wKσ < sKσ < Kσ .

Proof It is clear that (N) is not a rule of wKσ because, for example, the model

〈{a, b}, {(a, b)}, V 〉

where V (p) = {a} is such that a ∈ V (p) but a 6∈ V (> → p). Moreover, modus
ponens is not a sound rule of sKσ because the model 〈{a},∅, V 〉 where V (p) = {a}

and V (q) = ∅ is such that V (p) = V (p → q) = {a} but V (q) 6= {a}. �

But not only is modus ponens not a sound rule of sKσ , sKσ is not protoalgebraic.

Theorem 4.13 The logic sKσ is not protoalgebraic.
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Proof The matrices used in the proof of Theorem 4.8 are clearly models of sKσ

since the rule (N) is sound for them. �

To conclude the section let us see how sKσ is related to the normal modal logic K via
the translation σ . Let us denote by `gK the global consequence relation associated
with K.

Theorem 4.14 For every set of subintuitionistic formulas 0 and every subintuition-
istic formula ϕ,

0 `s Kσ ϕ iff σ [0] `gK σ(ϕ).

Proof The following equivalences show it:

0 `s Kσ ϕ iff {>n → ψ : ψ ∈ 0, n ∈ ω} `wKσ ϕ

iff {σ(>n → ψ) : ψ ∈ 0, n ∈ ω} `lK σ(ϕ)

iff {�nσ(ψ) : ψ ∈ 0, n ∈ ω} `lK σ(ϕ)

iff σ [0] `gK σ(ϕ).

The third equivalence holds because σ(> → ψ) is equivalent to �σ(ψ), and the
fourth because the relation between gK and l K is, as is well known, the following:

0 `gK ϕ iff {�nψ : ψ ∈ 0, n ∈ ω} `lK ϕ,

where 0 ∪ {ϕ} is now a set of formulas in the modal language. �

Theorem 4.14 shows that sKσ is the strict implication fragment (with ∧, ∨, and ⊥)
of the global consequence associated with the normal modal logic K.

The global and local consequence relations for the class of models with a reflex-
ive and transitive relation and a R-persistent valuation coincide, and both are the
intuitionistic consequence. With respect to the global consequence relation gS4 as-
sociated with S4 and Intuitionistic consequence, Gödel’s translation τ has the same
property as σ with respect to the global consequence associated with K and the logic
sKσ because

ϕ1, . . . , ϕn `Int ϕ iff `Int ϕ1 ∧ · · · ∧ ϕn → ϕ

iff `S4 τ(ϕ1 ∧ · · · ∧ ϕn → ϕ)

iff `S4 �(τ (ϕ1) ∧ · · · ∧ τ(ϕn) → τ(ϕ))

iff `S4 �(τ (ϕ1) ∧ · · · ∧ τ(ϕn)) → τ(ϕ)

iff τ(ϕ1), . . . , τ (ϕn) `gS4 τ(ϕ).

The reason why the last equivalence holds is because of the deduction theorem for
gS4, and the reason why the penultimate equivalence holds is that the set of values
of the translation of an intuitionistic formula is always R-persistent, and we are in
S4. Therefore, the local and the global consequence relations associated with S4 are
the same when restricted to the Gödel translations of intuitionistic formulas. The
analogous situation does not hold for K and σ . Thus, to obtain real analogs of the
intuitionistic situation for the translation σ and the system K we have to consider two
logics instead of one, wKσ and sKσ ; neither of them is the logic we called Došen’s
logic.
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5 Modus Ponens and Reflexivity

In this section we will study the logics obtained when one adds the rule of modus
ponens to the logics of the previous section, and the connections between modus
ponens and reflexive frames.

Given the logic wKσ and several (Hilbert) rules R1, . . . , Rn , we denote by

wKσ (R1, . . . , Rn)

the logic defined by the Gentzen calculus obtained by adding as axioms the rules
R1, . . . , Rn to the Gentzen calculus G used to define wKσ .

The first observation concerning modus ponens and reflexivity is the following.

Proposition 5.1 Let 〈W, R〉 be a Kripke frame. Then R is reflexive if and only if
modus ponens holds in 〈W, R〉.

Proof If R is reflexive and V is a valuation on 〈W, R〉 such that x ∈

V (ϕ) ∩ V (ϕ → ψ), then, as x Rx , x ∈ V (ψ). On the other hand, if modus
ponens holds in 〈W, R〉, let x ∈ W and consider a valuation V such that V (p) = {x}

and V (q) = R(x). Then, since R(x) ∩ V (p) ⊆ V (q), x ∈ V (p → q). By (MP),
x ∈ V (q). Therefore, x Rx . �

In [4], Corsi considers the set of theorems of the logic obtained by adding to Kσ the
axiom

(R) ϕ ∧ (ϕ → ψ) → ψ

and shows that a formula is a theorem of the logic so obtained if and only if it is
valid in every reflexive Kripke frame. But the formula p ∧ (p → q) → q does
not correspond to reflexivity on Kripke frames. Indeed, it is valid in every reflexive
Kripke frame but is also valid in some nonreflexive Kripke frames.

Proposition 5.2 Although p ∧ (p → q) → q is valid in every reflexive Kripke
frame, there are nonreflexive Kripke frames where it is valid.

Proof Consider the frame 〈{a},∅〉. Then, since R(a) = ∅, for every valuation V ,
every conditional formula is valid; hence our formula is valid. �

Propositions 5.1 and 5.2 show that from the point of view of the correspondence of
properties of Kripke frames with the validity on them of formulas/sequents in the
subintuitionistic language, the sequents are much more well behaved. This phenom-
ena will appear again when we consider transitivity.

We turn now to the consideration of extensions of the logic wKσ with modus
ponens. At least two natural extensions come to mind. One is the logicwKσ +(MP);
the other is the logic wKσ (MP). The first of the following results show that these
two logics are not the same; in fact, the second is a proper extension of the first one.

Proposition 5.3

1. wKσ + (MP) and Kσ have the same theorems.
2. wKσ (MP) and Kσ do not have the same theorems; p ∧ (p → q) → q is a

theorem of the first but not of the second.
3. wKσ + (MP) < wKσ (MP).
4. wKσ + (MP) < Kσ .
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Proof (1) The set of theorems of wKσ and of Kσ are the same but this set is
closed under modus ponens; this implies that wKσ + (MP) and Kσ have the same
theorems.

(2) The formula p ∧ (p → q) → q is a theorem of wKσ (MP) since by (MP),
the rules for conjunction and Cut, p ∧ (p → q) ` q is derivable, which by (DT0)
implies that ∅ ` p ∧ (p → q) → q is derivable too. Now it is easy to construct a
Kripke model where p ∧ (p → q) → q is not valid, thus showing that the formula
is not a theorem of Kσ . Consider just two different points a and b, with a related to
b, and a valuation where p is true only at b and q is false everywhere. In this model
the formula under consideration is not true at a.

(3) By (1) and (2), wKσ + (MP) and wKσ (MP) cannot be equal. Moreover, it
is clear that every rule of any axiomatization of wKσ + (MP) is a rule of the logic
wKσ (MP) so this last logic is a proper extension of the other one.

(4) It follows from the fact that all the rules of wKσ + (MP) are valid in any
reflexive Kripke model but there are reflexive Kripke models where the rule (W),
which is a rule of Kσ , is not valid. We leave it to the reader to find one. �

A consequence of the proposition is the frame incompleteness result below. We say
that a logic is frame complete if every rule and every formula valid in all the frames
where the rules of the logic are valid is a rule of the logic or a theorem of the logic.

Theorem 5.4 The logic wKσ + (MP) is frame incomplete.

Proof It follows from Proposition 5.1 that the frames where all the rules of
wKσ + (MP) are valid are the reflexive frames. The formula p ∧ (p → q) → q is
valid in all reflexive frames, but, by (2) and (4) of Proposition 5.3, it is not a theorem
of wKσ + (MP). �

The frame completion of wKσ + (MP), namely, the logic of the class of frames
where the sequents of the logic wKσ + (MP) are valid, is wKσ (MP), as follows
from the next theorem. We want to prove that the logic wKσ (MP) is precisely the
local consequence defined by the class of all reflexive frames. To do so we can
perform a completeness proof analogous to that of Theorem 4.3 for wKσ and show
that the relation of the canonical model is reflexive.

Theorem 5.5 wKσ (MP) is the local consequence defined by the class of all reflex-
ive Kripke frames.

Proof The canonical Kripke frame for wKσ (MP) is reflexive: if ϕ → ψ, ϕ ∈ 0,
by (MP), ψ ∈ 0. Therefore 0Rc0. �

Now we turn to sKσ and the global consequence defined by the class of all reflexive
Kripke frames.

Theorem 5.6 sKσ + (MP) = Kσ .

Proof Since sKσ < Kσ and (MP) is a rule of Kσ , sKσ + (MP) ≤ Kσ . On the
other hand, every axiom of the axiomatization of Kσ is a theorem of sKσ . Clearly
(Ad) is a rule of sKσ . Moreover, since sKσ is the global consequence defined by the
class of all Kripke frames, it is clear that the rule (W) is a rule of sKσ . Hence all the
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rules of the given axiomatization of Kσ are rules of sKσ + (MP). We conclude that
sKσ + (MP) = Kσ . �

By Corollary 2.5 the logic obtained by adding the rule (N) to wKσ (MP), or al-
ternatively (W) (we can reason as in Proposition 4.11 to show this), is the global
consequence relation defined by the class of all reflexive Kripke frames.

Theorem 5.7 The logic wKσ (MP)+ (W) is the global consequence defined by the
class of all reflexive Kripke frames.

This last logic has the same theorems as wKσ (MP); therefore it is not equal to Kσ

but is one of its extensions. The reason is that every axiom of Kσ is a theorem of
wKσ (MP) and also every rule of Kσ is one of its rules.

Proposition 5.8 Kσ < wKσ (MP)+ (W).

Summarizing we have

wKσ < wKσ + (MP) < wKσ (MP) < wKσ (MP)+ (W),

and
wKσ + (MP) < sKσ + (MP) = Kσ < wKσ (MP)+ (W).

We now move to the consideration of the logics obtained by adding (R) as an axiom
to the logics already considered.

Proposition 5.9

1. The logics wKσ (MP), wKσ (MP) + (W), and wKσ + (W) + (MP) + (R),
which is Kσ + (R), have the same theorems.

2. wKσ (MP) = wKσ (MP)+ (R) = wKσ (MP,R).
3. wKσ (MP)+ (W) = wKσ (MP)+ (W)+ (R) =

wKσ + (MP)+ (W)+ (R)(= Kσ + (R)).

Proof (1) By Corsi’s results in [4] the theorems of Kσ+(R) are the formulas valid
in every reflexive Kripke frame and these are precisely the theorems of wKσ (MP)
and wKσ (MP)+ (W).

(2) It holds because (R) is valid in every reflexive Kripke frame and therefore is a
theorem of wKσ (MP).

(3) The first equality holds because (R) is a theorem of wKσ (MP). We prove now
that wKσ (MP)+ (W) = Kσ + (R). That wKσ (MP)+ (W) extends Kσ + (R) holds
by the same reason. To prove that Kσ + (R) extends wKσ (MP) + (W), it suffices
to show that if ψ0, . . . , ψn−1 `wKσ (MP) ϕ, then ψ0, . . . , ψn−1 `Kσ+(R) ϕ. Assume
that ψ0, . . . , ψn−1 `wKσ (MP) ϕ. Using the rules for ∧ and (DT0) of the Gentzen
calculus we obtain that `wKσ (MP) ψ0 ∧· · ·∧ψn−1 → ϕ. Thus ψ0 ∧· · ·∧ψn−1 → ϕ

is a theorem of Kσ + (R). Using the inference rules of the axiomatization of Kσ it
follows that ψ0, . . . , ψn−1 `Kσ+(R) ϕ. �

Theorem 5.10 The logics wKσ + (R) and sKσ + (R) are non-protoalgebraic.
Moreover, all the logics with (MP) are protoalgebraic.

Proof The matrices used in the proof of Theorem 4.8 show that wKσ + (R) and
sKσ + (R) are non-protoalgebraic. For the logics with (MP), in each one holds
that p → p is a theorem and that modus ponens is a rule, this is known to imply
protoalgebraicity. �
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Theorem 5.11 The logics Kσ + (R) and wKσ (MP)+ (W) are algebraizable.

Proof They are extensions of the algebraizable logic Kσ . �

Proposition 5.12 The axiomatic extensions by (R) of the logics wKσ , sKσ ,
wKσ + (MP), and sKσ + (MP) are proper extensions.

Proof The four logics wKσ , sKσ , wKσ + (MP), and sKσ + (MP) have the same
theorems, namely, the formulas valid in all Kripke frames, and we know that (R) is
not a theorem of sKσ + (MP). �

Proposition 5.13

1. wKσ + (R) < wKσ + (W)+ (R) < wKσ + (W)+ (MP)+ (R).
2. wKσ + (R) < wKσ + (MP)+ (R) < wKσ (MP).

To prove the proposition it is convenient to present first an auxiliary lemma. To state
it we introduce the next definition.

Definition 5.14 Let 〈W, R, V 〉 be a model, F ⊆ {V (ϕ) : ϕ ∈ Fm} and 〈0, ϕ〉

be a Hilbert-style rule. We will say that 〈0, ϕ〉 is F-valid in 〈W, R, V 〉 if for every
substitution instance 〈e[0], e(ϕ)〉 of 〈0, ϕ〉 such that {V (e(ψ)) : ψ ∈ 0} ⊆ F it
holds that V (e(ϕ)) ∈ F .

Lemma 5.15 Let {Ri : i ∈ I } be a set of Hilbert-style rules, S a finitary logic,
and 〈W, R, V 〉 a model where all the Hilbert-style rules 〈0, ϕ〉 such that 0 `S ϕ

are valid (i.e., V (0) ⊆ V (ϕ)). For any set F ⊆ {V (ϕ) : ϕ ∈ Fm} closed under
intersections, upward closed by the inclusion relation, and with the property that
every rule Ri is F-valid in 〈W, R, V 〉, it holds that for every set of formulas 0 such
that {V (ψ) : ψ ∈ 0} ⊆ F and every formula ϕ, if 0 `S+{Ri :i∈I } ϕ, then V (ϕ) ∈ F.

Proof The proof is by induction on the length of the proofs. �

Proof of Proposition 5.13 (1) If 0 `wKσ+(R) ϕ, then in any reflexive Kripke
model M, if the formulas in 0 are true at a point x , then ϕ is true at x . This holds
because (R) is valid in any reflexive Kripke model, andwKσ is the local consequence
of all Kripke models. But there are reflexive Kripke models where (W) does not
hold. Let W = {a, b}, R = {〈a, a〉, 〈b, b〉, 〈a, b〉} and consider any valuation such
that V (p) = {a}. Then V (p) 6⊆ V (> → p). Thus p 6`wKσ+(R) > → p. Hence
wKσ + (R) < wKσ + (W) + (R). To prove the other inequality it is clear that
wKσ + (W)+ (MP)+ (R), which is Kσ + (R), is an extension ofwKσ + (W)+ (R)
and that they are different follows from the fact that the first one is non-protoalgebraic
and the second one is algebraizable.

(2) There are Kripke frames where (MP) is not valid but (R) is; for instance, the
frame considered in the proof of Proposition 5.2. This proves the first inequal-
ity. That wKσ + (MP) + (R) ≤ wKσ (MP) is obvious since (R) is a theorem of
wKσ (MP). To prove that these two logics are different we will see that the for-
mula δ := > → ((p ∧ (p → q)) → q), which is clearly a theorem of wKσ (R)
and therefore of wKσ (MP), is not a theorem of wKσ + (MP) + (R). To this end
we will use Lemma 5.15. We consider the Kripke frame F = 〈W, R〉 where
W = {w1, w2, w3} and R = {〈w1, w1〉, 〈w1, w2〉, 〈w1, w3〉, 〈w2, w2〉, 〈w2, w1〉}.
Let A be the set whose elements are 0 := ∅, 1 := W , a := {w3}, and
b := {w2, w3}. This set is closed under intersections, unions, and the operation
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that serves to interpret →, namely, the operation ⇒R on the powerset of W defined
by X ⇒R Y = {x ∈ W : R(x) ∩ X ⊆ Y }, for every X, Y ∈ P (W ) which, restricted
to A, is displayed in the following table.

⇒ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a a 1 1
1 a a a 1

Consider the set F = {{w2, w3},W }. It is easy to check that for any X, Y ∈ A,
X ∩ (X ⇒ Y ) ⇒ Y ∈ F and that if X, (X ⇒ Y ) ∈ F , then Y ∈ F . Thus (R)
and (MP) are F-valid in any model 〈W, R, V 〉 on the frame F whose valuation V
takes values in A. Since V (> → ((p ∧ (p → q)) → q)) = a 6∈ F it follows by
Lemma 5.15 that > → ((p∧(p → q)) → q) is not a theorem ofwKσ+(MP)+(R).1

�

Finally, let us see which logics are obtained when (R) is added as an axiom to
the Gentzen calculus used to define wKσ . We will consider the logics wKσ (R),
wKσ (R)+ (MP), wKσ (R) + (W), and wKσ (R)+ (W)+ (MP); wKσ (MP,R) has
already been considered. We have the situation displayed in the next proposition. To
prove it we will use the following fact, proved by Bou.

Fact 5.16 (Bou) wKσ (R) can be axiomatized by adding to the logic wKσ the
axioms of the form >n → ϕ where ϕ is a formula of the form ψ ∧ (ψ → δ) → δ,
that is, wKσ (R) is the logic wKσ + {∅ ` >n → ((p ∧ (p → q)) → q) : n ∈ ω}.

This fact can be proved by syntactic means and its proof is beyond the scope of this
paper.

Proposition 5.17

1. wKσ + (R) < wKσ (R) < wKσ (R)+ (MP) < wKσ (MP).
2. wKσ + (R)+ (MP) < wKσ (R)+ (MP).
3. wKσ + (W)+ (R) = wKσ (R)+ (W) < wKσ (R)+ (W)+ (MP).
4. wKσ (R) < wKσ (R)+ (W).

Proof (1) The first inequality follows from (2). The second inequality follows
because there are models of (R) where (MP) does not hold. For instance, the model
used in the proof of Proposition 5.2. To prove the third inequality, since (R) is a
theorem of wKσ (MP), it is enough to show that wKσ (R) + (MP) and wKσ (MP)
are different. We will use Lemma 5.15. Let us consider the frame F = 〈W, R〉

where W = {w1, w2, w3} and R = {〈w1, w2〉, 〈w3, w3〉}. Consider the set A whose
elements are 0 = ∅, a = {w1}, b = {w2}, c = {w1, w2}, and 1 = W . This
set is closed under unions, intersections, and the operation ⇒R that interprets →,
displayed in the following table.

⇒ 0 a b c 1
0 1 1 1 1 1
a 0 1 0 1 1
b 0 c 1 1 1
c 0 0 0 1 1
1 0 0 0 c 1
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Let F = {c, 1}. It is easy to check that for every X, Y ∈ A, X ∩ (X ⇒R Y )
⇒R Y ∈ F , W ⇒R X ∈ F , and that if X, X ⇒R Y ∈ F , then Y ∈ F . Thus
for any valuation V taking values in A, modus ponens and the rules ∅ ` >n →

(p ∧ (p → q) → q) are F-valid in 〈W, R, V 〉. Now we consider a valuation V
such that V (p) = V (r) = a and V (q) = b. Then, V (p ∨ q), V (p ∨ (q → r)) ∈ F
but V (p ∨ r) 6∈ F . Hence, by Lemma 5.15 and Fact 5.16, we obtain that
p ∨ q, p ∨ (q → r) 6`wKσ (R)+(MP) p ∨ r . But it is easy to prove that
p ∨ q, p ∨ (q → r) `wKσ (MP) p ∨ r .

(2) In the proof of (2) of Proposition 5.13 we have shown that > →

((p ∧ (p → q)) → q) is not a theorem of wKσ + (R) + (MP). But this for-
mula is easily seen to be a theorem of wKσ (R), thus of wKσ (R)+ (MP).

(3) The equality wKσ + (W) + (R) = wKσ (R) + (W) follows from the fact
that wKσ (R) = wKσ + {∅ ` >n → (p ∧ (p → q) → q) : n ∈ ω}. Thus
wKσ (R) + (W) is wKσ + (W) + (R) because from (R) and (W) all the formulas
of the form >n → (p ∧ (p → q) → q) can be proved. To show the inequality,
it is clear that wKσ + (W) + (MP) + (R), which is Kσ + (R), is an extension of
wKσ + (W)+ (R). That they are different follows from the fact that the second logic
is non-protoalgebraic and the first one is algebraizable.

(4) If wKσ (R) = wKσ (R) + (W), wKσ (R) + (MP) = wKσ (R) + (W) + (MP).
This last logic is wKσ (MP) + (W). We know from (1) that wKσ (R) + (MP) <
wKσ (MP) and we also know that wKσ (MP) < wKσ (MP) + (W). Thus we have
(4). �

Proposition 5.18 The logics wKσ (R) and wKσ (R) + (W) are non-proto-
algebraic. The logics with (MP) are protoalgebraic and the logic wKσ (R) +

(W)+ (MP) is algebraizable.

Proof The matrices in the proof of Proposition 4.8 can also be used in this case to
show that wKσ (R) and wKσ (R)+ (W) are non-protoalgebraic. The reason why the
logics with (MP) are protoalgebraic is the same as the one given in Proposition 5.10.
Finally, wKσ (R) + (W) + (MP) is algebraizable because it is an extension of the
algebraizable logic Kσ . �

To conclude this section let us state the relation that the logics wKσ (MP) and
wKσ (MP) + (W) have to the normal modal logic KT. Let us denote by lKT the
local consequence in the modal language associated with KT and by gKT the global
consequence; they are, respectively, the local and global consequence relations
determined by the class of all reflexive frames in the language of modal logic.

Theorem 5.19 For every set of subintuitionistic formulas 0 and every subintuition-
istic formula ϕ,

0 `wKσ (MP) ϕ iff σ [0] `lKT σ(ϕ) and 0 `wKσ (MP)+(W) ϕ iff σ [0] `gKT σ(ϕ).

Proof The proof of the first equivalence is analogous to the semantic proof of The-
orem 4.7 and the proof of the second one to the proof of Theorem 4.14. �
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6 Transitivity

In this section we turn to the study of the logics determined by the class of transitive
frames. We consider the rule

(RT) ϕ → ψ ` δ → (ϕ → ψ)

and the axiom

(T) (ϕ → ψ) → (δ → (ϕ → ψ)).

Notice that the rule (RT) is a particular case of the rule (W) so the logicswKσ + (W)

and wKσ (W) have this rule. Moreover, by (DT0), the formulas of the form (T) are
theorems of wKσ (W).

First we set up the relation between transitivity, (RT) and (T).

Proposition 6.1 Let F = 〈W, R〉 be a Kripke frame. Then R is transitive if and
only if the rule (RT) holds in F .

Proof It is very easy to check that if R is transitive (RT) holds in the frame. To
prove the converse, assume that (RT) holds in 〈W, R〉. If x Ry and y Rz, to see that
x Rz let us consider any valuation V such that V (p) = R(y) and V (q) = R(x).
Then R(x) ∩ V (p) ⊆ V (q), so x ∈ V (p → q). Therefore, x ∈ V (> → (p → q)).
Hence, R(x) ∩ W ⊆ V (p → q). Therefore, as x Ry, y ∈ V (p → q). Hence,
R(y) ∩ V (p) ⊆ V (q). So R(y) ⊆ R(x). Thus, since y Rz, x Rz. �

Proposition 6.2 (T) is valid in all transitive Kripke frames but it is also valid in
some nontransitive Kripke frame.

Proof The first part is easily proved. To prove the second part consider the frame
〈{a, b, c}, {〈a, b〉, 〈b, c〉}〉, which is nontransitive. Tedious checking shows that (T)
is valid in that frame. �

Now we can proceed to consider the different logics we obtain by adding (RT) to the
logics of the above sections. As in the case of reflexivity we find an incompleteness
phenomena.

Lemma 6.3 The set of theorems of the logic wKσ is closed under the rule (RT).
Therefore wKσ + (RT) has the same theorems as wKσ .

Proof If ϕ → ψ is a theorem, then for every Kripke model 〈W, R, V 〉,
V (ϕ → ψ) = W . Let us see that V (δ → (ϕ → ψ)) = W . Let x ∈ W . Then, as
V (ϕ → ψ) = W , R(x)∩V (δ) ⊆ V (ϕ → ψ). Hence, x ∈ V (δ → (ϕ → ψ)) = W .
This proves the first part of the lemma. To prove the second part recall that
wKσ + (RT) is defined as the logic obtained by the Hilbert calculus whose rules
are all the rules of wKσ plus the rule (RT). It is enough to see that any proof of a
theorem of wKσ + (RT) produces a theorem of wKσ because the set of theorems of
wKσ is closed under (RT). �

Theorem 6.4 The logic wKσ + (RT) is frame incomplete.

Proof The frames in which all the rules of the logic are valid are the transitive
frames. The formula (p → q) → (r → (p → q)) is valid in every transitive frame
but is not a theorem of wKσ + (RT) since it is not a theorem of wKσ : there are
nontransitive models where it is not valid. �
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In the sequel we deal first of all with wKσ (RT), which is the local consequence
relation of all the transitive frames. The proof of this fact is analogous to the com-
pleteness proof for wKσ . The only adjustment needed is to check that the canonical
model is transitive.

Theorem 6.5 wKσ (RT) is the local consequence defined by the class of all transi-
tive frames.

Proof The canonical Kripke frame forwKσ (RT) is transitive. Assume that 01 Rc02
and 02 Rc03. To show that 01 Rc03, assume that ϕ → ψ ∈ 01 and ϕ ∈ 03. Then
by (RT), > → (ϕ → ψ) ∈ 01. Since > ∈ 02, ϕ → ψ ∈ 02. Since 02 Rc03 we
conclude that ψ ∈ 03. �

Notice that although (RT) is a rule of wKσ + (W), the logic wKσ (RT)+ (W) is not
equal to wKσ + (W). The point is that (T) is a theorem of wKσ (RT) + (W), but is
not a theorem ofwKσ +(W). As in the case ofwKσ andwKσ (MP) we can consider
the logicwKσ (RT)+ (W) (alternativelywKσ (RT)+ (N)). By Corollary 2.5 it is the
global consequence defined by the class of all transitive Kripke frames.

Theorem 6.6 The logic wKσ (RT)+ (W) is the global consequence defined by the
class of all transitive Kripke frames.

Summarizing the relations between the logics treated up to now in this section we
obtain the following proposition.

Proposition 6.7

1. wKσ + (RT) < wKσ (RT) < wKσ (RT)+ (W).
2. wKσ + (RT) < wKσ + (RT)+ (W) = wKσ + (W) < wKσ (RT)+ (W).

Proof (1) As we have seen in the proof of Theorem 6.4, the formula (p → q) →

(r → (p → q)) is not a theorem ofwKσ + (RT), but using (DT0) it is clear that it is
a theorem of wKσ (RT). Moreover since (W) is not valid in the class of all transitive
frames the other inequality follows.

(2) The first inequality holds because there are transitive models where (W) is not
valid, and all the rules of wKσ + (RT) are valid in transitive models. The equality
is clear since (RT) is a special case of (W). The last inequality follows because the
theorems of wKσ + (W) are the theorems of wKσ and the formulas of the form (T)
are theorems of wKσ (RT)+ (W). �

It is clear that the formulas of the form (T) are theorems of the logics wKσ (RT) and
wKσ (RT)+ (W) since they are valid in all transitive Kripke frames. It makes sense
to consider also the logics wKσ + (T), wKσ + (RT)+ (T), and wKσ + (W)+ (T).
For these logics the known situation is the following.

Proposition 6.8

1. wKσ + (T) < wKσ + (RT)+ (T) < wKσ + (W)+ (T).
2. wKσ + (RT)+ (T) < wKσ (RT).

Proof (1) The first inequality follows from the fact that there are frames where
(T) is valid but (RT) is not. The frame in the proof of Proposition 6.2 is one of them.
The second inequality follows from the fact that all the rules of wKσ + (RT) + (T)
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are valid in transitive models and the existence of transitive models where (W) is not
valid.

(2) That wKσ + (RT) + (T) ≤ wKσ (RT) is immediate. To show that these
logics are different we will use Lemma 5.15. Let W = {w1, w2, w3} and
R = {〈w1, w1〉, 〈w2, w1〉, 〈w1, w3〉}. Consider the set A = {0, 1, a, b, c} where
0 = ∅, 1 = W , a = {w1, w3}, b = {w2, w3}, and c = {w3}. This set is closed under
unions, intersections, and the operation ⇒R that interprets → whose table when
restricted to A is

⇒ 0 c a b 1
0 1 1 1 1 1
c b 1 1 1 1
a c c 1 c 1
b b 1 1 1 1
1 c c 1 c 1

It is clear that for every X, Y, Z ∈ A, if X ⇒R Y = W , then Z ⇒R (X ⇒R Y ) = W
and moreover, for every X, Y, Z ∈ A, (X ⇒R Y ) ⇒R (Z ⇒R (X ⇒R Y )) = W .
Thus for any valuation V taking values in A, the rules (RT) and (T) are {1}-valid.
Consider any valuation taking values in A such that V (p) = c, V (q) = 0, and
V (r) = a. Then V ((p → q) ∨ r) = 1 and V ((> → (p → q)) ∨ r) = a. Hence by
Lemma 5.15, (p → q) ∨ r 6`wKσ+(RT)+(T) (> → (p → q)) ∨ r . But it is easy to
see that (p → q) ∨ r `wKσ (RT) (> → (p → q))∨ r .2 �

Another logic worth considering is the logic Kσ + (T), that is, wKσ + (MP) +

(W) + (T). The set of its theorems has been studied in [4] where it is proved that
it is the set of formulas valid in every transitive frame. Thus this logic has the same
theorems as wKσ (RT). In this paper we will not explore other combinations of the
rules (MP) and (RT) and the axioms (R) and (T).

Concerning the classification of the logics considered in this section let us state
that none of them except Kσ + (T), which is algebraizable, is protoalgebraic.
Kσ + (T) is algebraizable because it is an extension of the algebraizable logic Kσ .

Proposition 6.9 None of the logics considered with the rule (RT) or the axiom (T),
besides Kσ + (T), which is algebraizable, is protoalgebraic.

Proof Using the matrices in the proof of Theorem 4.8 it can be shown that none of
the logicswKσ+(W)+(T),wKσ (RT)+(W), andwKσ+(W)+(T) is protoalgebraic.
Each of the other logics has wKσ (RT)+ (W) or wKσ + (W)+ (T) as an extension.
So they cannot be protoalgebraic either because any extension of a protoalgebraic
logic is protoalgebraic. �

To conclude this section, we state in the next theorem the relation between the modal
logic K4 and the logicswKσ (RT) andwKσ (RT)+(W) established by the translation
σ . Let us denote by lK4 the local consequence relation associated with K4 and by
gK4 the corresponding global consequence relation; they are, respectively, the local
and global consequence relations determined by the class of all transitive frames in
the modal language.
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Theorem 6.10 For every set of subintuitionistic formulas 0 and every subintuition-
istic formula ϕ,

0 `wKσ (RT) ϕ iff σ [0] `lK4 σ(ϕ) and 0 `wKσ (RT)+(W) ϕ iff σ [0] `gK4 σ(ϕ).

Proof The proof of the first equivalence is analogous to the semantic proof of The-
orem 4.7 and the proof of the second one to the proof of Theorem 4.14. �

7 Reflexivity plus Transitivity

We can go on with different combinations of the rules (RT), (MP), and the axioms
(T) and (R), adding them to wKσ and sKσ to obtain new logics or adding them
to the Gentzen calculus for wKσ with the same purpose. In this section we will
concentrate mainly on two of them, the logics that correspond to the local and to the
global consequence relations of the class of all reflexive and transitive frames.

From Propositions 5.1 and 6.1 and the proofs of Theorems 5.5 and 6.5 the next
theorem easily follows.

Theorem 7.1 The logic wKσ (MP,RT) is the local consequence of the class of all
reflexive and transitive frames.

In the same way as we did for the logics wKσ , wKσ (MP), and wKσ (RT) we can
prove that adding (W) to wKσ (MP,RT) we obtain the global consequence of the
class of all reflexive and transitive frames.

Theorem 7.2 The logic wKσ (MP,RT) + (W) is the global consequence of the
class of all reflexive and transitive frames.

We consider in addition the logic wKσ + (MP) + (RT). It has the same theo-
rems as wKσ because the set of theorems of this logic is closed, as we already
know, under (MP) and (RT). So here we also have an incompleteness phenomena:
The logic wKσ + (MP) + (RT) is not frame complete. Its class of frames is the
class of all reflexive and transitive frames, and neither (p ∧ (p → q)) → q nor
(p → q) → (r → (p → q)) belong to the set of its theorems.

Theorem 7.3 The logics considered in this section are protoalgebraic.

Proof All of them have (MP). �

Theorem 7.4 The logicwKσ (MP,RT) is finitely equivalential with the set of equiv-
alence formulas {p → q, q → p}.

Proof The set of formulas {p → q, q → p}, which we abbreviate by p ↔ q, is a
set of equivalence formulas forwKσ (MP,RT). We prove it by showing that it has the
required syntactical properties. We have (MP), therefore, p, p ↔ q `wKσ (MP,RT) q.
p → p is a theorem, thus

`wKσ (MP,RT) p ↔ p.
Finally it is easy to check that

p ↔ p′, q ↔ q ′ `wKσ (MP,RT) p → q ↔ p′ → q ′

holds. To prove it semantically one has to make an essential use of transitivity.
Moreover, it is clear that

p ↔ p′, q ↔ q ′ `wKσ (MP,RT) p ∨ q ↔ p′ ∨ q ′
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and
p ↔ p′, q ↔ q ′ `wKσ (MP,RT) p ∧ q ↔ p′ ∧ q ′.

�

Theorem 7.5 The logicwKσ (MP,RT)+(W) is algebraizable with the set of equiv-
alence formulas {p → q, q → p} and the set of defining equations {p ≈ >}.

Proof By the above theorem, the logic wKσ (MP,RT) is equivalential with the set
of equivalence formulas {p → q, q → p}. Thus, since wKσ (MP,RT) + (W) is
an extension of wKσ (MP,RT), it is equivalential with the same set of equivalence
formulas. To prove that it is algebraizable we can show that it has the syntactical
properties required in the definition we gave in Section 2. Since it is equivalential
with {p → q, q → p} we need only to prove that

p `wKσ (MP,RT)+(W) p ↔ >

and
p ↔ > `wKσ (MP,RT)+(W) p.

The second statement follows by (MP) and the fact that > is a theorem. The first one
follows because > is true at every point of every model andwKσ (MP,RT)+ (W) is
the global consequence relation of the class of all reflexive and transitive models. �

As in the above sections we can state the relationship given by the translation σ
between the logics wKσ (MP,RT) andwKσ (MP,RT)+ (W) and a modal logic. Let
us denote by lS4 the local consequence relation between modal formulas associated
with S4, and by gS4 the corresponding global consequence relation.

Theorem 7.6 For every set of subintuitionistic formulas 0 and every subintuition-
istic formula ϕ,

0 `wKσ (MP,RT) ϕ iff σ [0] `lS4 σ(ϕ)

and
0 `wKσ (MP,RT)+(W) ϕ iff σ [0] `gS4 σ(ϕ).

To conclude, notice thatwKσ (MP,RT)+(W) is not Intuitionistic logic. The formula
(p → (q → r)) → ((p → q) → (p → r)) is not one of its theorems since there
are reflexive and transitive models in which it is not valid.

8 Visser’s Propositional Logic

In [17], by means of a natural deduction calculus, Visser defined a logic he called
Basic Propositional Logic and which we will call, following [13], Visser’s Propo-
sitional Logic, VPL for short. He proved that it is the local consequence relation
defined by the class of all transitive models with a valuation V with the property
that for every propositional variable p, if x ∈ V (p) and y is accessible from x then
y ∈ V (p). VPL turns out to be the logic defined by the Gentzen calculus for wKσ

plus the following rule

(DT1)
ϕ,ψ ` δ

ϕ ` ψ → δ



250 Sergio Celani and Ramon Jansana

Let us call the logic defined by this Gentzen calculuswKσ (DT1). We will prove that
it is VPL and will study some of its properties. wKσ (DT1) does not have (MP) as
a derivable rule nor (R) as a theorem. Notice that if we add (DT1) to the Gentzen
calculus G then the rule (W) is derivable: the sequent ϕ, δ ` ϕ is derivable, so by
(DT1) we obtain the sequent ϕ ` δ → ϕ.

We say that a Kripke model 〈W, R, V 〉 is a model of a Gentzen-style rule

00 ` ϕ0, . . . , 0n−1 ` ϕn−1

0 ` ϕ

if, for every substitution e, V (e[0]) ⊆ V (e(ϕ)) whenever for every i < n,
V (e[0i ]) ⊆ V (e(ϕi)), and we say that the rule is valid in a frame if every model in
the frame is a model of the rule.

A valuation V on a frame 〈W, R〉 is said to be R-persistent (or R-increasing, or
R-upclosed) if for every formula ϕ, V (ϕ) is an R-persistent set, that is, if x ∈ V (ϕ)
and x Ry, then y ∈ V (ϕ). It is a well-known fact that if a frame is transitive and
V is a valuation such that for every propositional variable p, V (p) is R-persistent,
then V is R-persistent. However, there are R-persistent valuations in nontransitive
frames. We will see that if 〈W, R, V 〉 is a Kripke model of the rule (DT1) then V
is R-persistent. Moreover, any Kripke model satisfying this condition is a Kripke
model of the rule. The same situation holds for the rule (W).

Proposition 8.1 The following conditions are equivalent for any Kripke model
M = 〈W, R, V 〉:

1. M is a model of (DT1);
2. M is a model of (W);
3. for every formula ϕ, V (ϕ) is R-persistent.

Proof (1) H⇒ (2) Because (W) follows from (DT1).

(2) H⇒ (3) Assume that M is a model of (W). Then V (ϕ) ⊆ V (> → ϕ). In order
to see that V (ϕ) is R-persistent let x ∈ V (ϕ) and let x Ry. Then, as x ∈ V (> → ϕ)

and y ∈ V (>), y ∈ V (ϕ).

(3) H⇒ (1) Let M be a model such that for every formula ϕ, V (ϕ) is R-persistent.
Assume that V (ϕ) ∩ V (ψ) ⊆ V (δ). Let x ∈ V (ϕ) and let y ∈ V (ψ) be such
that x Ry. Since V (ϕ) is R-persistent, y ∈ V (ϕ). Therefore y ∈ V (δ). Hence
x ∈ V (ψ → δ). So we can conclude that (DT1) holds. �

Proposition 8.2 The following conditions are equivalent for any Kripke frame
〈W, R〉:

1. (DT1) is valid on 〈W, R〉;
2. (W) is valid on 〈W, R〉;
3. all valuations on the frame are R-persistent.

Proof The proof follows from Proposition 8.1. If (DT1) is valid in 〈W, R〉, then
every model on 〈W, R〉 is a model of (DT1), so a model of (W). Hence (W) is valid
on the frame. If this holds, every valuation is R-persistent. On the other hand, if this
last property holds, (DT1) must be valid in the frame. �

Corollary 8.3 The only frames in which (DT1) (equivalently (W)) is valid are the
frames whose relation is a subset of the identity relation.
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Proof If a Rb and a is different from b, no valuation with V (p) = {a} is R-
persistent. �

This corollary shows that when we are interested in the condition ‘the valuation is
R-persistent’, the frame perspective is not the right one. It is sensible to restrict the
valuations on frames to the R-persistent ones. Then we have the following complete-
ness result.

Theorem 8.4 0 `wKσ (DT1) ϕ if and only if for every Kripke frame 〈W, R〉 and any
R-persistent valuation V , V (0) ⊆ V (ϕ).

Proof The implication from left to right follows from Proposition 8.2. To prove the
other implication it is enough to argue as in the proof of the completeness theorem
for the logic wKσ , proving that the canonical model obtained is such that Vc is Rc-
persistent. This follows from the fact that for every formula ϕ, ϕ `wKσ (DT1) > → ϕ.
Assume that 0 ∈ Vc(ϕ) and 0Rc0

′. Then ϕ ∈ 0. Therefore, > → ϕ ∈ 0. As
> ∈ 0′, ϕ ∈ 0′. Hence, 0′ ∈ Vc(ϕ). �

The same proof works for the logic wKσ (W).

Theorem 8.5 0 `wKσ (W) ϕ if and only if for every Kripke frame 〈W, R〉 and any
R-persistent valuation V , V (0) ⊆ V (ϕ).

Corollary 8.6 The logics wKσ (DT1) and wKσ (W) are the same.

Two interesting properties of the canonical model for wKσ (DT1) are the following.

Proposition 8.7 The relation Rc of the canonical model forwKσ (DT1) is transitive
and is included in the subset relation, that is, if 0Rc1, then 0 ⊆ 1.

Proof First we show that Rc is transitive. Assume 01 Rc02 and 02 Rc03. Then
assume that ϕ → ψ ∈ 01 and ϕ ∈ 03. Now, ϕ → ψ `wKσ (DT1) > → (ϕ → ψ);
therefore > → (ϕ → ψ) ∈ 01. Moreover, > ∈ 02. Hence we have ϕ → ψ ∈ 02.
Therefore, ψ ∈ 03. We conclude that 01 Rc03.

To see that Rc is included in the subset relation, assume that 1Rc0 and ϕ ∈ 1,
then since ϕ `wKσ (DT1) > → ϕ, > → ϕ ∈ 1. As > ∈ 0, ϕ ∈ 0. �

The fact that the relation of the canonical model of wKσ (DT1) is transitive shows
that wKσ (DT1) is complete relative to the class of models 〈W, R, V 〉 where R is
transitive and V is R-persistent. Moreover, in transitive frames it holds that a val-
uation V is R-persistent if and only if for every propositional variable p, V (p) is
R-persistent. Let us call a valuation with this property R-persistent for the proposi-
tional variables. Thus we have the following completeness results.

Theorem 8.8 The following conditions are equivalent:
1. 0 `wKσ (DT1) ϕ;
2. for every transitive Kripke frame 〈W, R〉 and any R-persistent valuation V ,

V (0) ⊆ V (ϕ);
3. for every transitive Kripke frame 〈W, R〉 and any valuation V that is R-

persistent for the propositional variables, V (0) ⊆ V (ϕ).

The class of models for VPL considered by Visser is the class of transitive Kripke
models with a valuation R-persistent for the variables. He proved that VPL is exactly
the local consequence relation defined by this class of models.
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Corollary 8.9 The logic wKσ (DT1) is Visser’s propositional logic.

Now we turn to the characterization of the global consequence defined by the class
of Kripke models where V is R-persistent.

Proposition 8.10 {>n → ϕ : n ∈ ω, ϕ ∈ 0} `wKσ (DT1) ψ if and only if for every
Kripke model 〈W, R, V 〉 with V R-persistent and such that V (0) = W, it holds that
V (ϕ) = W.

Proof The proof is as in the proof of item 2 in Proposition 2.3. �

Theorem 8.11 wkσ (DT1) is also the global consequence defined by the class of
Kripke models with an R-persistent valuation.

Proof Because (N) is a rule of wKσ (DT1) we have

{>n → ϕ : n ∈ ω, ϕ ∈ 0} `wKσ (DT1) ψ iff 0 `wKσ (DT1) ψ.

Therefore, by Proposition 8.10, we obtain the desired conclusion. �

Now we turn to the study of the logic wKσ (DT1,MP), the logic defined by the
Gentzen calculus wKσ (DT1) augmented with the modus ponens rule. First we ob-
serve that the logics wKσ (DT1,MP) and wKσ (DT1)+ (MP) are equal.

Proposition 8.12 The logics wKσ (DT1,MP) and wKσ (DT1)+ (MP) are equal.

Proof Using Theorem 8.8 it can be seen that if ϕ1, . . . , ϕn `wKσ (DT1) ψ then for
every formula δ, δ → ϕ1, . . . , δ → ϕn `wKσ (DT1) δ → ψ . Then, using a stan-
dard argument it can be proved that (DT1) holds for wkσ (DT1) + (MP), namely,
that if ϕ,ψ `wKσ (DT1)+(MP) δ, then ϕ `wKσ (DT1)+(MP) ψ → δ. This implies that
wkσ (DT1,MP) = wKσ (DT1)+ (MP). �

Proposition 8.13 The relation Rc of the canonical model of the logic
wKσ (DT1,MP) is reflexive. Moreover, Rc = ⊆.

Proof Assume ϕ → ψ ∈ 0 and ϕ ∈ 0. By (MP), ψ ∈ 0. Therefore 0Rc0. We
conclude that Rc is reflexive. Moreover, we know that Rc is included in the inclusion
relation. Assume now that 0 ⊆ 1. If ϕ → ψ ∈ 0 and ϕ ∈ 1, since ϕ → ψ ∈ 1

too, by (MP), ψ ∈ 1. Hence 0Rc1. Thus, Rc = ⊆. �

Using the above results this proposition has the following consequence.

Theorem 8.14

1. wKσ (DT1,MP) is the local consequence relation defined by the class of re-
flexive Kripke models with an R-persistent valuation.

2. wKσ (DT1,MP) is the local consequence relation defined by the class of re-
flexive and transitive Kripke models with a valuation which is R-persistent
for the propositional variables.

Since, by Theorem 8.14(2), wKσ (DT1,MP) is precisely intuitionistic logic, we ob-
tain that the class of models 〈W, R, V 〉 with R reflexive and V R-persistent is a
sound and complete semantics for Intuitionistic logic too.

Theorem 8.15 wKσ (DT1,MP), namely, intuitionistic logic, is also the global con-
sequence defined by the class of all reflexive Kripke models with an R-persistent
valuation.
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Proof Because (W) is a rule of wKσ (DT1,MP) and we can argue as in Proposi-
tion 8.10 and Theorem 8.11. �

We have seen that wKσ (DT1) is the logic wKσ (W). As a final observation let
us state the relationship between wKσ (W), wKσ + (W), wKσ + (W) + (R),
wKσ (W)+ (R), and wKσ + (W)+ (MP).

Proposition 8.16

1. wKσ + (W) < wKσ (W) < wKσ (W)+ (R).
2. wKσ + (W) < wKσ + (W)+ (R) < wKσ (W)+ (R).
3. wKσ (W) < wKσ (W)+ (MP).
4. wKσ (W)+ (R) < wKσ (W)+ (MP).

Proof (1) The second inequality holds because (R) is not a theorem of wKσ (W).
The model with W = {a, b}, R = {〈a, b〉}, and valuation such thatV (p) = {b}

and V (q) = ∅ shows it. To prove the first inequality, we recall that the logics
wKσ and wKσ + (W) have the same theorems. The formula p → (q → p) is a
theorem of wKW) (use (W) and (DT0)) but it is not valid in every Kripke model.
Take W = {a, b, c}, R = IdW ∪ {〈a, b〉, 〈b, c〉}, and V any valuation such that
V (p) = {b} and V (q) = {c}. Then a 6∈ V (p → (q → p)) because b ∈ R(a)∩V (p)
and R(b) ∩ V (q) 6⊆ V (p), which implies that b 6∈ V (q → p).

(2) ThatwKσ +(W) < wKσ +(W)+(R) was already proved in Section 5 and also
follows from (1). Moreover, p → (q → p) is not a theorem of wKσ + (W) + (R)
since the theorems of this logic are valid in every reflexive Kripke model and
p → (q → p). There are reflexive Kripke models where this formula is not valid,
for instance the model used in (1).

(3) It holds because (MP) is not valid in every transitive Kripke model with an
R-persistent valuation, as is easily shown.

(4) It is enough to find a model 〈W, R, V 〉 such that for every set of formulas 0
and every formula ϕ such that 0 `wKσ (W)+(R) ϕ, V (0) ⊆ V (ϕ) and where (MP)
does not (locally) hold. Let W = {a, b}, R = {〈a, b〉, 〈b, b〉}, and V be such that
V (p) = W and V (q) = {b}. Since this model is transitive and R-persistent, if
0 `wKσ (W) ϕ, V (0) ⊆ V (ϕ). An easy calculation shows that (R) is valid in this
model. But, V (p → q) = W . Thus, V (p) ∩ V (p → q) 6⊆ V (q). Hence (MP) does
not hold. �

To conclude we state the result proved by Suzuki, Wolter, and Zakharyashev on the
non-protoalgebraicity of VPL.

Theorem 8.17 The logic wkσ (DT1) (i.e., VPL) is non-protoalgebraic.

Proof The matrices in the proof of Proposition 4.8 show that VPL is not protoalge-
braic. �
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Notes

1. The proof of the second inequality is due to Bou.

2. The proof of item 2 is due to Bou.
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