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Abstract. TRNG is an essential component for security applications. A vulnerable
TRNG could be exploited to facilitate potential attacks or be related to a reduced key
space, and eventually results in a compromised cryptographic system. A digital FIRO-
/GARO-based TRNG with high throughput and high entropy rate was introduced by
Jovan Dj. Golić (TC’06). However, the fact that periodic oscillation is a main failure
of FIRO-/GARO-based TRNGs is noticed in the paper (Markus Dichtl, ePrint’15).
We verify this problem and estimate the consequential entropy loss using Lyapunov
exponents and the test suite of the NIST SP 800-90B standard. To address the
problem of periodic oscillations, we propose several implementation guidelines based
on a gate-level model, a design methodology to build a reliable GARO-based TRNG,
and an online test to improve the robustness of FIRO-/GARO-based TRNGs. The
gate-level implementation guidelines illustrate the causes of periodic oscillations,
which are verified by actual implementation and bifurcation diagram. Based on the
design methodology, a suitable feedback polynomial can be selected by evaluating
the feedback polynomials. The analysis and understanding of periodic oscillation and
FIRO-/GARO-based TRNGs are deepened by delay adjustment. A TRNG with the
selected feedback polynomial may occasionally enter periodic oscillations, due to active
attacks and the delay inconstancy of implementations. This inconstancy might be
caused by self-heating, temperature and voltage fluctuation, and the process variation
among different silicon chips. Thus, an online test module, as one indispensable
component of TRNGs, is proposed to detect periodic oscillations. The detected
periodic oscillation can be eliminated by adjusting feedback polynomial or delays to
improve the robustness. The online test module is composed of a lightweight and
responsive detector with a high detection rate, outperforming the existing detector
design and statistical tests. The areas, power consumptions and frequencies are
evaluated based on the ASIC implementations of a GARO, the sampling circuit and
the online test module. The gate-level implementation guidelines promote the future
establishment of the stochastic model of FIRO-/GARO-based TRNGs with a deeper
understanding.
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1 Introduction
Following the development of mobile computing, Internet of Things (IoT) and even Internet
of Everything (IoE), the security and privacy of these systems face more challenges with
increased importance. For example, the ubiquity, openness, wireless communication and
presence of device failures will bring security and privacy problems for IoT [Sta14]. To
ensure the security, cryptographic algorithms and protocols are utilized where True Random
Number Generator (TRNG) is an essential block. TRNGs can be used to generate keys,
initialization vectors, one-time pads, challenges in authentication schemes and masks
against physical attacks [Roz16]. In modern security applications, a TRNG is usually the
single point of failure, thus reliability and robustness are two indispensable characteristics
for designing and implementing TRNGs [Dic03].

The true randomness of TRNGs originates from unpredictable effects, such as thermal
noise, jitters, user behaviors, interruptions and so on. Ideally, adversaries cannot distinguish
the output of a TRNG from an uniformly distributed random variable [Yan18]. However,
the implementation of an ideal TRNG is not easily achieved. The reliability and robustness
of actual TRNGs should be evaluated to satisfy application requirements. TRNGs can be
divided into two categories based on their randomness sources, including Physical True
Random Number Generators (PTRNGs) or Hardware True Random Number Generators
(HTRNGs) with the randomness sources in hardware and Non-Physical True Random
Number Generators (NPTRNGs) with the randomness sources in software.

There are various HTRNG designs, such as the classical ring oscillator TRNG based
on phase jitters [SMS07], PLL-based TRNG [DSFC04] and transient effect ring oscillator
(TERO) TRNG [VD10]. In 2006, Jovan Dj. Golić proposed a new compact digital
HTRNG based on chaotic ring oscillators: Fibonacci ring oscillator (FIRO) and Galois
ring oscillator (GARO) [Gol06], where the pseudo and true randomness are blended as the
form of oscillating signals. The true randomness of FIRO-/GARO-based TRNGs mainly
comes from the unpredictable variations in the delays of internal logic gates and internal
metastability [DG07]. The influence of external noise on the behavior of entropy source
also exists as a worst case for randomness estimation, and the fusion between pseudo and
true randomness is unwanted for testability. However, the fusion makes it difficult to
compromise TRNG by manipulating external noise.

Designers tend to build a stochastic model for a TRNG design in the last two decades.
However, there is no stochastic model proposed for the TRNGs based on FIROs and
GAROs and it is difficult to build a stochastic model due to the chaotic property of the
TRNGs. Thus, it is hard to analyse the circuit behaviors and evaluate the quality of
FIRO-/GARO-based TRNGs with a precise method. The lack of stochastic model makes
FIRO-/GARO-based TRNGs fail to meet the requirement of PTG2 of AIS 31 [KS11] and
limited in the applications with stringent requirements, such as key generation. However,
these TRNGs comply with PTG1 of AIS 31 and NIST SP 800-90B [TBK+18] and can be
utilized for the applications with less precision, such as masking.

In normal situations, the randomness of a FIRO-/GARO-based TRNG is propagated,
transformed and enhanced through feedback, causing chaotic oscillations with high output
speed and high entropy rate. However, there is a security risk from periodic oscillations
instead of chaotic oscillations [Dic15], which implies the risk of using low-reliable FIRO-
/GARO-based TRNG for cryptographic applications. Under the periodic oscillations, the
circuit states formed by the binary outputs of all the cascaded inverters in a FIRO or
GARO and the generated random numbers present a certain periodicity, which may cause
reduced entropy and an unreliable TRNG. However, the influence of periodic oscillations
on the quality of FIRO-/GARO-based TRNGs has not been clarified in existing researches.

For the analysis of the reasons for periodic oscillations, Markus Dichtl tested several
conditions and excluded the primitive criterion of feedback polynomials and length of
FIRO as the causes [Dic15]. However, the intrinsic reasons for periodic oscillations
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were not figured out. In addition, Schramm Martin et al. conducted an experimental
assessment for FIRO-/GARO-based noise sources and illustrated the relationship between
periodic oscillations and the amount of contributing XOR connections that maximizing
the amount may minimize the probability of periodic oscillations [SDH17]. However, the
reasons for periodic oscillations and the relationship are not analysed in [SDH17], which
is just an experimental result. Yunfan Yang et al. designed a combined structure to
reduce the probability of periodic oscillations by increasing jitters with more elements
and feedback loops in the circuit [YJW+17], which didn’t analyse the intrinsic reasons
and lacked persuasiveness for the solution. Other improved entropy sources are also
proposed to improve the chaotic property, but the analysis of periodic oscillations is still
missing [LJZ19,WYZL20].

In this paper, we are committed to solving the above problems of the influence
clarification, the analysis of reasons and solutions of periodic oscillations. The analysis
of reasons advances the establishment of the stochastic models for FIRO-/GARO-based
TRNGs. Our contributions are shown as follows.

1. We improve the detection method from [Dic15] to achieve a higher detection rate
of periodic oscillations. The entropy estimation from the test suite of NIST SP
800-90B [HM15] enables us to quantify the entropy loss caused by periodic oscillations.
The experimental result demonstrates the risk of using compromised FIRO-/GARO-
based TRNGs.

2. We are the first to use Lyapunov exponent and bifurcation diagram for analyzing
the oscillating behaviors of FIRO-/GARO-based TRNGs. The Lyapunov exponents
describe the non-chaotic and chaotic properties of periodic and chaotic oscillations
respectively. Bifurcation diagrams verify our cause analysis for periodic oscillations.

3. An in-depth analysis, based on a gate-level (netlist) model with TSMC 28nm as
the technology, was carried out to inquire into the unwanted periodic oscillations in
the compromised chaotic FIRO-/GARO-based TRNGs. The platform parameters of
this gate-level model are collected from implementations on mainstream commercial
FPGAs (Xilinx Artix-7 FPGAs). A case study on these gate-level models is used to
derive implementation guidelines for GARO-based TRNGs.

4. A design methodology is proposed to implement a reliable GARO-based TRNG.
In this methodology, the feedback polynomials are evaluated to select a suitable
feedback polynomial without periodic oscillations, where the proposed algorithm is
realized by a Python script∗. Besides, the occasional periodic oscillations caused
by active attacks and delay inconstancy can be eliminated by delay adjustment to
improve the robustness with little resource consumption.

5. An online test module is designed to detect periodic oscillations and can improve
the robustness of FIRO-/GARO-based TRNGs against potential active attacks and
the delay inconstancy, by adjusting feedback polynomials or delays to eliminate
detected periodic oscillation. The online test module is composed of a lightweight
and responsive detector with a high detection rate, which outperforms the existing
detector design in [Dic15] and statistical tests.

6. The areas, power consumptions and frequencies of a GARO, the sampling cir-
cuit, and the online test module are evaluated in ASIC implementations with
TSMC 28nm as the technology. The areas/power consumptions of the implemented
GARO, sampling circuit and online test module are 80.3µm2(160GE)/0.063mW ,

∗The Python script is available on GitHub: https://github.com/ybhphoenix/ACloserLook_FIGARO
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58.3µm2(116GE)/0.025mW and 2033.6µm2(4035GE)/0.042mW respectively. Be-
sides, the sampling circuit and online test module can work at a frequency higher
than 2.8GHz.

This paper is organized as follows: Section 2 introduces FIRO and GARO, FIRO-
/GARO-based TRNGs, implementations of FIRO/GARO on FPGAs, Lyapunov exponent
and bifurcation diagram, and the compliance with modern standards. Section 3 describes
periodic oscillation problem, including full-state sampling, the existing and modified
detector for periodic oscillations, the quantification and the characterizations of non-
chaotic and chaotic property with Lyapunov exponents. Section 4 proposes the gate-level
implementation guidelines based on the analysis of gate-level model, where the strong
relation between delays and periodic oscillations is also illustrated by bifurcation diagram.
Section 5 verifies the gate-level implementation guidelines by statistical analysis. Section 6
proposes a design methodology to implement reliable GARO-based TRNGs and describes
the ASIC implementations of a GARO and the sampling circuit. Section 7 introduces
an online test module to improve the robustness of FIRO-/GARO-based TRNGs with
adjustable feedback polynomial or delays. Section 8 concludes the paper.

2 Background
2.1 FIRO and GARO
The FIRO and GARO designed by Jovan Dj. Golić [Gol06] are multiple feedback structures
as shown in Figure 1 and Figure 2 respectively. They are implemented by replacing the
flip-flops in Fibonacci and Galois linear feedback shift registers (LFSRs) with inverters.
The arrangement of feedback taps in a FIRO or GARO can be expressed by a polynomial
mod 2, which is called feedback polynomial. The coefficients of a feedback polynomial are
binary referred to as feedback coefficients. The feedback structure of a FIRO or GARO is
determined by the applied feedback polynomial. The feedback polynomial f(x) is defined
as Equation (1), where r is the number of cascaded inverters, xi represents the i-th tapped
bit corresponding to the i-th feedback tap, and fi is the i-th feedback coefficient. The
index i is counted from the right for a GARO and from the left for a FIRO. If fi = 1, the
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Figure 2: The structure of GARO.
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i-th feedback path is closed. Otherwise, the i-th feedback path is open. The input of the
leftmost inverter is the feedback signal derived from the output of the rightmost inverter
with fr = f0 = 1.

f(x) =
r∑
i=0

fix
i, where fi ∈ {0, 1} and fr = f0 = 1. (1)

A FIRO or GARO may enter a fixed state referred to as a fixed point and stop oscillating
with some specific feedback polynomials. For a FIRO, there are two situations with a fixed
point as follows [Gol06]:

• If the generated feedback value fed into the leftmost inverter is 1, the state 0101...
will be a fixed point. In more detail, if

∑
0<j<r fj = 0 or

∑
0<j<r fj = 1 where j is

even corresponding to the state bits with value 1s, the state 0101...1 or 0101...0 will
be a fixed point with the feedback value 1.

• If the generated feedback value fed into the leftmost inverter is 0, the state 1010...
will be a fixed point. In more detail, if

∑
0<j<r fj = 1 or

∑
0<j<r fj = 0 where j is

odd, the state 1010...1 or 1010...0 will be a fixed point with the feedback value 0.

The rightmost bit of a fixed point is determined by the parity of r of the FIRO. For
example, if r is odd, the specific values of the two fixed points 0101... and 1010... are
0101...0 and 1010...1 with 0 and 1 as the rightmost bits respectively. Thus, to prevent a
fixed point for a FIRO, the feedback polynomials should satisfy:

1. If the number of inverters r is odd, both the Hamming weights (HWs) of the feedback
coefficients at even positions and odd positions are even, except fr and f0.

2. If r is even, both the HWs of the feedback coefficients at even positions and odd
positions are odd, except fr and f0.

For a GARO, the two situations with a fixed point are as below [Gol06]:

• If r is even, the state 1010...0 will be a fixed point with the feedback value 0.

• If r is odd and
∑r−1
j=1 fj = 1, the state obtained by the bitwise XOR of 0, 1, 0, 1, ...

and 0, fr−1, fr−2, fr−3, ..., f1 will be a fixed point with the feedback value 1.

In other words, if r is even or the HW of all the feedback coefficients is odd when r is odd,
a fixed point will be generated for the GARO. Thus, to prevent a fixed point for a GARO,
the feedback polynomials should meet:

1. The number of inverters r is odd.

2. The HW of all the feedback coefficients is even.

The conditions to prevent a fixed point for a FIRO and GARO can also be expressed
by Equation (2) and Equation (3) respectively, as proposed in [Gol06]. The Equation (2)
also means that f(x) is divisible by 1 + x and the quotient polynomial h(x) is not divisible
by 1 + x.

f(x) = (1 + x)h(x) and h(1) = 1. (2)

f(1) = 0 and r is odd. (3)



386 A Closer Look at the Chaotic Ring Oscillators based TRNG Design

2.2 FIRO-/GARO-based TRNGs
Chaotic systems are able to be utilized to construct Pseudo-random number generators
(PRNGs) [HKVC22a,HKVC22b] and TRNGs [YSV04a,YSV04b,CD13]. FIRO-/GARO-
based TRNGs are based on the chaotic system formed by FIROs or GAROs, where true
randomness fuses pseudo-randomness [Yan18,Gol06]. True randomness of FIRO-/GARO-
based TRNGs mainly originates from unpredictable variations in the delays of internal logic
gates which will be propagated and enhanced through feedbacks. Internal metastability
will also contribute to the true randomness [Gol06,DG07]. The pseudo-randomness is from
the feedback structure similar to LFSR [FLL+18]. The fusion between true randomness
and pseudo-randomness is normally unwanted for testability, but it increases the difficulty
to compromise TRNG by manipulating external noise.

A TRNG consists of entropy source, digitization module, post-processing module,
total failure test module and online test module. The entropy sources of FIRO-/GARO-
based TRNGs are FIROs, GAROs or the combinations of FIROs and GAROs, which are
determined by the specific TRNG architectures. An XOR combination of a FIRO and a
GARO (FIGARO) is introduced to improve the randomness and robustness [DG07]. One
FIRO or GARO can also be applied as the entropy source of a TRNG with low requirement.
Online test module is utilized to detect the failure of entropy source [YRG+18] and trigger
an alarm to prevent insecure random numbers generated from the faulty entropy source.

Entropy source is the only source of true randomness in a TRNG. A vulnerable entropy
source will result in an unreliable TRNG. In normal situations, the random delays and
transition time of the logic gates in FIROs and GAROs influenced by internal and external
noise make the oscillation signals irregular with true randomness and pseudo-randomness
on binary and analog levels. For example, the random non-zero transition time results in
various signal amplitudes, such as the low amplitudes of the short signals without enough
time to arrive at the complete digital levels. Besides, the random delays randomize the
phase relationship of the two inputs of XOR gates causing random outputs of XOR gates.
All the random variations are further propagated and enhanced by the feedback loops
leading to the chaotic property of oscillation signals in normal situations. However, if the
oscillation of a FIRO or GARO presents a certain periodicity during sampling random
numbers, the sampled random numbers will present regularity with low attack difficulty.

2.3 Implementations of FIRO/GARO on FPGAs
FIROs and GAROs can be implemented on FPGAs only with digital logic gates. The
implementation details of a FIRO and GARO are shown in Figure 3 and Figure 4 respec-
tively. One inverter is replaced by a NAND gate to enable and disable oscillations. All the
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Figure 3: The implementation of a FIRO on FPGAs.
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Figure 4: The implementation of a GARO on FPGAs.

combinational logic gates including inverters, NAND gates, XOR gates and switches are
implemented by LUTs.

2.4 Lyapunov exponent and bifurcation diagram
Lyapunov exponents can quantify the sensitivity of a dynamical system to the initial
conditions or the instability with small changes in the initial conditions [Meh19,VCC09],
which describes the average divergence rate of two nearby trajectories. The dynamical
system with positive Lyapunov exponents is sensitive to initial conditions with chaotic
property [VCC09]. A chaotic TRNG should have at least one positive Lyapunov exponent
with high sensitivity to initial conditions. On the contrary, if all the Lyapunov exponents
are negative, the TRNG is insensitive to initial conditions with non-chaotic property.

The largest Lyapunov exponent can be calculated from small data sets based on a
delayed reconstruction and the selection of the nearest point. The specific operations are
shown as follows [RCD93]:

1. Reconstructing from a single time series. The reconstructed trajectory X =
[X1 X2 ... XM ]T is a matrix, where each row is a phase-space vector, M is
the number of reconstructed points and Xi is the system state at discrete time i.
Xi = [xi xi+J ... xi+(m−1)J ] is obtained from an N-point time series {x1, x2, ..., xN},
where J is the reconstruction delay lag and m is the embedding dimension. Thus X
is an M ×m matrix with M = N − (m− 1)J .

2. Finding the nearest neighbor of each point on the trajectory. The nearest neighbor
Xĵ is the point in the reconstructed trajectory X that minimizes the distance to the
reference point Xj , expressed as dj(0) = minXĵ

‖Xj −Xĵ‖, where dj(0) is the initial
distance, ‖..‖ is the Euclidean norm and |j − ĵ| is larger than the mean period of
power spectrum of the time series.

After the reconstruction and selection, the largest Lyapunov exponent is calculated as
in Equation (4), where ∆t is the sampling period of the time series, dj(0) is the initial
distance between the j-th pair of nearest points, and dj(i) is the distance between the j-th
pair after i discrete-time steps or i∆t seconds [SSS87,RCD93]. In this equation, M − i
pairs of nearest points are averaged to calculate the largest Lyapunov exponent with a
suitable discrete-time step.

λ(i) = 1
i∆(t)

1
(M − i)

(M−i)∑
j=1

ln
dj(i)
dj(0) (4)
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Bifurcation diagram is another critical method to characterize chaotic systems, which
can describe the sensitivity of chaotic systems to design parameters. In bifurcation diagram,
all the sampled values of a variable representing system behavior are plotted as a function
of a specific design parameter with other parameters fixed, which illustrates the influence
of the design parameter on system behavior. With different parameter values, the system
will present non-chaotic or chaotic behavior. For non-chaotic behavior, the regularity of
system behavior will make system variable keep to a definite range of possible values,
causing duplicates in sampled values with a small number of different samples. On the
contrary, the chaotic system behavior will make the sampled values spread throughout the
diagram with a large number of different values. The few definite variable values or spots
in bifurcation diagram illustrate the existence of fixed points or short periodic orbits. The
part covered by a large number of scattered spots is called a black region, corresponding
to chaotic behavior. To maintain chaotic behavior, we should select the parameter values
in the black region [Lam18]. Further, choosing the design parameter value at the center of
the black region can improve the robustness to parameter variations [CD13].

2.5 Compliance with modern standards
There are two main approaches to evaluate the qualities of RNGs in modern standards,
including AIS 20/AIS 31 with Shannon entropy or conditional entropy and NIST SP 800-90
with min-entropy. AIS 31 and NIST SP 800-90B are the test suites for TRNGs. PTG 2
of AIS 31 is a more stringent but more risky method with the requirement of stochastic
model to estimate entropy, where the qualities of entropy estimation, dedicated test and
the evaluated TRNG are related to the corresponding stochastic model. PTG 1 of AIS 31
and NIST SP 800-90B is a simpler approach with less precision for entropy evaluation but
with less risk, where stochastic models are not prerequisite and the entropy is estimated
using tests.

For FIRO-/GARO-based TRNGs, it is difficult to build a stochastic model to describe
the chaotic property and no stochastic model is introduced in existing researches. Thus,
these TRNGs are non-compliant with PTG 2 of AIS 31, but can be evaluated with PTG 1
of AIS 31 and NIST SP 800-90B without the requirement of stochastic model. According
to the PTG 2 of AIS 31 standard, FIRO-/GARO-based TRNGs cannot be used for the
generation of cryptographic keys due to the incomplete evaluation. However, these TRNGs
can be utilized for the applications without stringent requirement, such as masking.

The entropy estimation of NIST SP 800-90B can be utilized to measure the compromise
of FIRO-/GARO-based TRNGs caused by periodic oscillations. For the entropy estimation,
the track of the evaluated TRNG should be determined first, including IID (independent
and identically distributed) and non-IID tracks. The tracks of FIRO-/GARO-based TRNGs
are non-IID track, due to the dependency between the previous and current outputs. The
entropy result of a set of sampled random numbers is the minimum entropy among the
results estimated by multiple estimation methods, including the Most Common Value
Estimate, Collision Estimate, Markov Estimate, Compression Estimate and so on [HM15].

3 Periodic oscillation problem
3.1 Full-state sampling
Markus Dichtl in [Dic15] analyzed the behavior of FIROs by sampling the circuit states
which we refer to as full-state sampling. The full-state sampling means that the outputs of
all inverters and NAND gate in a FIRO or GARO are sampled by registers simultaneously
at a certain frequency. The implementations of full-state sampling for a FIRO and GARO
are shown in Figure 3 and Figure 4, where D flip-flops (DFFs) are applied for sampling.
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The random numbers are generated by sampling the output firo_out or garo_out with a
DFF.

Periodic oscillations may cause reduced entropy of the generated random numbers
and the low reliability of the TRNGs based on FIROs and GAROs [Dic15]. We repeat
the experiments from [Dic15] on a GARO with 15 cascaded inverters on Xilinx Artix-7
FPGAs. The rightmost inverter is displaced by a NAND gate for control. The sampled
outputs of the 14 inverters and NAND gate form the 15-bit state with 215 = 32768 possible
values. For this GARO, there are 14 optional feedback coefficients and 213 = 8192 feedback
polynomials without a fixed point. One feedback coefficient is determined by the other
13 feedback coefficients to realize even HW of feedback coefficients to prevent a fixed
point. We select two feedback polynomials as in Equation (5) and Equation (6) in the 8192
feedback polynomials to illustrate the difference between chaotic and periodic oscillations.
The results of full-state sampling are shown in Figure 5(a) and Figure 5(b) with the indexes
of sampled bit-patterns or states in 10000 samples as the x-axis and the logarithmic form
of state distances as y-axis. State distances represent the number of samples between
the current sampled state and the last same sampled state in all the samples, which is
formalized by Equation (7). In Equation (7), i and j are the indexes of sampled states,
Dis(i) is the state distance for the i-th sample, and si and sj represent the i-th and j-th
sample values respectively. The state distance of a new bit-pattern of state sampled for the
first time is 0, which is represented by a blue dot on x-axis. The results of state distances
are similar to the results in [Dic15].

In Figure 5(a), the state distances present no regularity and new bit-patterns are
generated throughout the whole sampling process. On the contrary, the state distances
tend to several certain values with regularity and much fewer new bit-patterns are generated
after 3000 samples in Figure 5(b). It means that some states appear repeatedly with certain
intervals and the number of different bit-patterns is reduced compared with Figure 5(a).
The regularity in Figure 5(b) illustrates the occurrence of periodic oscillation after 3000
samples for the feedback polynomial expressed by Equation (6).

f(x) = x15 + x14 + x13 + x12 + x11 + x10 + x9 + x6 + x4 + x3 + x2 + 1. (5)

f(x) = x15 + x14 + x12 + x11 + x7 + x3 + x+ 1. (6)

Dis(i) =
{

0, si is a new pattern
min{i− j | si = sj and j < i}, else

(7)
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Figure 5: The measured results of full-state sampling
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3.2 Existing and modified detector
For the periodic oscillations, a conceptual solution is proposed in [Dic15] to detect periodic
oscillations and change the applied feedback polynomial until no periodic oscillation is
detected. The detector is based on the principle that the same circuit states will occur
and be sampled repeatedly with fewer new bit-patterns generated in periodic oscillations,
causing a small number of different bit-patterns in all the samples. If the number of
different bit-patterns in all samples is smaller than a specific threshold, such as the number
smaller than 100 in 10000 samples [Dic15], periodic oscillation is considered to have
occurred during sampling. Selecting the threshold value is actually making a trade-off
between the Type I and Type II error for the Null hypothesis that the GARO is chaotic.
In our experiments, we select 150 as the threshold to detect continuous periodic oscillation
throughout the whole sampling. The threshold 150 are determined empirically, which is
larger than the threshold 100 in [Dic15] to reduce Type II error. The small value 150 of
threshold also maintains the low probability of false alarm for periodic oscillations. We
aim to analyze periodic oscillation which will greatly compromise TRNGs with a small
number of different state values. The followed entropy and Lyapunov exponent analysis
validate our selection of threshold†.
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Figure 6: The measured results of the number of different bit-patterns

As shown in Figure 6(a) which indicates the sorted result of the numbers of different
bit-patterns in 10000 samples for all the 8192 feedback polynomials, the numbers of
different bit-patterns are smaller than 150 for several feedback polynomials. The small
number of different bit-patterns is caused by the repeated appearance of a large number of
same bit-patterns, which can be utilized to detect periodic oscillations.

However, only utilizing the detector with a low threshold as in [Dic15] will cause a high
possibility of missed detection for the intermittent periodic oscillations mixed with chaotic
oscillation. An intermittent periodic oscillation will only cause a certain reduction in the
number of different bit-patterns and the degree of reduction is determined by the duration
of periodic oscillation. A short periodic oscillation will only cause a small reduction of
the number of different bit-patterns in all samples, and the reduced number is not small
enough to be detected causing missed detection. To decrease the probability of missed
detection, we propose a modified detector to detect intermittent periodic oscillations. In
the modified detector, all samples are divided into multiple parts and the number of
different bit-patterns in each part instead of the number in all samples is calculated to
detect periodic oscillations. The principle and feasibility of the modified detector are

†The measured data for all the feedback polynomials is available on GitHub, including the chal-
lenges, min-entropy, Lyapunov exponents and the numbers of different states in 10000 samples:
https://github.com/ybhphoenix/ACloserLook_FIGARO
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reflected in Figure 6(b), where the 10000 samples are divided into 50 parts and the number
of different bit-patterns in a part with 200 samples is reduced a lot when a periodic
oscillation occurs with Figure 5(b) as the reference.

With the modified detector, the intermittent periodic oscillations can be detected even
with a low threshold to prevent false alarm, which improves the detection rate. Besides,
the start and end positions of a periodic oscillation can be determined, except judging
whether a periodic oscillation has occurred.

3.3 Quantification
The influence of periodic oscillations on entropy is not quantified, causing the ambiguous
impact of periodic oscillations on the qualities of FIRO-/GARO-based TRNGs and lack of
persuasiveness for the claim about the risk of periodic oscillations in existing researches.
Thus, we need to prove that the periodic oscillations indeed cause compromised TRNGs
with low entropy. A GARO and FIRO with 15 cascaded inverters are implemented to
test the influence of periodic oscillations on entropy. For this FIRO, there are 14 optional
feedback coefficients and 212 = 4096 feedback polynomials without a fixed point. Except fr
and f0, one feedback coefficient at an even position is determined by the other 6 feedback
coefficients at even positions to realize the even HW of the feedback coefficients at even
positions, and one feedback coefficient at an odd position is determined by the other 6
feedback coefficients at odd positions to realize the even HW of the feedback coefficients
at odd positions.

We first distinguish the periodic and chaotic oscillations with the detector described in
Subsection 3.2, where the continuous periodic oscillations throughout the sampling process
are detected based on the number of different sampled states with the threshold 150 of
10000 samples, and the intermittent periodic oscillations mixed with chaotic oscillations
are detected based on the change of the number of different sampled states in every 200
samples. The entropy of generated random numbers is estimated by the test suite of NIST
SP 800-90B standard. The min-entropy results for all the configurations of the FIRO
and GARO are shown in Figure 7(a) and Figure 7(b) with the decimal representation of
the binary feedback coefficients f14f13...f1 as x-axis and estimated min-entropy as y-axis.
The detected continuous periodic oscillations, intermittent periodic oscillations mixed
with chaotic oscillations, and chaotic oscillations are marked with red, green and blue
dots respectively. As shown in Figure 7, all the reduced entropy is caused by periodic
oscillations. The large reduction in entropy caused by periodic oscillation illustrates that
periodic oscillation is a main failure of the TRNGs based on FIROs and GAROs. Besides,
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(a) The min-entropy results for FIRO.
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Figure 7: The min-entropy results for the implemented FIRO and GARO with periodic
and chaotic oscillations.
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all the periodic oscillations with entropy loss are detected successfully, which verifies the
effectiveness of the selected threshold and modified detector in Subsection 3.2 for all the
feedback polynomials. 0.195% of periodic oscillations mixed with chaotic oscillations has
high entropy. This phenomenon implies the limitation of using statistical tests to estimate
entropy, where pseudo-randomness cannot be distinguished from true randomness.

3.4 Characterization with Lyapunov exponent
As discussed in Subsection 2.4, the largest Lyapunov exponent of a system indicates
whether this system is sensitive to its initial conditions. We calculate the largest Lyapunov
exponents for all the 8192 feedback polynomials corresponding to the entropy estimated in
Subsection 3.3. For one feedback polynomial, the largest Lyapunov exponent is calculated
using Algorithm 1.

Algorithm 1 The calculation of the largest Lyapunov exponent for FIRO-/GARO-based
TRNG
Input: 10000 15-bit sampled states S = {s0, s1, ..., s9999}.
Output: Largest Lyapunov exponent.
1: Obtain the input time series {x0, x1, ..., x9999}, where the i-th value xi = HD(s0, si).
2: Select the parameters for reconstruction and calculation of largest Lyapunov exponent,

including the time delay lag, embedding dimensionm, discrete time step i and sampling
step ∆t.

3: Reconstruct the trajectory X with M = N − (m− 1)lag as described in Subsection 2.4,
based on the time delay lag, embedding dimension m, and input time series with
N = 10000 samples.

4: Find the corresponding nearest point for each point in the M − i points
{X1,X2, ...,XM−i} from reconstruction, as described in Subsection 2.4.

5: Select a suitable i.
6: Calculate the largest Lyapunov exponent λ(i) by Equation (4).

We select Hamming distances (HDs) of sampled states instead of states themselves as the
input time series of reconstruction, which is due to that Hamming distance can better reflect
the magnitude of the changes in circuit states. For the parameter selection in Algorithm 1,
the time delay lag is estimated using average mutual information(AMI) [KR11], where
lag is the first local minimum of AMI. AMI is a certain generalization of autocorrelation
function as represented by Equation (8), where p(xi) is the occurrence probability of
the i-th value xi in the input time series, p(xi+T ) is the occurrence probability of the
(i+ T )-th value xi+T after the time delay T , and p(xi, xi+T ) is the associated probability
of co-occurrence of xi and xi+T . The embedding dimension m is determined by the order
of implemented GARO. Both lag and m are 15 in our case study. Besides, the sampling
step ∆t is 1 for our discrete system. The value of discrete-time step i is determined
by experiment with the smallest fault detection probability or probability of mismatch
between oscillation types and calculated Lyapunov exponents. The discrete-time step i
equals 3 for our implemented GARO with the smallest fault detection probability 0.134%
as shown in Figure 8. For the implemented FIRO, the fault detection probabilities are 0s
for all the tested discrete-time steps. We take i = 3 as an example to display the Lyapunov
exponent results for FIRO.

AMI(T ) =
∑

xi,xi+T

p(xi, xi+T )log2[ p(xi, xi+T )
p(xi)p(xi+T ) ] (8)

After determining the value of i, the Lyapunov exponents are calculated and the results
are shown in Figure 9 with estimated min-entropy as the x-axis. The periodic and chaotic
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(b) The fault detection probabilities for GARO.

Figure 8: The fault detection probabilities for FIRO and GARO with different i.
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Figure 9: The Lyapunov exponents for FIRO and GARO with periodic, mixed and chaotic
situations.

oscillations are distinguished by the detector described in Subsection 3.2, with the selected
threshold 150 and modified detector to detect periodic oscillations. To better analyse the
consistency between entropy and Lyapunov exponents, we divide periodic oscillations into
periodic situations and mixed situations, where the duration of chaotic oscillation accounts
for [75%, 100%) of the sampling time in mixed situations. We can obtain the following
conclusions from the results:

• All the periodic situations with entropy loss have negative Lyapunov exponents
illustrating the non-chaotic property, and all the chaotic situations have positive
Lyapunov exponents indicating the chaotic property for our implemented GARO
and FIRO, which reflects the high accuracy of the Lyapunov exponent calculation.

• The low estimated entropy and positive Lyapunov exponents of some mixed situations
are due to that a short period of periodic oscillation will greatly reduce the estimated
entropy and Lyapunov exponents are obtained by analysing all the sampled states.

• The negative Lyapunov exponents having relatively high estimated min-entropy of
some periodic situations imply that our calculated Lyapunov exponents can detect
potential failures of chaotic oscillation where the entropy estimation from NIST could
not.

• All the periodic oscillations with negative Lyapunov exponents are detected success-
fully by the detector described in Subsection 3.2, verifying the effectiveness of the
selected threshold and modified detector for all the feedback polynomials.
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4 Gate-level implementation guidelines
To analyse the intrinsic reasons for periodic oscillations, we implement a GARO with 15
cascaded inverters as an example and traverse all the 8192 feedback polynomials on Xilinx
Artix-7 FPGA. All periodic oscillations with different periodic duration are collected for
analysis based on a gate-level model and full-state sampling‡.

We measure the delay of each stage of the GARO with an asynchronous counter,
and observe the regularity between delays and periodic oscillations. To demonstrate the
regularity and further analyse the inside rules, we simulate the implemented circuit based
on the measured delays with SPICE as the tool and TSMC 28nm as the technology.
The simulated technology is consistent with the technology of utilized FPGAs. The
simulated waveforms of internal circuit signals and bifurcation diagrams illustrate the
strong correlation between delays and periodic oscillation.

The analysed rules obtained from the implemented circuit and the simulated circuit
can be extended to more general cases with the feedback polynomial f(x) = xr0 + xr1 +
xr2 + ...+ xrl−1 + xrl + 1 as the gate-level implementation guidelines, where l is even to
prevent a fixed point for the GARO, the closed feedback paths except the rightmost always
closed feedback path are indexed by r0, r1, ...rl decreased from left to right and r0 is the
number of cascaded inverters.

4.1 Notation
• INVi – The i-th inverter, where i = {1, 2, ..., r0}.

• XORi – The i-th XOR gate, where i = {1, 2, ..., r0 − 1}.

• SWi – The i-th switch, where i = {1, 2, ..., r0 − 1}.

• O′i – The output of INVi.

• Oi – The output of XORi.

• Ii,j – An input of XORi, where j = {1, 2} as the indexes of the two inputs of an
XOR gate.

• gr0(fi) – The feedback polynomial with fi = f0 = 1 and the other feedback coefficients
as 0s.

• D(n′, n) – The delay difference between two feedback loops with n > 0, or the
delay of one feedback loop with n = 0. It is expressed as Equation 9, where
Delay(gr0(fn′)) = D(n′, 0) as the delay of the n′-th feedback loop with the feedback
polynomial gr0(fn′), Delay(gr0(f0)) = 0, 0 < n′ ≤ r0, and 0 ≤ n < r0.

D(n′, n) = |Delay(gr0(fn′))−Delay(gr0(fn))|, where n′ > n. (9)

• Tn – The oscillation period of the n-th feedback loop, expressed as below:

Tn = 2D(n, 0), where n = {1, 2, ..., r0}. (10)

• δ – The tolerable variation of delay differences for periodicity conditions only causing
glitches in the specific outputs. The glitches will be filtered out and a larger filter
capacity causes a larger value of δ leading to a larger possibility of periodic oscillations.
In our tests, δ = 0.38ns.

‡The collected data is available on GitHub: https://github.com/ybhphoenix/ACloserLook_FIGARO
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• DIVδ – If two non-zero delay differences D(n′, n) and D(n′1, n1) satisfy Equation (11),
where p and q are two non-zero integers, the two delay differences are called almost
commensurable. The corresponding common measure m′ = D(n′1, n1)/q is a positive
real value due to the positive delay differences and positive value of q in our analysis.
If each delay difference in {D(r0, r1), D(r2, r3),...,D(rl−2, rl−1)} is almost commen-
surable with D(rl, 0), DIVδ is the greatest common value among all the common
measures.

|D(n′, n)−D(n′1, n1)p
q
| < δ (11)

• Mi – The natural number of p with m′ = DIVδ for the positive delay difference
D(r2i, r2i+1) ≥ δ, or Mi = 0 for D(r2i, r2i+1) < δ, expressed as:

|Mi ×DIVδ −D(r2i, r2i+1)| < δ, where i = {0, 1, ..., l/2− 1} (12)

• DIV ′δ – The greatest common value among all the common measures between each
delay difference in {D(r0, r1), D(r2, r3),...,D(rl−2, rl−1)} and D(rl, 0) except the
delay differences satisfying the conditions in Decision rule3.

• DIVmin – The minimum value of DIVδ or DIV ′δ . A value not larger than DIVmin
will make signals tend to be glitches instead of periodic oscillations. In our tests,
DIVmin = 0.79ns.

• M ′i – The natural number of p with m′ = DIV ′δ for a delay difference not smaller
than δ or M ′i = 0 for a delay difference smaller than δ, where i = {0, 1, ..., N − 1}
and N is the number of delay differences utilized to calculate DIV ′δ .

4.2 Gate-level model
A gate-level model is built based on Tn obtained from FPGA implementation to analyse
the causes of periodic oscillations with SPICE as the tool and TSMC 28nm as the
technology, which is a gate-level description in the form of a netlist§. Tn is measured
with an approximate method based on the observation that the sampled values of O′14 are
heavily biased towards 0s or even fixed at 0s when f14 = 1.

As shown in Figure 10(a), the input I14,2 is the inverse of I14,1 with the delay difference
D(15, 14) when f14 = 1. The delay difference D(15, 14) < δ makes I14,2 and I14,1 almost
toggle simultaneously as shown in Figure 10(b). Thus, O14 and O′14 are fixed at 1 and 0
only with glitches. The glitches are filtered by INV14 as shown with the purer waveform
of O14 compared with O′14 in Figure 10(b). A smaller value of D(15, 14) will cause a larger
bias in the sampled values of O′14 with fewer glitches.

I14,1

I14,2 O14 O'14

f14

(a) The leftmost part of GARO circuit.

I14,1

I14,2

O14

O'14

(b) The waveforms with f14 = 1.

Figure 10: The leftmost part of GARO circuit and waveforms with f14 = 1.
§One example model is available on GitHub: https://github.com/ybhphoenix/ACloserLook_FIGARO
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Once O′14 is fixed at 0, a GARO with the feedback polynomial f(x) = x15 +x14 +xm+1
will degenerate to a GARO′ with the feedback polynomial f ′(x) = xm + 1, where m =
{1, 2, ..., 13}. The degenerated GARO′ is equivalent to a classical ring oscillator only with
one feedback loop. Thus, we implement a GARO with D(15, 14) < δ to measure Tn. Tm
can be measured approximately as Tm = Per(GARO′(f ′(x) = xm + 1)) by applying the
feedback polynomial f(x) = x15 + x14 + xm + 1, where Per(GARO′(f ′(x) = xm + 1))
represents the measured oscillation period of the degenerated GARO′ with the degenerated
feedback polynomial f ′(x) = xm + 1. Besides, T15 and T14 can be measured approximately
as T15 ≈ T14 = Per(GARO(f(x) = x15 + 1)), where Per(GARO(f(x) = x15 + 1))
represents the measured oscillation period of the GARO equivalent to a classical ring
oscillator with the feedback polynomial f(x) = x15 + 1.

An asynchronous counter is utilized to count the number of rising edges of garo_out in
one clock cycle to calculate Tn, which is composed of cascaded T flip-flops (TFFs) as shown
in Figure 11. The asynchronous counter is disabled after each cycle count to stabilize
the count values. The calculation of Tn is shown in Equation 13, where Tclk is the clock
period, N is the number of clock cycles used to count the rising edges and Cj is the count
value in the j-th clock cycle. D(n′, n) is calculated as Equation 14, which is also the delay
difference between the two inputs of XORn through the n′-th and n-th feedback paths.

garo_out/

firo_out

DFF
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clk

Q

DFF

D

clk

Q

DFF
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clk

Q…

TFF

Figure 11: The architecture of an asynchronous counter.

Tn = NTclk∑N
j=1 Cj

(13)

D(n′, n) = Tn′ − Tn
2 (14)

All the measured values of Tn are shown in Table 1. After obtaining Tn, a gate-level
model can be built to simulate the timing relationships in the implemented GARO with
SPICE as the tool, where the delays of routes are imitated by buffers and the switches are
implemented by AND gates as shown in Figure 12. The aspect ratios of buffers are adjusted
according to Tn. The feedback polynomials with periodic oscillations in actual tests are
applied to the gate-level model to analyse the relationships between delay differences and
periodic oscillations.

Table 1: The measured values of Tn. (time unit: ns)

T15/T14 T13 T12 T11 T10 T9 T8
34.4923 32.3499 29.7053 27.9767 25.1206 23.4170 20.8960
T7 T6 T5 T4 T3 T2 T1
18.6123 16.4995 14.0861 11.0914 8.8842 6.3834 3.7998
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Figure 12: The circuit structure of the gate-level model.

4.3 Deduction rule

Deduction rule. If all the delay differences D(r0, r1), D(r2, r3), ..., D(rp−2, rp−1) are
small than δ and D(rp, rp+1) ≥ δ where p is even, all the outputs Or1 , O′r1

, Or3 , O′r3
, ...

, Orp−1 , O
′
rp−1

will be fixed at 1s or 0s, and the GARO will degenerate to an equivalent
ring oscillator GARO′ with the feedback polynomial f ′(x) = xrp + xrp+1 + ... + 1. The
oscillation situation is determined by GARO′.

Deduction rule is obtained based on the observation described in Subsection 4.2 with
the feedback polynomial f(x) = x15 + x14 + xm + 1. If the two inputs of XORn are the
same or opposite with the delay difference D(n′, n) < δ, On and O′n will be fixed only with
glitches and the glitches will be filtered out by the gates and routes between XORn and
the next XOR gate with feedback input. In Deduction rule, from the leftmost to right for
the GARO, the input Ir1,2 is the inverse or the same with Ir1,1 with the delay difference
D(r0, r1). If D(r0, r1) < δ, Or1 and O′r1

will be fixed no matter how the inputs change
causing the degeneration of the GARO. Under the effect of the fixed value of Or1 , XORr2

will be equivalent to a buffer or an inverter and the two inputs of XORr3 will be opposite
or the same with the delay difference D(r2, r3). Thus, if D(r2, r3) < δ, Or3 and O′r3

will
be fixed causing further degeneration. And so on, the degeneration propagates from the
leftmost to right until one delay difference is not smaller than δ. The degenerated ring
oscillator has fewer stages and reduced complexity.

To verify the Deduction rule, a feedback polynomial f(x) = x15 +x14 +x+ 1 is applied
to the built gate-level model as an example, where D(15, 14) < δ. With this feedback
polynomial, I14,2 is the inverse of I14,1 with the delay difference D(15, 14) < δ which causes
the almost simultaneous toggles of I14,2 and I14,1. Thus, O14 and O′14 are fixed at 1 and 0
as shown in the red frame in Figure 13, which is consistent with Deduction rule. Under the
effect of the fixed values, the GARO degenerates to GARO′ with the feedback polynomial
f ′(x) = x + 1. The equivalent circuit GARO′ is simulated with I1,2 connected to VSS
to verify the degeneration. The outputs garo_out and garo_deg of GARO and GARO′
are the same verifying the degeneration, as shown in the blue frame in Figure 13. Thus,
the correctness of the Deduction rule is verified. The glitches due to the small non-zero
delay difference D(15, 14) are filtered, as illustrated by the purer waveform of O′14 or I1,2
compared with O14.

For FIROs, the gate-level model establishment and Deduction rule are similar to
GAROs. The continuous delay differences smaller than δ will make the degeneration
propagate from the rightmost to left until one delay difference is not smaller than δ. Small
glitches will be filtered by the next gates and routes.
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Figure 13: The simulated waveforms with feedback polynomial f(x) = x15 + x14 + x+ 1.

4.4 Decision rules
4.4.1 Decision rule1

Decision rule1. If DIVδ > DIVmin, D(rl, 0)/DIVδ is odd, and the sum S of all the
values of Mi is even, the outputs Or1 , Or3 , ..., Orl−1 tend to be fixed at 1s or 0s, and it
is possible for the GARO to degenerate to a classical ring oscillator with the feedback
polynomial f ′(x) = xrl + 1. In this situation, the GARO will oscillate periodically with
2DIVδ as the period and 50% as the duty cycle.

The two inputs of XORr1 are the same or inverse with the delay difference D(r0, r1).
For D(r0, r1) < δ, the corresponding M0 is 0 and Or1 will be fixed according to Deduction
rule. For D(r0, r1) ≥ δ, a fixed value of Or1 will be generated if the following two conditions
are met:

• |M0 ×DIVδ −D(r0, r1)| < δ, where DIVδ > DIVmin.

• There is a short period of periodic toggles in garo_out with 2DIVδ as the period,
and 50% as the duty cycle.

The periodic toggles are transmitted to the two inputs of XORr1 with the delay difference
D(r0, r1), and condition 1 causes the almost simultaneous toggles in the two inputs leading
to the fixed value of Or1 . The fixed value of Or1 will cause the GARO degenerate to
GARO′ with the feedback polynomial f ′(x) = xr2 + ... + xrl−1 + xrl + 1 and the two
inputs of XORr3 are the same or inverse with the delay difference D(r2, r3). Once
|M1 ×DIVδ −D(r2, r3)| < δ, a fixed value of Or3 will also be generated causing a further
degeneration. And so on, under the effect of the even value of S, the fixed value of Orl−1

will make the GARO degenerate to a classical ring oscillator GARO′′ with the feedback
polynomial f ′′(x) = xrl + 1 and odd number of inverter functions finally. If D(rl, 0)/DIVδ
is odd, the degenerated GARO′′ can oscillate periodically with 2DIVδ as the period and
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Figure 14: The simulated waveforms with feedback polynomial f(x) = x15 + x14 + x6 +
x3 + x+ 1.

50% as the duty cycle, which maintains the periodic toggles, fixed values and degeneration
causing periodic oscillations.

The fixed value of one output Or2i+1 is determined by the parity of Mi and the number
of inverter functions between XORr2i and XORr2i+1 including the equivalent function of
XORr2i

for i > 0 or between INVr0 and XORr1 including INVr0 for i = 0. For example,
if the number of inverter functions between INVr0 and XORr1 including INVr0 are odd
and M0 is even, Ir1,2 is the inverse of Ir1,1, and Or1 will be fixed at 1. The fixed values
determine whether the leftmost XOR gates in the degenerated circuits are equivalent to
inverters or buffers.

In a word, only needing a period of periodic toggles with very short duration as a
trigger where the period is 2DIVδ and duty cycle is 50%, such as the duration 4DIVδ even
smaller than a sampling period, the outputs of specific XOR gates will be fixed and the
GARO will degenerate to a classical ring oscillator causing periodic oscillations if Decision
rule1 is met.

A feedback polynomial f(x) = x15 + x14 + x6 + x3 + x+ 1 is applied to the gate-level
model to verify Decision rule1, where D(15, 14) < δ, DIVδ = D(1, 0) = 3.7998/2 = 1.8999
and |2DIVδ −D(6, 3)| = |2× 1.8999− (16.4995− 8.8842)/2| = 0.00785 < δ. There are two
values for Mi that M0 = 0 and M1 = 2. Thus, the sum S is even, D(1, 0)/DIVδ is odd
and DIVδ > DIVmin, which satisfies Decision rule1 and causes the periodic oscillation
as shown in Figure 14. M0 = 0 causes O14 and I6,2 fixed leading to the degeneration
according to Deduction rule. There is a short period of periodic toggles with the duration
4D(1, 0), the period 2D(1, 0) and the duty cycle 50% in garo_out as the trigger. The
fixed value 1 of I6,2 makes XOR6 equivalent to an inverter and there is an even number of
inverter functions between XOR6 and XOR3 including the equivalent inverter function of
XOR6. Thus, the two inputs I3,1 and I3,2 are the same with the delay difference D(6, 3)
and M1 = 2 causes the almost simultaneous toggles of the two inputs leading to the fixed
value 0 of O3 as shown in the red frame. Under the effect of the fixed value 0 of I1,2 derived



400 A Closer Look at the Chaotic Ring Oscillators based TRNG Design

from O3, XOR1 is equivalent to a buffer and there is only one inverter function in the
degenerated circuit, which is equivalent to a classical ring oscillator. The even value of S
ensures the odd number of inverter functions in the degenerated circuit. Thus, the periodic
toggles are maintained with the odd value of D(1, 0)/DIVδ, which in turn maintains the
fixed value of O3 and degeneration causing the periodic oscillation. In this situation, the
GARO degenerates to a classical ring oscillator, which has the periodic oscillation with
2D(1, 0) as the period and 50% as the duty cycle. The small deviation between D(6, 3) and
2DIVδ causes glitches in O3, which are filtered out as illustrated by the purer waveform of
I1,2 compared with O3.

4.4.2 Decision rule2

Decision rule2. If DIVδ > DIVmin and the sum S of all the values of Mi is odd, the
GARO may oscillate periodically with the period determined by Irl,2.

Similar to Decision rule1, Mi will cause a period of fixed values of specific outputs
once there is a short period of periodic toggles in garo_out with 2DIVδ as the period and
50% as the duty cycle. However, the odd value of S will cause even number of inverter
functions in the circuit part corresponding to the feedback polynomial f ′′(x) = xrl + 1,
under the effect of the fixed value of Irl,2 derived from Orl−1 . Thus, the periodic toggles
and fixed values cannot be maintained. However, the generation and destruction of these
periodic toggles and fixed values will alternate causing another form of periodic oscillations
with the period determined by the alternating cycles.

The feedback polynomial f(x) = x15 +x14 +x13 +x9 +x3 + 1 is taken as an example to
verify the Decision rule2, where D(15, 14) < δ, DIVδ = D(3, 0) = 8.8842/2 = 4.4421 and
|DIVδ −D(13, 9)| = |4.4421− (32.3499− 23.4170)/2| = 0.02435 < δ. There are two values

time (ns)
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15 16 17 18 19

1

-0.1

-0.1
1.6

1.6

-0.1

-0.1
1.6

-0.1
1.6
-0.1
1.6
-0.1
1.6
-0.1
1.6
-0.1
1.6
-0.1 
1.6
-0.1 
1.6

-0.1
1.6

-0.1
1.6

1.6

garo_out

I14,1

I14,2

O14

I13,1

I13,2

O13

I9,1

I9,2

O9

I3,1

I3,2

O3

D(3,0)

D(13,9)

t

t

V
(V

)

Figure 15: The simulated waveforms with feedback polynomial f(x) = x15 + x14 + x13 +
x9 + x3 + 1.
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of Mi that M0 = 0 and M1 = 1. Thus, the sum S is odd and DIVδ > DIVmin, which
satisfies Decision rule2 and causes the periodic oscillation as shown in Figure 15, where
t = D(9, 3)−D(3, 0). M0 = 0 causes O14 fixed leading to the degeneration according to
Deduction rule. Under the trigger of a period of periodic toggles with the duration 2D(3, 0),
the period 2D(3, 0) and the duty cycle 50%, M1 = 1 causes the almost simultaneous toggles
of I9,1 and I9,2 leading to a fixed value of O9 as shown in the blue frame. Under the effect
of the odd value of S, a period of fixed value 1 of I3,2 derived from O9 makes XOR3
equivalent to an inverter causing an even number of inverter functions in the circuit part
corresponding to the feedback polynomial f ′′(x) = x3 + 1. Thus, the periodic toggles in
the blue frame are not maintained. However, the periodic toggles and fixed value as in the
blue frame are generated and destroyed alternately under the effect of the value 0 and 1 of
I3,2 respectively, which causes the periodic oscillation controlled by I3,2. In this situation,
the oscillation period of garo_out is twice that of I3,2 with the value 4(D(9, 3) +D(3, 0)).

4.4.3 Decision rule3

Decision rule3. If S′ +N ′ is even, DIV ′δ > DIVmin, and D(rl, 0)/DIV ′δ is odd, where
S′ is the sum of all the values of M ′i and N ′ is the number of sets of the delay differences
satisfying situation 2 in the following two situations, the GARO may degenerate to GARO′
with the feedback polynomial f ′(x) = xrl + 1 and get into periodic oscillation with 50% as
the duty cycle and 2DIV ′δ as the period.

• Condition 1 with an odd value of x3, condition 2 with an even value of x3, condition
3 with an even value of x3 or condition 4 with an odd value of x3.

• Condition 1 with an even value of x3, condition 2 with an odd value of x3, condition
3 with an odd value of x3 or condition 4 with an even value of x3.

In the above two situations, the conditions are shown as follows, where x1, x2 and x3 are
integers not less than 0 and i = {0, 1, ..., l/2− 2}.

• D(r2i, r2i+1) = 2x1DIV
′
δ + h where 0 < h < DIV ′δ , |D(r2i+1, r2i+2)− x2DIV

′
δ | < δ,

and |D(r2i+2, r2i+3)− (x3DIV
′
δ +DIV ′δ − h)| < δ.

• D(r2i, r2i+1) = 2x1DIV
′
δ + h where 0 < h < DIV ′δ , |D(r2i+1, r2i+2) − (x2DIV

′
δ +

DIV ′δ − h)| < δ and |D(r2i+2, r2i+3)− (x3DIV
′
δ + h)| < δ.

• D(r2i, r2i+1) = 2x1DIV
′
δ+h whereDIV ′δ < h < 2DIV ′δ , |D(r2i+1, r2i+2)−x2DIV

′
δ | <

δ and |D(r2i+2, r2i+3)− (x3DIV
′
δ + 2DIV ′δ − h)| < δ.

• D(r2i, r2i+1) = 2x1DIV
′
δ+h whereDIV ′δ < h < 2DIV ′δ , |D(r2i+1, r2i+2)−(x2DIV

′
δ+

2DIV ′δ − h)| < δ and |D(r2i+2, r2i+3)− (x3DIV
′
δ + h−DIV ′δ )| < δ.

Similar to Decision rule1, if the two inputs of XORr2i+1 are the same or inverse
with the delay difference D(r2i, r2i+1) and there is a short period of periodic toggles in
garo_out with 2DIV ′δ as the period and 50% as the duty cycle, a fixed value of Or2i+3

will be generated causing the GARO degenerate to GARO′ with the feedback polynomial
f ′(x) = xr2i+4 +xr2i+5 +...+1 once one situation is met. If GARO′ can oscillate periodically
with 2DIV ′δ as the period and 50% as the duty cycle, the periodic toggles, fixed values
and degeneration can be maintained causing periodic oscillations.

If there is an odd number of inverter functions betweenXORr2i
andXORr2i+3 including

the equivalent function of XORr2i
, and situation 1 is met, a fixed value 1 of Or2i+3 may be

generated, which is similar to the effect of an even value of Mi in Decision rule1. Similarly,
the situation 2 also has a similar effect with an odd value of Mi in Decision rule1. Thus,
we can determine the periodicity condition of Decision rule3 with Decision rule1 as the
reference. Once S′ +N ′ is even and under the trigger of a short period of periodic toggles
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Figure 16: The simulated waveforms with feedback polynomial f(x) = x15 + x14 + x12 +
x11 + x9 + x3 + x2 + 1.

with 2DIV ′δ as the period and 50% as the duty cycle, M ′i and the two situations will cause
almost simultaneous toggles leading to the fixed values of the specific outputs and the fixed
value of Irl,2 will cause an odd number of inverter functions in the degenerated GARO′′
with the feedback polynomial f ′′(x) = xrl + 1. The GARO′′ is equivalent to a classical
ring oscillator and can oscillate periodically with 50% as the duty cycle and 2DIV ′δ as the
period, if D(rl, 0)/DIV ′δ is odd. Thus, the periodic toggles, fixed values and degeneration
can be maintained causing periodic oscillations.

A GARO with the feedback polynomial f(x) = x15 + x14 + x12 + x11 + x9 + x3 + x2 + 1
is taken as an example to verify the Decision rule3. For this GARO, condition 2 in
situation 1 is met, where D(15, 14) < δ, DIV ′δ = D(2, 0) = 6.3834/2 = 3.1917, D(12, 11) =
h = (29.7053 − 27.9767)/2 = 0.8643, 0 < h < DIV ′δ , |D(11, 9) − (DIV ′δ −D(12, 11))| =
|(27.9767 − 23.4170)/2 − (3.1917 − 0.8643)| = 0.04755 < δ, and |D(9, 3) − (2DIV ′δ +
D(12, 11))| = |(23.4170− 8.8842)/2− (2× 3.1917 + 0.8643)| = 0.0187 < δ. Thus, S′+N ′ =
M ′0 + N ′ = 0 + 0 = 0, D(2, 0)/DIV ′δ is odd and DIV ′δ > DIVmin satisfying Decision
rule3, which causes the periodic oscillation as shown in Figure 16. Under the trigger
of a short period of periodic toggles with 2D(2, 0) as the period and 50% as the duty
cycle, the generated pulse signal O11 with D(12, 11) as the width of high level makes the
output O9 equivalent to the input I9,1 shifting to the left by D(12, 11) under the effect
of |D(11, 9)− (D(2, 0)−D(12, 11))| < δ. Furthermore, I3,1 is the same with I9,1 derived
from the feedback signal, and |D(9, 3) − (2D(2, 0) + D(12, 11))| < δ causes the almost
simultaneous toggles of I3,2 and I3,1, resulting in the fixed value 0 of O3. The fixed value 1
of I2,2 derived from O3 makes XOR2 equivalent to an inverter causing an odd number of
inverter functions in the degenerated circuit. Thus, the GARO degenerates to GARO′ with
the feedback polynomial f ′(x) = x2 + 1 which is equivalent to a classical ring oscillator
and can oscillate periodically with 50% as the duty cycle and 2DIV ′δ as the period, under
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the effect of the odd value of D(2, 0)/DIV ′δ . Thus, the periodic toggles, fixed values and
degeneration are maintained causing the periodic oscillation.

We note that the corresponding delay differences should satisfy the conditions described
in Subsection 4.1 to be almost commenusurable to make sure the existence of corresponding
DIVδ and DIV ′δ for all the three decision rules.

4.5 Bifurcation diagram
As described in Subsection 2.4, bifurcation diagram is an essential method to characterize
the sensitivity of chaotic system to design parameter. With the delay in each stage of
GARO as the design parameter and sampled states to represent system behavior, we
plot the bifurcation diagrams corresponding to the feedback polynomials analysed in
Subsection 4.3 and Subsection 4.4, which verify the high sensitivity and strong dependence
of chaotic behavior to delay. The reflected decisive influence of delay on oscillatory behavior
is consistent with the above cause analysis.

For every feedback polynomial, the corresponding GARO structure frames a specific
nonlinear dynamic system. One feedback polynomial with different delay relationships can
be regarded as another feedback polynomial with the same delays. For example, if the initial
delays D(5, 4) = D(1, 0) and D(6, 4) = 2D(1, 0), and the altered delay D′(5, 4) = 2D′(1, 0),
the feedback polynomial f(x) = x15 + x14 + x5 + x4 + x + 1 will be equivalent to the
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(a) The bifurcation diagram with feedback
polynomial f(x) = x15 + x14 + x + 1.
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(b) The bifurcation diagram with feedback
polynomial f(x) = x15 +x14 +x6 +x3 +x+1.
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(c) The bifurcation diagram with feedback
polynomial f(x) = x15 + x14 + x13 + x9 +
x3 + 1.
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(d) The bifurcation diagram with feedback
polynomial f(x) = x15 + x14 + x12 + x11 +
x9 + x3 + x2 + 1.

Figure 17: The simulated bifurcation diagrams corresponding to the example feedback
polynomials in the rules, where the states without and with extra delays are marked with
red and blue dots respectively, and the red dashed rectangles highlight the recurrence of
periodic oscillations.
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feedback polynomial f ′(x) = x15 + x14 + x6 + x4 + x+ 1 with D(15, 14) < δ. Thus, we
change the delay in each stage at the same time to the same extent to analyze the influence
of delay on system behavior of one dynamic system. To make it easier to control the delay
in each stage, we add a buffer in each stage to add extra delay and adjust its aspect ratio
to change the delay simultaneously. The aspect ratio is controlled by changing the channel
length with the width fixed, where a larger channel length represents a smaller aspect ratio
and a larger delay.

The bifurcation diagrams in Figure 17 are obtained using Candence virtuoso. With
the channel length as the x-axis, each point represents a different sampled state in 4000
samples corresponding to a specific channel length or delay. The sampled states without
and with extra delays from buffers are marked with red and blue colors respectively. We can
distinguish the periodic and chaotic oscillations based on the distribution and the number of
dots or the different sampled states in bifurcation diagrams as described in Subsection 2.4,
where the sampled values tend to keep to a definite range with a small number of different
samples for periodic oscillation and the sampled values spread throughout the y-axis of
the bifurcation diagram with a large number of samples for chaotic oscillation.

For the feedback polynomial f(x) = x15 + x14 + x + 1 as shown in Figure 17(a),
the smaller range of black region with chaotic property than the other three feedback
polynomials in Figure 17(b),(c) and (d) represents higher possibility to get into periodic
oscillation, due to the periodic condition that is easier to be satisfied. There are only two
delay differences D(15, 14) and D(1, 0) to determine the oscillatory behavior and the circuit
degenerates to a classical ring oscillator before D(15, 14) is enlarged to δ. Once D(15, 14)
and D(1, 0) is almost commensurable, the periodic oscillation may occur. On the contrary,
for the other three feedback polynomials, the small variation of delay may cause periodic
oscillation to revert to chaotic oscillation. Especially in Figure 17(c), the number of dots
increases a lot after adding the extra delay 14ps corresponding to the channel length 10nm.
Thus, we should exclude the feedback polynomials where the periodic conditions are easily
met, such as the feedback polynomials only with two delay differences to determine the
oscillatory behavior. In other words, the FIFO-/GARO-based TRNGs with more decisive
delay parameters determined by feedback polynomials have a larger black region with
chaotic property, which are more reliable to be implemented as TRNGs. Besides, as the
delay changes, the periodic condition may be satisfied again leading to the recurrence of
periodic oscillation with a small number of sampled states as shown in the red dashed
rectangles in Figure 17(b)(c)(d).

The alternation between periodic oscillation and chaotic oscillation with various delays
illustrates the high sensitivity of system behavior to the delay parameter and that specific
delay relationship is the cause of periodic oscillation for FIRO-/GARO-based TRNGs,
which verifies our cause analysis above.

5 Verification
The full-state sampling results from the actual implemented circuit are consistent with the
above analysis from simulation. We perform statistical analysis on the sampled states to
further verify the gate-level implementation guidelines. The proportion of 1s (or 0s) in the
sampled values of a specific state signal O′x can reflect the duty cycle of corresponding
state signal, which is denoted by Duty(O′x). Thus, the analysed fixed values in Deduction
rule, Decision rule1 and Decision rule3 can be verified by the proportion Duty(O′x) with
the ideal value 1 which represents that the corresponding state bit is constant. However,
the approximate delay relationships may cause small number of unexpected toggles and
glitches resulting in the non-ideal value of Duty(O′x). Thus, the values of Duty(O′x) close
to 1 can verify the guidelines. Besides, there may be no fixed state bits and specific duty
cycles in Decision rule2, thus Decision rule2 cannot be verified with Duty(O′x). We only
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Figure 18: The statistics of the feedback polynomials with measured periodic oscillations
and the sampled values of O′14.

conduct the verification for Deduction rule, Decision rule1 and Decision rule3.
For the feedback polynomials with periodic oscillations, there are more 0s than 1s

in the 14 feedback coefficients as shown in Figure 18(a). Except for the only feedback
polynomial f(x) = x15 + 1 with 14 zeros in the feedback coefficients which will definitely
cause the periodic oscillation, there are 8, 10 or 12 zeros in the 14 feedback coefficients for
all the feedback polynomials with periodic oscillations, where more 0s are in the feedback
coefficients. A larger number of 1s in the feedback coefficients complicates the relationships
among delay differences with more feedback paths, causing higher difficulty to satisfy
the periodicity conditions and lower possibility of periodic oscillations. This situation is
consistent with the observation in [SDH17].

5.1 Verification of Deduction rule
We test all the 4096 feedback polynomials with f14 = 1 in the 8192 feedback polynomials
to verify the Deduction rule. The values of Duty(O′14) in the sampled values of O′14 for the
4096 feedback polynomials are shown in Figure 18(b), where the values before and after
filtering are marked with blue and red colors respectively. For the feedback polynomials
with f14 = f13 = 1, O′13 is the inverse of the feedback signal under the effect of the fixed
value of O′14, which is not the filtered signal of O′14. Thus, there is no filtered signal of
O′14 in the state bits. The Duty(O′14) after filtering are obtained only for the feedback
polynomials with f14 = 1 and f13 = 0 as shown in the left half of Figure 18(b).

When f14 = 1, all the values of Duty(O′14) are close to 1, which illustrates that the
small delay difference D(15, 14) < δ causes O′14 almost fixed at one value and will lead to
the degeneration of the GARO verifying the correctness of Deduction rule. Besides, the
larger values of Duty(O′14) after filtering illustrate that the glitches generated from the
small non-zero delay difference D(15, 14) are filtered by the following gates and routes.

5.2 Verification of decision rules
For the 18 feedback polynomials meeting Decision rule1 and 12 feedback polynomials
satisfying Decision rule3 with periodic oscillations, the average value of Duty(O′x) of all
the specific state signal O′x for a specific feedback polynomial is represented by a point in
Figure 19, where the average values before and after filtering are marked by blue and red
colors respectively. As shown in Figure 19(a) and Figure 19(b), almost all the values of
Duty(O′x) are close to the ideal value 1 and the deviations between the actual values and
ideal value are reduced after filtering, which verifies the correctness of Decision rule1 and
Decision rule3.
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Figure 19: The verification for Decision rule1 and Decision rule3 with measured data.

6 Design methodology and implementation

Based on the gate-level implementation guidelines, we propose a design methodology to
implement a reliable TRNG based on GAROs, as shown in Figure 20. We first evaluate
the feedback polynomials to select a proper feedback polynomial with chaotic behavior,
where the feedback polynomials with possible periodic oscillations are filtered and the
other feedback polynomials can be applied. We implement a Python script to realize the
proposed algorithm to select a suitable feedback polynomial without periodic oscillation.
The GARO with the feedback polynomial f(x) = xr + 1 is equivalent to a classical ring
oscillator, thus this feedback polynomial will definitely cause periodic oscillations without
the requirement of evaluation. Besides, delay adjustment can eliminate the periodic
oscillation caused by environmental conditions, aging, attacks and so on, to realize a robust
FIRO-/GARO-based TRNG. The analysis of delay adjustment provides a further study of
periodic oscillation and a better understanding of FIRO-/GARO-based TRNG. Also, a
possible structure without periodic oscillations for all the feedback polynomials can be
implemented by the delay adjustment, where the filtered feedback polynomials can be
applied by eliminating the periodic oscillations with delay adjustment.
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Figure 20: The design methodology.
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6.1 Evaluation of feedback polynomials
The evaluation of feedback polynomials is to select a reliable configuration for a GARO-
based TRNG with the steps as follows, which corresponds to the flow chart highlighted
with the red frame in Figure 20.

• Implementing a GARO with D(r0, r0 − 1) < δ.

• Applying the feedback polynomials f(x) = xr0 +xr0−1 +xm + 1 to the GARO where
m = {1, ..., r0 − 2}, and utilizing an asynchronous counter to measure the oscillation
periods Tm as shown with Equation 13.

• Calculating all the delay differences D(n′, n) for the evaluated feedback polynomial
as shown with Equation 14.

• Applying Algorithm 2 for the evaluation, where the output abandon signal represents
whether the GARO with the evaluated feedback polynomial has a high probability
to get into periodic oscillations. The evaluated feedback polynomial should be
abandoned with possible periodic oscillations if abandon = 1.

Algorithm 2 The evaluation of a feedback polynomial
Input: a feedback polynomial f(x) = xr0 + xr1 + xr2 + ... + xrl + 1, and all the delay

differences D(r0, r1), D(r1, r2),...,D(rl, 0).
Output: abandon
1: if Deduction rule is met then
2: obtaining the degenerated feedback polynomial f ′(x)
3: if f ′(x) = xrl + 1 then
4: abandon = 1
5: else if Decision rule1, Decision rule2 or Decision rule3 is met then
6: abandon = 1
7: else
8: abandon = 0
9: end if
10: else if Decision rule1, Decision rule2 or Decision rule3 is met then
11: abandon = 1
12: else
13: abandon = 0
14: end if

For the applicator who does not want to take a deep understanding of the imple-
mentation guidelines, we provide a simpler and straightforward way to select a proper
feedback polynomial in a rapid hardware development. However, it leads to a confined
selection range of feedback polynomials compared to the selection range using Algorithm 2.
The simpler way is as follows, where x, x1 and x2 are natural numbers, δ = 0.38ns and
DIVmin = 0.79ns in our implementation.

• Excluding the feedback polynomials with r1 = r0 − 1, where there is a small delay
difference D(r0, r0 − 1) only from one inverter and corresponding routes. This
exclusion can eliminate the degeneration of at least one stage as illustrated in
Deduction rule.

• Excluding the feedback polynomials with |D(r0, r1)− xDIVδ| < δ, where DIVδ >
DIVmin is a common measure between D(r0, r1) and D(rl, 0). This can filter the
feedback polynomials which may satisfy Decision rule1 and Decision rule2.
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• Excluding the feedback polynomials with |D(r0, r2)− x1DIVδ| < δ and |D(r1, r2)−
x2DIVδ| < δ, where DIVδ > DIVmin is a common measure among D(r0, r2),
D(r1, r2) and D(rl, 0). This can prevent Decision rule3 from being satisfied.

6.2 Delay adjustment

Delay adjustment can eliminate periodic oscillations caused by the environmental conditions,
aging, attack, and so on, for the applied feedback polynomial to improve robustness. Besides,
the influence of delay adjustment on oscillatory behavior is analysed for a further study of
periodic oscillation and better understanding of FIRO-/GARO-based TRNGs.

For a feedback polynomial f(x) = xr0 + xr1 + xr2 + xr3 + ...+ xrl + 1, D(r0, r1) ≥ δ
should be met to prevent the degeneration in Deduction rule. For the decision rules, the
periodic oscillations will not occur once one delay difference does not satisfy the periodicity
conditions. Under the premise of D(r0, r1) ≥ δ, the principle of the delay adjustment for
decision rules is as follows.

• For Decision rule1 and Decision rule2, if D(r0, r1) and D(rl, 0) are not almost
commensurable, the corresponding periodic oscillations will be eliminated.

• For Decision rule3, if D(r0, r1) and D(rl, 0) are not almost commensurable and
D(r0, r1), D(r1, r2), D(r2, r3) do not meet the conditions in Decision rule3, the
corresponding periodic oscillations will be eliminated.

…

f1

garo_out

d1

d2

MUX

LUT LUT LUT LUT

LUTLUTLUT LUT LUT LUT LUT LUT LUT

start

delay

𝑓 𝑓 𝑓

Figure 21: The implementation of the test circuit.

Based on the principles, the periodic oscillations can be eliminated for all the rules by
only adjusting D(r0, r1). To verify the effectiveness of delay adjustment, a multiplexer
implemented with a MUX primitive is applied to switch between the two paths with
original delay d1 and the adjusted delay d2 as shown in Figure 21. d2 is adjusted by
changing the route or adding extra buffers between INV15 and the multiplexer to obtain a
suitable value of D(r0, r1) to eliminate periodic oscillations. All the inverters, NAND gate,
XOR gates, switches and buffers are implemented with LUTs.

We take a GARO with 15 cascaded inverters as an example for verification, where
D(15, 14) is adjusted for the feedback polynomials with f14 = 1. The entropy results and
Lyapunov exponents before and after the adjustment are shown in Figure 22 and Figure 23
respectively. All the periodic oscillations are eliminated after adjusting D(15, 14) with the
probability of periodic oscillations reduced from 2.59% to 0, which verifies the effectiveness
of the delay adjustment, and illustrates the correctness of the guidelines indirectly.

With the delay adjustment to eliminate periodic oscillations, no extra resource is con-
sumed when D(r0, r1) is adjusted by changing the route or the extra resource consumption
is only several LUTs to implement the buffers when D(r0, r1) is adjusted by adding buffers.
Thus, the delay adjustment is lightweight.
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Figure 22: The measured entropy results for the GARO with f14 = 1 and 15 cascaded
inverters.
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Figure 23: The measured Lyapunov exponents for the GARO with f14 = 1 and 15 cascaded
inverters.

6.3 ASIC implementation
Except for the FPGA implementations for flexible analysis and verification, we also imple-
ment a GARO with 15 cascaded inverters and a full-state sampling circuit in ASIC for the
evaluation of area, power consumption and frequency. The utilized technology is TSMC
28nm, which is consistent with the technology of FPGA implementation and SPICE simu-
lation. The area and frequency are evaluated with Design Compiler (Version P-2019.03),
and power consumption results are obtained from PrimeTime PX (Version P-2019.03-SP3).
The areas of the implemented GARO and sampling circuit are 80.3µm2(160GE) and
58.3µm2(116GE) respectively. The power consumptions are 0.063mW and 0.025mW
respectively. Besides, the sampling circuit can work at a frequency higher than 2.8GHz.

7 Online test
Online test module is an essential block for a TRNG design to ensure the correctness
during the work of the TRNG, which is indispensable according to most TRNG standards.
FIRO-/GARO-based TRNGs designed with the proposed methodology still have chance to
enter the periodic oscillations due to the effect of active attacks and the delay inconstancy
of implementations. Self-heating, temperature and voltage fluctuation, and the process
variation among different silicon chips may cause the delay inconstancy. As long as the
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changed delays satisfy the periodic conditions, the periodic oscillation will reappear. Thus,
we design an online test module composed of a detector to detect periodic oscillations,
which can improve the robustness by adjusting feedback polynomial or delays to eliminate
detected periodic oscillations. In detail, a possible workaround to counteract environmental
conditions can be:

• Once detecting a periodic oscillation, disable oscillation and stop TRNG output.

• Switch to another “good” polynomial or adjust corresponding delays, and restart
oscillation for a while with detector enabled.

• If no periodic oscillation is detected, re-enable TRNG output, otherwise go to the
second step.

The existing detector described in Subsection 3.2 needs large storage to store all the
sampled states and calculates the number of different bit-patterns offline to detect periodic
oscillations, which is not responsive with large resource consumption. Besides, although
the probability of missed detection is reduced by the modified detector in Subsection 3.2,
the existing detector has a high probability of false alarm, which will output an alarm
signal for chaotic oscillations by mistake. For a GARO with the feedback polynomial
f(x) = xr + xr−1 + xr−r

′ + ... + 1 and D(r, r − 1) < δ, the Deduction rule will cause
all the outputs O′r−1, O

′
r−2, ..., O

′
r−(r′−1) fixed at 1s or 0s. Thus, the number of possible

bit-patterns is reduced from 2r to 2r−r′ , which may be smaller than the threshold for
detection causing false alarm even if the degenerated circuit oscillates chaotically. Taking
the feedback polynomial f(x) = x15 + x14 + x7 + ... + 1 as an example, almost all the
sampled values of O′14O

′
13O

′
12O

′
11O

′
10O

′
9O
′
8 are 0101010 under the effect of D(15, 14) < δ,

which makes the number of possible bit-patterns reduced from 215 to 27. Thus, it is
necessary to design a lightweight and responsive detector with a high detection rate to
realize online testing of FIRO-/GARO-based TRNGs.

The design principle of our online test module is that the number of toggles of the
output garo_out or firo_out in a certain time will tend to several certain values due to
the periodicity of the output signal in periodic oscillations, while the number of toggles
in a certain time is varied for chaotic oscillations. Thus, the variances of the number of
toggles for periodic oscillation will be smaller than the variances for chaotic oscillation.
Based on the difference in variances for periodic and chaotic oscillations, a lightweight and
responsive online test module or detector with a high detection rate is designed.

7.1 Architecture of detector
The detector consists of an asynchronous counter to measure the number of toggles of the
output garo_out or firo_out in a certain time, and an ALU to calculate and compare the
variances of the number of toggles represented by the counter values as shown in Figure 24.
The architecture of asynchronous counter is shown in Figure 11. The asynchronous counter
is disabled by the first TFF after each count in one clock cycle for the counter values to
be stable excluding the influence of the delays in asynchronous counter on counter values.
After disabling for two clock cycles, the counter is reset for the count enabled in the next
clock cycle in our tests. Thus, the asynchronous counter counts the toggles every four clock
cycles with the enable in one clock cycle. An alarm signal representing whether a periodic
oscillation occurs is generated by comparing the variances with a specific threshold. If the
calculated variance is smaller than the threshold, a positive pulse is generated in the alarm
signal representing the occurrence of periodic oscillation.

In the detector, only the output garo_out or firo_out is used to detect periodic
oscillations without the need to save all the sampled bit-patterns, which makes our detector
more lightweight than the detector in [Dic15]. Our detector only consumes 149 registers
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Figure 24: The architecture of detector.

for storage. To further reduce resource consumption, the division operation in variance
calculation is implemented by shift operation, thus the window size utilized to calculate
variances should be a power of 2. Besides, the variance V calculated and compared in a
window with the specific size W is W times of actual variance as shown in Equation 15,
which decreases one shift operation with less resource consumption and higher precise due
to the reduction of the accuracy loss caused by a shift operation. In Equation 15, ci is
the i-th counter value in a window with the size W . Except for the advantage in resource
consumption, our detector design is responsive that it can detect periodic oscillations
during the work of FIRO-/GARO-based TRNGs with a latency in the range of [W, 2W ),
while the existing detector in [Dic15] is not a responsive and online detector.

V = (E(c2
i )− E2(ci))×W =

W∑
i=1

c2
i −

(
∑W
i=1 ci)2

W
(15)

7.2 Parameter design
To implement the detector, there are two parameters to be determined, including the
window size for variance calculation and the threshold for differentiation between chaotic
and periodic oscillations.

The largest window size is determined by the duration of periodic oscillation that the
window size should not be larger than the number of counter values corresponding to the
duration of periodic oscillation. Otherwise, all the counter values corresponding to periodic
oscillation will be mixed with the counter values corresponding to chaotic oscillation
in one window, and the large change around the boundary between periodic oscillation
and chaotic oscillation will make the variance in the window large, even larger than the
variances of chaotic oscillation. Thus, there is no small variance derived from periodic
oscillation for detection causing missed detection. The duration of periodic oscillation can
be determined by the modified detection method in Subsection 3.2. Taking a GARO with
the feedback polynomial f(x) = x15 + x14 + x11 + x6 + x2 + 1 as an example, the counter
values tend to certain values when the GARO gets into periodic oscillation as shown in
Figure 25. The tendency will result in reduced variances, which verifies the feasibility
of our detector design. According to Figure 25(a), the duration of periodic oscillation is
about 200× 2 = 400 sampling periods, and the corresponding number of counter values
is about 400/4 = 100 as shown in Figure 25(b). Thus, the window size should not be
larger than 100. Otherwise, the variance corresponding to periodic oscillation will be larger
than the variances corresponding to chaotic oscillation causing missed detection as shown
in Figure 26(a), where the window size is 128. Thus, the window size for the feedback
polynomial f(x) = x15 + x14 + x11 + x6 + x2 + 1 should be smaller than 128.

The smallest window size is determined by chaotic oscillation. If the window size
is too small, the variances corresponding to chaotic oscillation may be close to or even
smaller than the variances corresponding to periodic oscillation, which makes the variance
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Figure 25: The measured sampling results of bit-patterns and the counter values.
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(a) The variance distribution with W = 128.
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(b) The variance distributions with W = 8.

Figure 26: The variance distributions with the window size W = 128 and W = 8.

distributions of periodic oscillation and chaotic oscillation overlap with each other. Thus,
the periodic oscillation can not be distinguished from chaotic oscillation with a threshold,
causing missed detection or false alarm. Also taking the feedback polynomial f(x) =
x15 +x14 +x11 +x6 +x2 + 1 as an example, the variance distribution of periodic oscillation
overlaps with the variance distribution of chaotic oscillation as shown in Figure 26(b)
when the window size is 8, which will cause chaotic oscillation and periodic oscillation
inseparable leading to missed detection or false alarm. Thus, the window size for the
feedback polynomial f(x) = x15 + x14 + x11 + x6 + x2 + 1 should be larger than 8.

After determining the suitable range of window size, the smallest window size in the
range is adopted for the detector to decrease the reaction time. Once determining the
window size, we can determine the range of threshold which should be smaller than the
smallest variance of chaotic oscillation and larger than the largest variance of periodic
oscillation. The median in the range of threshold is adopted for detection to reduce the
influence of noise on the detection accuracy. For example, the window size for the feedback
polynomial f(x) = x15 + x14 + x11 + x6 + x2 + 1 should be smaller than 128 and larger
than 8, thus we select 16 as the window size. The corresponding variance distributions
with window size 16 are shown in Figure 27(a), where the smallest variance of chaotic
oscillation is 26 and the largest variance of periodic oscillation is 13. Thus, the optional
range of threshold is from 13 to 26. We can adopt the median 19 or 20 in the range as the
threshold.
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(a) The variance distribution with W = 16.
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Figure 27: The variance distribution with W = 16 and the test results of the proposed
detector.

7.3 The implementation results
7.3.1 FPGA implementation

Based on the above parameter design method, we can design not only a detector for one
feedback polynomial, but also a common detector whose parameters are suitable for most of
the feedback polynomials, even for all the feedback polynomials. To verify the effectiveness
of our detector design, we remove the full-state sampling circuit assisting the detector
design, and adopt 64 as the window size W and 67 as the threshold to conduct online test
for a GARO with 15 cascaded inverters on Xilinx Artix-7 FPGA. We select 200 feedback
polynomials randomly applied for the test and the results are shown in Figure 27(b), where
the min-entropy results for the detected periodic oscillations are highlighted with red color.
The test results show that all the periodic oscillations with reduced entropy are correctly
detected by the detector, which verifies the high detection rate of our detector design.

In addition to the high detection rate, our detector design is more responsive than the
existing detectors, such as the detector described in Subsection 3.2, repetition count test
and total failure test. The latency of our detector design is determined by the window
size W . For example, the latency is in the range of [16, 32) sampling periods for the
feedback polynomial f(x) = x15 + x14 + x11 + x6 + x2 + 1 with W = 16 as described in
Subsection 7.2. For the common detector with W = 64, the latency is in the range of
[64, 128) sampling periods. However, the detector described in Subsection 3.2 can only
detect periodic oscillations after finishing sampling. Statistical tests such as repetition
count typically require a lot more than 128 samples to reliably detect faulty behavior
without raising false alarms [sta] and can only detect catastrophic failures. In addition
to the high detection rate and low latency, the implemented detector only consumes 241
LUTs, 149 registers and one DSP, which is lightweight compared with the implementation
of statistical tests in [YRM+15] and the detector with a large number of registers or large
memory to store all the samples in [Dic15]. The FPGA implementation results illustrate
the effectiveness of our detector design.

7.3.2 ASIC implementation

Except for the FPGA implementation to verify the effectiveness of the proposed detector,
the same detector circuit is also implemented in ASIC with the same tools and technology
as explained in Subsection 6.3 to evaluate area, power consumption and frequency. The
area and power consumption of the implemented detector are 2033.6µm2(4035GE) and
0.042mW , which is more lightweight than the ASIC implementations of statistical tests
in [YRM+15]. Besides, the detector can work at a frequency higher than 2.8GHz.
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8 Conclusion
Periodic oscillations will compromise FIRO-/GARO-based TRNGs. We take GARO as
the example to analyse periodic oscillations which is similar for FIROs. The influence
clarification, intrinsic reason analysis and corresponding solutions for periodic oscillations
missing in existing researches are realized in this paper. We are the first to use Lyapunov
exponent and bifurcation diagram to analyse the chaotic property of FIRO-/GARO-based
TRNGs.

The influence of periodic oscillations on FIRO-/GARO-based TRNGs is quantified
using NIST SP 800-90B test suite and Lyapunov exponents. Most periodic oscillations of
FIRO-/GARO-based TRNGs will cause entropy loss and negative Lyapunov exponents
with a lack of chaos. The negative Lyapunov exponents and entropy loss of periodic
oscillations compared with chaotic oscillations reflect that periodic oscillation is a main
failure of FIRO-/GARO-based TRNGs.

To analyse the intrinsic reasons for periodic oscillations based on the measured results
from FPGA implementations, a gate-level model is built and simulated with SPICE,
using gate-level implementations and TSMC 28nm as the technology. The simulated
technology is consistent with the technology of utilized FPGAs. Based on the model,
several gate-level implementation guidelines are proposed, including one deduction rule
and three decision rules. The guidelines demonstrate the regularity observed from real
FPGA implementations and reveal the relationship between delay differences and periodic
oscillations. The corresponding bifurcation diagrams also illustrate a strong link between
delays and oscillatory behaviors. The gate-level implementation guidelines are verified
using the full-state sampling.

Based on the gate-level implementation guidelines, we propose a design methodology
to implement a reliable TRNG based on GAROs, including:

1. the evaluation of feedback polynomials to select a suitable feedback polynomial
without periodic oscillation, where the proposed algorithm is realized using a Python
script.

2. the delay adjustment to eliminate periodic oscillations caused by environmental
conditions, aging, attacks and so on, to build a robust TRNG.

The delay adjustment is lightweight and its effectiveness is verified through the comparisons
of entropy and Lyapunov exponents before and after the adjustment in experiments.

An online test module as an essential block of TRNGs is proposed to improve the
robustness of FIRO-/GARO-based TRNGs against potential active attacks and the delay
inconstancy of implementations, by adjusting feedback polynomial or delays to eliminate
the detected periodic oscillations. The online test module is composed of a detector to
detect periodic oscillations based on the regularity of the outputs of GAROs. The detector
has much better performances than the existing detector and statistical tests, which is
lightweight and responsive with high detection accuracy.

Except for the FPGA implementations for flexible analysis and verification, we also
implement a GARO, the full-state sampling circuit and the detector in ASIC to evaluate
the areas, power consumptions and frequencies, with TSMC 28nm as the technology. The
areas evaluated under Design Compiler for the implemented GARO, sampling circuit
and detector are 80.3µm2(160GE), 58.3µm2(116GE) and 2033.6µm2(4035GE) respec-
tively. The power consumptions obtained by PrimeTime PX are 0.063mW , 0.025mW and
0.042mW respectively. Besides, the sampling circuit and detector can work at a frequency
higher than 2.8GHz.

Our research has deepened the understanding of FIRO-/GARO-based TRNGs, and
the implementation guidelines derived from the analysis of gate-level model advance the
establishment of stochastic model in the future.
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Future work will concern the establishment of stochastic model for FIRO-/GARO-based
TRNGs and the evaluation of the FIGARO-based TRNGs composed of the improved
FIROs and GAROs with our solutions.
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