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Abstract

This work focuses on the automatic quantification of the breast density from digital mam-
mography imaging. Using only categorical image-wise labels we train a model capable of
predicting continuous density percentage as well as providing a pixel wise support frit for
the dense region. In particular we propose a weakly supervised loss linking the density
percentage to the mask size.
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1. Purpose

Breast density is a biomarker for breast cancer development risk that suggests that the
risk of cancer development increases with denser breasts. Moreover, the detection of cancer
in dense tissues and, more generally, in dense breasts is often considered more challenging
due to the similar visual aspects of normal and abnormal tissues, which complicates the
interpretation of mammographic images. For the above reasons, we argue that computer-
aided decision systems for early breast cancer detection should both, quantitatively evaluate
the breast density, and evaluate the spatial distribution of the dense tissues.

2. Methods

In clinical practice, breast density is usually assessed image-wise using a classification grid
like the BI-RADS (Breast imaging-reporting and data system) (Irshad et al., 2016). In
the present work, we propose to estimate breast density at the pixel level while using
only image-wise ground truth from the BI-RADS scale. Our goal is to generate a breast
density mask, identifying pixels associated with the tissue that contributed to the density
class. To achieve our goal, we propose a novel loss linking the sought breast density mask
to the globally estimated breast density (fig. 1). We formulate the problem as a weakly
supervised binary semantic segmentation. Our approach is related to recent efforts to reduce
the amount of supervision (Carneiro et al., 2017; Dubost et al., 2017).

In practice, we rely on a modified U-Net architecture (Ronneberger et al., 2015) and
on an extended 12-class density grid that improves the density resolution compared to
traditional BI-RADS classification (4th edition). Compared to the state-of-the-art, our

c© 2019 M. Tardy, B. Scheffer & D. Mateus.



A closer look onto breast density

classification and segmentation scheme does not rely on the model's attention but uses a loss
function efficiently correlating a tissue mask with the target breast density values. Moreover,
the output is constrained with the breast binary mask removing useless activations.

3. Results

The database for training and tests consists of 1232 and 370 images respectively. We got
promising results with a mean absolute error (MAE) of 6.7% for the density regression
estimate (see tab. 2) and an accuracy of 78% for 4-class BI-RADS density classification
(tab. 1). Our comparison baseline is a VGG-like regression model trained on the same
dataset.

To validate the segmentation performance, we collected regions of interest on several
images (16) and calculated the Dice = 0.65. Overall we obtain clinically meaningful seg-
mentation masks offering valuable insights into the spatial distribution of the dense tissues
(fig. 2). In comparison, we demonstrate the inefficiency of the attention-based techniques
for the breast density mask generation.

In addition we validate our approach on the INBreast (Moreira et al., 2012) database.
Without any additional training and a simple preprocessing we obtained 65% accuracy and
MAE = 13%. We note that our results are comparable to other works on the same dataset
(64.53%, (Schebesch et al.), 67.8% (Angelo et al., 2015).

4. Conclusions

Our approach to link breast density classification to the spatial distribution of dense tissue
has a positive effect on classification scores while providing an additional output mask of
the dense regions. These results are interesting given the considerably low requirements on
ground truth (just a class instead of an image mask) and the size of the training dataset.

Table 1: 4-class BI-RADS classification performance. All models are trained with 12-class
grid. L is the proposed loss.

Metrics

Model Accuracy Precision Recall F1-score Cohen kappa
VGG+Sigmoid+MSE 0.764 0.782 0.764 0.766 0.891

U-NET+Softmax+L 0.684 0.729 0.684 0.679 0.838

U-NET+ReLU+L 0.779 0.809 0.779 0.781 0.891

Table 2: Regression performances of the studied models. All models, except the last two
are trained with 12-class grid. L is the proposed loss.

Metrics

Dataset MAE (%) MxAE (%) C-index
VGG+Sigmoid+MSE 6.545 31.964 0.820

U-NET+Softmax+L 8.303 34.404 0.789

U-NET+ReLU+L 6.661 32.156 0.839
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Figure 1: Proposed spatial distribution evaluation model. First input Image I is fed to a
U-Net network, then, u-net output is combined with a binary breast mask

Sbreast to yield the output segmentation masks M = {Mdense,Mfat}. The
combined loss L guides the model training using image-wise PD density label.

Figure 2: Resulting dense tissue masks. First column: input images, second column:
activation masks produced by the attention-based baseline, third column: den-
sity masksMdense of ReLU-trained model, fourth column: density masksMdense

of Softmax-trained model and fifth column: ground truth
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