
A Cloud-based approach to Big Graphs

Paul Burkhardt∗ and Christopher A. Waring
U.S. National Security Agency, Ft. Meade, MD 20755

Data sizes in today’s Big Data age presents a profound scalability challenge to modeling networks
as graphs. Historically, memory-based solutions were utilized to cope with high latency incurred
by irregular data access common in many natural networks. But current data rates impose both
economic and environmental challenges to continually expand the total aggregate system memory
to “fit” the graph. Graph scalability has wide-reaching impact since network analysis has expanded
beyond its traditional fields into many areas of research including neuroscience, genomics, bioinfor-
matics, and social network analysis. We present a Cloud-based approach that scales with Big Data

while being fault-tolerant, applying it on the largest problem size in the Graph500 benchmark to
traverse a Petabyte graph consisting of over 4 trillion vertices and 70 trillion edges, a size nearly
twenty times the physical memory capacity of our computing platform.

Keywords: Graph algorithms, Cloud computing, MapReduce, Distributed computing

1. INTRODUCTION

Analyzing graphs, networks of nodes and links,
becomes more difficult with increasing scale, espe-
cially when modeling real-world problems where skew-
distribution in the data exacerbates resource contention.
Nearly 300 years ago the first graph problem was finding
a route over each of the Seven Bridges of Königsberg that
crossed the river Pregel without revisiting a bridge; that
graph consisted of four nodes and seven edges. As infor-
mation data rates increased and the capability of com-
puting platforms improved, the size of graphs have also
increased. In 1998 Watts and Strogatz modeled the neu-
ral network of the common soil nematode (Caenorhaddi-
tis elegans) [19], a total of 269 vertices and 2268 edges,
discovering that biological networks share common struc-
tures with social networks. The next year, Cheswick and
Burch [3] mapped the known Internet with 88,107 ver-
tices and 99,664 edges. Nearly a decade later in 2008,
Google reported the World Wide Web (WWW) had over
a trillion unique URLs, with many trillions of edges. The
performance of graph algorithms can be quickly impeded
by the scale of graph data and the irregular topology in-
herent to graphs. Modeling the WWW as a graph would
overwhelm the capabilities of today’s most advanced su-
percomputers. Simulating the human brain, which ap-
proximately consists of 100 billion neurons connected by
100 trillion synapses, is seemingly intractable; at 16 bytes
per edge the brain graph is almost 1.5 Petabytes !

Scaling system memory to fit a graph is impacted by
physical limitations in CPU design. The fixed number of
CPU pins, memory controller channels, and memory bus
width due to electrical and physical constraints require
adding more machines to increase memory. But aggre-
gating all the memory from multiple machines into a sin-
gle shared-memory pool is still limited by the addressing
capability of the CPU. Recent Intel Xeon E5 processors

∗Electronic address: pburkha@nsa.gov

used in some supercomputers have a 46-bit address space
and can only address a total of 64 Terabytes of globally-
shared memory, a paltry amount by current standards.
The alternative to this shared-memory architecture is the
distributed computing architecture where each machine
can only access its local address space and more machines
can be added to increase the overall total memory. But in
today’s Big Data age information is exploding and dou-
bling every two years [10] so building larger computing
systems to store the data in-memory is expensive in both
cost of hardware and electrical power. Additionally, these
large systems will inevitably face hardware and software
failures, making fault tolerance more imperative because
restarting an algorithm on a petabyte or larger graph is
very costly in time and resources.

The greater storage capacity of disks combined with
support for many more IO ports than DIMM slots,
can bend the growth curve of system size as graph
scales continue to accelerate. This requires disk-based
graph processing and given the large disparity in la-
tency between disk and memory, can be very challeng-
ing. Cloud technologies have surged in popularity in
recent years demonstrating that external memory pro-
cessing of Big Data is feasible. The open-source Apache
Hadoop (http://hadoop.apache.org) framework has
made distributed, external memory computing widely
accessible with the MapReduce programming model in-
troduced by Google [5]. The MapReduce paradigm is
effective because of block locality and overlap between
computation and communication. But in addition to ef-
fective parallel processing, graph data must be stored and
updated. An open-sourced Apache project called Accu-
mulo (http://accumulo.apache.org), based on Google
BigTable [2] and initially developed at U.S. National Se-
curity Agency (NSA), is compatible with Hadoop and
offers scalable key-value storage and its own processing
stack called iterators.

We combined MapReduce and Accumulo to en-
able scalable, fault tolerant algorithms for graphs
at Big Data scales, validating the approach on the
Graph500 (http://www.graph500.org) benchmark by

U.S. Government work not protected by U.S. copyright

2

performing Breadth-First Search (BFS) on a 1 petabyte
(PB) graph with trillions of vertices and edges. . . the
largest Breadth-First Search to date. In keeping with the
terminology of Big Data we will refer to massive graphs
modeled after natural data sets as Big Graphs.

2. BACKGROUND

2.1. Graph definition

A graph, � = (�,�), consists of a set of vertices, � ,
and a set of edges, �. We’ll use the notation � = ∣� ∣
and � = ∣�∣ for the count of vertices and edges, respec-
tively. A vertex signifies an object or state and can be
connected to another vertex, the adjacent vertex, by an
edge. The degree of a vertex is the number of vertices
adjacent to it, i.e. neighbors. An edge represents the
pairwise connection between two vertices, possibly indi-
cating a relationship or transition, and can can denote
direction. A graph is defined as a directed graph if edges
have direction, and a graph whose edges bear no orien-
tation or have both opposing directions is an undirected
graph. It is common to store opposite edges to enable
efficient determination of ingress and egress neighbors.
We will focus on unweighted, undirected graphs for this
study.

2.2. Memory latency challenges

Modern computer architecture is optimized for consis-
tent and predictable access to data, instituting a hier-
archy of memory subsystems to keep the most relevant
data proximal to the processing unit. But a memory re-
quest miss will cascade down the hierarchy, compound-
ing the latency at each level which renders the CPU idle
while waiting for the data. Common graph implementa-
tions utilize link-based data structures which are spread
randomly across memory so the memory-hierarchy is a
liability; traversal becomes an exercise in pointer-chasing
where much of the computation time is wasted on cache
and Translation Look-aside Buffer (TLB) misses. The
effective memory latency in the form (hit ratio × hit la-
tency) + (miss ratio × miss latency) nested for some �
levels is given by,

	� =
��� + (1 −
�)	�−1 (1)

Now consider a hypothetical problem that incurs 10%
TLB misses and of those misses 0.01% result in page
faults, given that a TLB lookup takes 20 nanoseconds
(ns), main memory access is 100 ns, and a page fault is
serviced in 10 milliseconds (ms). The total time to load
a page from memory is the sum of the TLB lookup and
main memory access times, but if the page has to be
loaded from disk the cost is double for the main memory

access because the page must be written to memory first.
The effective memory latency defined in (1) for this 2-
level memory example is then,

	2 =
2�2 + (1 −
2)(
1�1 + (1 −
1)	0)
= .9(120�
) + .1(.9999(220�
) + 1000�
))

≈ 230�

The effective memory throughput is the word size di-
vided by the effective memory latency, which is about 33
MB/s in our example. We can argue that badly-behaved
problems that result in random memory accesses can suf-
fer worse throughput than sequential-block read access
on disks which is often 100 MB/s. Traversing a large
graph could randomly hit most of the memory modules
spread across many machines resulting in high communi-
cation costs. In multi-threaded architectures detrimental
affects such as cache-thrashing can occur when cache lines
are frequently evicted by context switches, false-sharing,
and thread migration.

2.3. Scalability challenges

Memory-bound graph algorithms fail when graphs ex-
ceed the total physical memory. A Big Graph can also
cause local data structures to exceed single-system mem-
ory, e.g. a large adjacency set. Some algorithms rely
on globally-shared data structures which typically scale
with the graph size, thus can also fail given insufficient
memory. Other memory limitations can be imposed by
the standard libraries of the programming language. For
example Java has a limit of 231 or approximately 2.1 bil-
lion elements for a single data structure.

The magnitude of Big Graphs necessitates parallel pro-
cessing for practical performance, but conventional ap-
proaches often require synchronization to prevent race
conditions and impose barriers. Synchronization impedes
scalability because it induces serialization and increases
the communication costs required for explicit coordina-
tion between processing elements. In addition, synchro-
nization is vulnerable to variability in machine perfor-
mance where a single straggling machine can stall pro-
gression.

Graphs occurring from natural data including social
and neural networks can exhibit power-law degree dis-
tribution where most edges are connected to just a few
vertices. This skew-distribution creates hot-spots when
the neighbors of a high-degree vertex simultaneously ref-
erence that vertex thereby creating both network and
memory bottlenecks. The execution is load-imbalanced
in the same manner as the connections in the graph where
most data requests are satisfied by a few resources rather
than evenly serviced across the system.

U.S. Government work not protected by U.S. copyright

3

2.4. Fault-Tolerance

As large computing systems are increasingly assem-
bled from lower-cost, commodity computer components
which are less resilient, the task of fault-tolerance is fur-
ther levied levied onto the software stack. This typically
involves frequent checkpointing of the run state of an
application which can then be restarted from the last
saved state if needed. This checkpoint/restart approach
is suitable for many scientific applications but for Big
Data applications where both the input and the running
state can be enormous in size, checkpoint/restart is inad-
equate. Cloud technologies such as the Hadoop software
stack offer redundancy and recovery by replicating data
and migrating tasks to maintain availability. Addition-
ally, Quality of Service (QoS) is just as important be-
cause a very slow job can have little value to applications
that rely on timely analysis. In Hadoop MapReduce, the
framework automatically detects straggling tasks and in-
stantiates new tasks on different compute hosts to miti-
gate the performance degradation.

3. CLOUD-BASED APPROACH

Our goal is to avoid memory-bound approaches, a ne-
cessity imposed by data consumption outpacing memory-
to-core scalability, and eliminate globally-shared data
structures and their associated synchronization con-
straints. We employ the MapReduce Hadoop frame-
work where computation is performed edge-wise, en-
abling some algorithms to avoid computing sequences
of adjacencies. The MapReduce framework performs
the heavy-lifting in terms of inter-process communica-
tion and resource scheduling. Additionally, data is uni-
formly distributed in MapReduce environments to load-
balance access, while still enabling local computation for
unordered data.

The graph data structure in our approach is a dis-
tributed edge list which can be easily partitioned and
processed in parallel, eliminating imbalance where a sin-
gle large adjacency is localized to one compute node. We
store the edge list as ⟨���, �����⟩ pairs in an Accumulo
table. Our MapReduce algorithms can interface with the
processing stack in Accumulo, creating a two-pronged
system approach. Both data in Accumulo and interme-
diate MapReduce output reside in the same Hadoop Dis-
tributed File-System (HDFS). The edges in Accumulo
can then be queried by a MapReduce job or directly us-
ing the Accumulo iterator stack. Both Hadoop and Ac-
cumulo offer fault-tolerant features such as replication of
data and automatic recovery of tasks.

4. RELATED WORK

Massive data sets and the large disparity in access
times between internal main memory and disks moti-

vated the study of out-of-core or external memory algo-
rithms that leverage the effectiveness of sequential disk
access, originating in 1980 [16] and later exemplified by
the parallel disk model (PDM) introduced in 1994 [18]
and the streaming computation model in 1998 [9] with
improvements to the streaming model introduced more
recently [6]. This body of work laid the foundation for
effective disk-based processing for graph algorithms but
these approaches are sequential or require multiple passes
over the graph data which is impractical for graphs at the
petabyte scale and beyond.

The application of MapReduce to graph problems has
been gaining attention since the original work by Co-
hen [4]. Recent MapReduce technologies for graphs
have emerged over the last few years [11, 12, 14] but
these do not provide an integrated framework for storage
and computation while supporting both batch and in-
teractive queries. Existing graph databases (see http:
//www.neo4j.org and http://wiki.infinitegraph.
com) focus primarily on data modeling and query lan-
guages. The Trinity (http://research.microsoft.
com/trinity) project shares similar goals as our ap-
proach with the exception that it stores the graph com-
pletely in-memory.

5. A FEW WORDS ON MAPREDUCE

The MapReduce framework simplifies parallel algo-
rithm development by managing all explicit communi-
cation between concurrent tasks. The application inter-
face is simply two functions, Map and Reduce, executed
in sequence. An algorithm must therefore be designed
such that input is “mapped” by the Map function into
⟨���, �����⟩ pairs which are sorted so all values for a key
are collected together, and “reduced” into final output
by the Reduce function. The Map and Reduce functions
operate on local input only, and there is no guarantee of
fast random access to data. The map output keys are
grouped and partitioned across the reduce tasks where
the values for a key arrive in non-deterministic order and
are read sequentially by the reduce task to which that
key was assigned. Computation in MapReduce is state-
less and synchronous such that the Reduce step cannot
complete before the Map step. The map and reduce
tasks perish after each step so local state information
of a task is not carried to the next task. An iterative al-
gorithm would be implemented as a sequence of MapRe-
duce rounds. The theoretical model for MapReduce first
published in [13] is evolving has been shown to simulate
other models such as Parallel Random Access Machine
(PRAM), Bulk Synchronous Parallel (BSP), and Stream-
ing. literature [7, 8, 13, 17].

In this computing model we can perform parallel com-
putation on ⟨���, �����⟩ pairs, often endpoints of edges
or paths, that enable the algorithm to easily distribute
across a large, unordered list of edges. Abiding by the
constraints of stateless computation and limited per-task

U.S. Government work not protected by U.S. copyright

4

internal memory help to improve parallelism by reducing
both task and data dependencies, and the local computa-
tion improves scalability by reducing communication and
memory access latency.

6. GRAPH REPRESENTATION

6.1. Edge list

The most common graph data structures are the ad-
jacency list and adjacency matrix. An adjacency list is
typically an array of doubly-linked lists corresponding to
vertices and their neighborhoods, and the adjacency ma-
trix is a matrix whose rows and columns span the vertices
so the entries indicate the (�, �) edges. Less commonly
used is the edge list representation which is just a tabu-
lation of the (�, �) edges. Note that

∑

�∈�
�(�) = 2�

for an undirected graph, thus the storage ranges by,
4� < �+ 4� < �2, with the edge list being the most
compact followed by the adjacency list and finally adja-
cency matrix. There are two memory pointers per node
in a doubly-linked list, hence for the adjacency list there
are 4� storage requirements in addition to the � array el-
ements. The quadratic storage needed for the adjacency
matrix makes it unsuitable at large scales; if a single bit
is used for each element in a graph with a billion vertices
it would require over one hundred petabytes of storage!
The adjacency matrix can be more practically stored in a
sparse format saving only the non-zero elements and the
subscript information. But the number of non-zero ele-
ments is 2� and in sparse matrix formats such as Com-
pressed Sparse Row (CSR), two arrays on order of the
number of non-zero elements and a third array on order
of the number of vertices is required, resulting in a 4�+�
memory footprint.

Given the scale of Big Graphs we chose the edge list
which can be easily distributed into unordered subsets.
This is especially important for power-law graphs where
distribution of edges can result in serious workload im-
balance. The edges can be sorted and localized to mini-
mize latency, important for the compute-migration model
which allocates tasks that are nearest to the input data.
Both the adjacency list and sparse-matrix representa-
tions lack locality because of the indirect memory ref-
erencing. The primary disadvantage in the edge list rep-
resentation is the lack of a direct mechanism to list all
neighbors of a specific vertex, particularly when the edge
list is distributed, so the operation can be very expensive
unless the edges are sorted and indexed. We therefore
store our graph data as a tabulation of edges in an Accu-
mulo table giving us random access to the edges for fast
adjacency computations and edge updates.

KEY

ROW ID
COLUMN

TIMESTAMP
VALUE

FAMILY QUALIFIER VISIBILITY

FIG. 1: Accumulo record

6.2. Accumulo Edge Table

Storing a graph as edges is natural in key-value repos-
itories like Accumulo, since an edge is a vertex pair, i.e.
the end points. In an Accumulo ⟨���, �����⟩ record the
key is consists of a row identifier, a column, and a times-
tamp field. The column is comprised of family, qualifier,
and visibility fields, as illustrated in Fig. 1. Tables in
Accumulo are distributed as a set of tablets, often many
tablets on a single host. Each table is stored on disk in
HDFS which replicates all data across the cluster to tol-
erate faults. The Accumulo master server keeps track of
the location of all tablets and can re-balance the distri-
bution on-demand. The tablets are configured to split
after reaching a threshold size. Tablets can migrate from
one host to another depending on the load distribution
or host failures. The ⟨���, �����⟩ records are sorted and
those with the same row ID necessarily coincide on the
same tablet. The column family is used as a filter so scans
can be grouped by families and therefore efficiently ac-
cess only relevant subsets of data, i.e. scan “blue” versus
“green” edges.

The composition of an Accumulo record permits vari-
ous schemes for defining an edge. For example, the (src,
dst) endpoints can be stored where the src is the row
identifier with the dst as the family. This scheme en-
sures all edges for a vertex, �, will be contained in a
single tablet as required for records with the same row
identifier. A locality group can be created for a neighbor,
�, of � so that scanning a directed graph for vertices that
share the neighbor � will be efficient (in an undirected
graph one would just scan the � row).

In power-law graphs where the adjacency for a few
vertices is much larger than the vast majority of other
vertices, storing the edges by the aforementioned scheme
would result in skew-distribution of tablets. Addition-
ally, tablets comprised of many different row identifiers
because of low degree vertices can result in random ac-
cess to disks causing many disk seeks. Adjacencies would
be larger for Big Graphs, increasing the time needed to
scan all entries in a tablet. To manage the complications
found in a power-law Big Graph we set each (�, �) edge
as the row identifier to permit a large adjacency to split
across multiple tablets. This enables a more balanced
distribution of tablets, and tablet sizes can be controlled
for better latency and less resource contention.

7. BREADTH-FIRST SEARCH

A fundamental operation on graphs is search, and this
operation is a primary motivation for representing com-

U.S. Government work not protected by U.S. copyright

5

plex data as graphs because of its linear efficiency. Study-
ing search algorithms cannot be complete without the
classic Breadth-First Search (BFS) algorithm. This algo-
rithm is also the basis of many graph traversal algorithms
such as shortest-paths, making it a good candidate for
studying performance. The BFS algorithm starts from
a source vertex then expands the search over all edges
that are the same distance from the source before travers-
ing the edges at the next distance, tracing out a k-level
tree where edges are grouped by the distance from the
source. Only edges from vertices which haven’t been en-
countered in the traversal are explored. On Big Graphs
the �(�+�) references is still challenging as is irregular
graph topology. The conventional PRAM implementa-
tion requires a globally-shared map on order of �(�) to
determine if a vertex has already been visited, which is
prohibitive for Big Graphs where there can be trillions of
vertices.

7.1. Cloud-based BFS

Our BFS algorithm for undirected graphs combines
MapReduce and Accumulo to eliminate globally-shared
state. The graph is stored in Accumulo and queried
by the MapReduce component to return vertices after
each frontier expansion. The algorithm generates a dis-
tance list comprised of distance records in the form of
⟨������, ��
�����⟩ pairs for each edge that led to a vertex.
We abuse the notion of distances here so that it refers to
the path length from the source vertex before duplicate
elimination and not the standard definition of the short-
est path between two vertices in the graph. The distance
list records the discoveries of every vertex, hence it rep-
resents the k-level BFS tree. By exploiting a rediscovery
cycle in undirected graphs, our algorithm distributes only
the minimum subset of records required for traversal.

The algorithm is an iteration of MapReduce rounds,
one round for each � step, i.e. �-level, in the traversal.
The map function is an identity and does not change the
distance records. The adjacency for a vertex � is obtained
in the reduce function if it hadn’t been visited, i.e. if all
distances are equivalent or equal the current BFS level.
The reduce function queries the Accumulo Edge Table for
the appropriate adjacency information and creates new
⟨�, � + 1⟩ distance records for each � neighbor in �(�),
and a single ⟨�, �⟩ self-distance record. The implementa-
tion is quite simple and is described in Algorithm 1 where
the identity map function is omitted for brevity.

We use �� to denote the set of vertices that form the
��ℎ frontier of the traversal, and ��+1 as the multiset
of neighbors from ��. Thus the sum of �� and �� over
all possible � steps is therefore the number of vertices
and edges in the graph, respectively. To minimize the
information required at each � step, all distance records
from ��−1, ��−3 and earlier are removed from the input.
This is because every vertex in an undirected graph is
both ancestor and descendant to each of its neighbors,

Algorithm 1

Require: � ← number of iterations
1: for � = 0 to � do

2: set input to ��−1, ��−2 and ��

3: set output directory to ��, ��+1

4: Map: Identity

5: Reduce: Adjacency

Require: input ← ⟨���, {	
���
}⟩
6: if every element in 	
���
 is � then

7: for all 	 in adjacency(���) do
8: output ⟨	, � + 1⟩ to ��+1 directory
9: end for

10: output ⟨���, �⟩ to �� directory {induced loop record}
11: end if

12: end for

therefore it will be discovered at a � distance and within
� + 2 distance it will be rediscovered again. This ob-
servation leads to the result that the set of vertices ��,
the neighbors of which are in the multiset ��+1, is the
subset of vertices in previous multiset �� which have not
been visited in the last two steps. It follows from this
description that,

�� =
(

�� ∖ ��−1

)

∩
(

�� ∖ ��−2

)

(2)

= �� ∖ (��−1 ∪ ��−2)

This property of undirected graphs was independently
exploited in EM-BFS [15]. Rather than store all vertices
discovered between � and � + 2 distances, only the ver-
tices which were visited, i.e. whose neighborhoods were
inquired, are needed. The self-distance records signify
these �� visit sets. Therefore, the algorithm progresses
a � + 1 multiset, ��+1, from the adjacency computa-
tions at the � distance, and the � − 1 and � − 2 visit
sets from the self-distance records. The algorithm effec-
tively employs a sliding window over the input, redirect-
ing distance records from the input path prior to each
map phase thus “sliding” the processing window so only
the necessary records to progress the next iteration are
read, hence the input expands and contracts with unique
vertex discoveries permitting resources to scale efficiently.

7.2. Accumulo Adjacency

In Algorithm 1 the adjacency of a vertex is obtained by
an Accumulo query into the Edge Table. Since the batch
scanner in Accumulo can scan ranges of row identifiers in
parallel across multiple tablets, the adjacency function in
Algorithm 1 utilizes the batch scanner to compute adja-
cencies in batches for better throughput. Moreover, be-
cause our Accumulo edge definition in Section 6.2 permits
the neighborhood of a vertex to be split across multiple
tablets, then the neighborhood of high degree vertices
will be queried in parallel by the batch scanner.

Optimal adjacency performance requires maintaining
data locality when scanning the Edge Table while si-

U.S. Government work not protected by U.S. copyright

6

multaneously minimizing disk contention. This requires
some control over where and how tablets are accessed, yet
the reduce tasks in Hadoop MapReduce are not guaran-
teed to be co-located with tablets. We have mentioned
the power-law variability in adjacency sizes causing load-
balancing issues. We can mitigate some of the contention
by using custom key partitioner functions in the Hadoop
MapReduce framework to avoid overlap of batch range
queries in the Edge Table.

7.3. Key-space partitioning

The partitioner framework in Hadoop MapReduce per-
mits customized functions that define how map output
keys are partitioned across the reduce tasks. This gives
the developer some control over load-balancing a known
distribution of data. The following describe two custom
partitioner functions used in our study.

We can sample the distribution of content in the Edge
Table tablets at the beginning of the algorithm job and
use this information in the partitioning function to align
the key distribution in MapReduce with that of tablet
distribution. An Accumulo table provides an interface
to get the table splits that correlate to the tablets. We
developed a custom partitioning function to then assign
keys to reduce tasks in a round-robin manner correspond-
ing to the table splits in order to minimize the overlap of
scans across all the tablets.

It is possible to maintain a global sort order of the keys
across the number of reduce tasks independent of the
layout in the Edge Table. The following defines a simple
hash function to evenly distribute random elements into
a fixed number of bins in cyclic-sorted order. Given �
numbers and � bin size, we defined the following hash,

�(�, �) = ⌊�/�⌋ mod � (3)

The bin size can be bounded by the input size � and
a new parameter,
, for the number of desired bins, i.e.
partitions. We can conveniently set
 = (�− 1) which is
the maximum value returned by the hash function, and
then it follows that � = �/
 which leads to �(�−1) = � .
Solving for � gives the following relations,

� =
1 +

√
1 + 4�

2

 = �− 1 =
−1 +

√
1 + 4�

2

For sets with large gaps between elements, ordinal
numbers can be assigned the elements from which the
hash can be computed.

400

600

800

1000

1200

1400

1600

1800

100 million 500 million 1 billion

R
E
D
U
C
E
T
A
S
K

C
O
U
N
T

REDUCE OUTPUT RECORDS

�(�, �) = 1 + �
(

(log10 �)
3 + (log10 �)

2
)

f=1.25
f=1.5
f=1.75
f=2.0

FIG. 2: Reduce Task Scaling

7.4. Reduce task count

The Hadoop MapReduce framework sets the number
of map tasks according to the input size but relies on the
developer to set the number of reduce tasks. It is impor-
tant to set the reduce count judiciously because each map
task will send output to every reduce task resulting ×!
network costs where and ! are the number of map
and reduce tasks, respectively. But too few reducers can
lead to under-utilization of the resources from insufficient
parallelism. Unfortunately, recursive algorithms such as
BFS require multiple jobs where the map outputs are not
known a priori and the distribution is unpredictable. De-
spite this, we can scale the number of reduce tasks using
logarithmic scaling function that seemed to be an em-
pirically good fit. Let !(�, �) be the scaling function for
the reduce count dependent upon the input size � and an
adjustable multiplicative factor � . Our function is then
given by the following equation,

!(�, �) = 1 + �
(

(log10 �)
3 + (log10 �)

2
)

(4)

We used the number of reduce output records from
the � iteration for the � + 1 iteration. The goal is to
scale up the reduce task count quickly as input increases
but then bend the curve when input gets very large to
avoid an accelerated growth in reduce tasks which cannot
be supported within finite cluster resources. A sample
distribution of the reduce tasks is shown in figure 2.

8. RESULTS AND DISCUSSION

8.1. Graph500 benchmark

The Graph500 benchmark is Breadth-First Search on
a synthetic, power-law graph generated using specific pa-
rameters. The vertex count is � = 2���	
 and the edge

U.S. Government work not protected by U.S. copyright

7

0

200

400

600

800

1000

1200

26 28 30 32 34 36 38 40 42 44

te
ra
b
y
te
s

scale

Problem Class

FIG. 3: Graph500 Problem Sizes

count is 16� where each edge is stored in 16 bytes. The
size of the graph increases exponentially with the ver-
tex scale as illustrated in Fig. 3, with sizes from 17 GB
up to a 1.1 PB graph. The performance metric for the
benchmark is traversed-edges-per-second (TEPS), calcu-
lated by dividing the total number of edges by the wall
clock time.

8.2. Experiments

We benchmarked Algorithm 1 on the three largest
problem classes: Medium, Large, and Huge which were
17 TB, 140 TB, and 1.1 PB in size, respectively. The
Edge Table tablets were kept under 1 GB in size for the
Medium and Large problems and 10 GB for the Huge
problem. Although the number of tablets is on order of
one hundred thousand for a petabyte graph, the Accu-
mulo master server easily managed the indexing of all
tablets, and during the Huge experiment, tolerated the
failure of thousands of tablets. Our algorithm queried
adjacencies in batches of at most 100,000 vertices using
eight threads per batch scanner.

We found that partitioning the key space in alignment
with the distribution in the tablets worked best for the
largest problem size. The cyclic-sorted bin partitioning
function in (3) showed promise on the smaller data sizes.
We also set � = 2 in (4) to scale the reduce task count.

Our benchmarks were carried out on a 1200-node clus-
ter where each node had two, quad-core Intel Nehalem
CPUs and 48 GB of RAM for a system total of 9600
cores and 57.6 TB of RAM. The cluster had a flat net-
work topology with 10 GigE non-blocking switches be-
tween racks and 1 GigE Ethernet intra-rack. The storage
devices were SATA-controlled, 7200 RPM conventional
hard disk drives.

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140

17
140

1126

36 39 42

T
ra
v
er
se
d
E
d
g
es

(t
ri
ll
io
n
)

T
er
a
b
y
te
s

Time (h)

Problem Class

Problem Class
Memory = 57.6 TB

FIG. 4: Graph500 Scalability Benchmark

8.3. Results

The results were first reported in [1]. Our TEPS per-
formance is calculated by dividing the aggregated sum
of Reduce output records, easily obtained by the Hadoop
job counters, by the wall clock time. The traversed edges
versus time is depicted in Fig. 4. Our performance is
approximately 150 million TEPS despite numerous hard-
ware failures and the absence of checkpointing, affirming
the fault-tolerance. The Huge problem class at scale 42
is over a petabyte in size, exceeding our aggregated sys-
tem memory by almost 20 times. The number of edges
ranged from 1 trillion to 70 trillion in this experiment,
scaling linearly with problem size while not bounded by
available system memory. At the time of this study the
largest problem size attempted by any competitor in the
Graph500 June 2012 list was scale 38, about 1/16 the
size of the graph in our experiment. To the best of our
knowledge, we were the first to complete the Large and
Huge problem sizes on the Graph500 benchmark.

9. CONCLUSION

Our Cloud-based approach can scale by additional disk
resources independent of the number of cores and mem-
ory capacity. While disks are slower than DRAM mem-
ory, it is possible to sustain high throughput in MapRe-
duce and Accumulo because data is organized for fast ag-
gregated, sequential read access. The performance gap
between memory and disk will narrow with solid-state
drives and new advances in disk subsystems that resem-
ble memory architectures.

U.S. Government work not protected by U.S. copyright

8

Acknowledgments

We would like to thank Sterling S. Foster and David
B. Hurry for their support.

[1] P. Burkhardt and C. Waring. An NSA big graph exper-
iment. Technical Report NSA-RD-2013-056001v1, U.S.
National Security Agency, May 2013.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. BigTable: a distributed storage system for struc-
tured data. In Proceedings of the 7th USENIX symposium

on operating system design and implementation, OSDI
’06, pages 205–218, 2006.

[3] B. Cheswick, H. Burch, and S. Branigan. Mapping
and visualizing the Internet. In Proceedings of the 2000

USENIX annual technical conference, ATEC ’00, pages
1–12, 2000.

[4] J. Cohen. Graph twiddling in a MapReduce world. Com-

puting in Science and Engineering, 11(4):29–41, 2009.
[5] J. Dean and S. Ghemawat. MapReduce: simplified data

processing on large clusters. In Proceedings of the 6th con-

ference on symposium on operating systems design and

implementation, OSDI ’04, pages 137–150, 2004.
[6] C. Demetrescu, B. Escoffier, G. Moruz, and A. Ribichini.

Adapting parallel algorithms to the W-Stream model,
with applications to graph problems. Theoretical Com-

puter Science, 411(44–46):3994–4004, 2010.
[7] J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein,

and Z. Svitkina. On distributed symmetric streaming
computations. In Proceedings of the 19th annual ACM-

SIAM symposium on discrete algorithms, SODA ’08,
pages 710–719, 2008.

[8] M. T. Goodrich, N. Sitchinava, and Q. Zhang. Sorting,
searching, and simulation in the MapReduce framework.
In Proceedings of ISAAC, pages 374–383, 2011.

[9] M. R. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. Technical Report 1998-011,
DEC Systems Research Center, 1998.

[10] M. Hilbert and P. Lopez. The world’s technology ca-

pacity to store, communicate and compute information.
Science, 332:60–65, 2011.

[11] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Falout-
sos. GBASE: a scalable and general graph management
system. In Proceedings of the 17th ACM SIGKDD in-

ternational conference on Knowledge discovery and data

mining, KDD ’11, pages 1091–1099, 2011.
[12] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pega-

sus: A peta-scale graph mining system - implementation
and observations. In Proceedings of the 9th IEEE in-

ternational conference on data mining, ICDM ’09, pages
229–238, 2009.

[13] H. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for MapReduce. In Proceedings of the 21st

annual ACM-SIAM symposium on discrete algorithms,
SODA ’10, pages 938–948, 2010.

[14] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Fil-
tering: a method for solving graph problems in MapRe-
duce. In Proceedings of the 23rd ACM symposium on

parallelism in algorithms and architectures, SPAA ’11,
pages 85–94, 2011.

[15] K. Munagala and A. Ranade. I/o-complexity of graph al-
gorithms. In Proceedings of SODA, pages 687–694, 1999.

[16] J. Munro and M. Paterson. Selection and sorting
with limited storage. Theoretical Computer Science,
12(3):315–323, 1980.

[17] A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri,
and E. Upfal. Space-round tradeoffs for MapReduce com-
putations. In Proceedings of ICS, pages 235–244, 2012.

[18] J. S. Vitter and E. Shriver. Algorithms for parallel mem-
ory i: Two-level memories. Algorithmica, 12(2–3):110–
147, 1994.

[19] D. J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world’ networks. Nature, 393(6684):440–442, 1998.

U.S. Government work not protected by U.S. copyright

