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Abstract: Cloud detection for remote sensing images is often a necessary process, because cloud is

widespread in optical remote sensing images and causes a lot of difficulty to many remote sensing

activities, such as land cover monitoring, environmental monitoring and target recognizing. In this

paper, a novel cloud detection method is proposed for multispectral remote sensing images from

Landsat 8. Firstly, the color composite image of Bands 6, 3 and 2 is divided into superpixel sub-regions

through Simple Linear Iterative Cluster (SLIC) method. Then, a two-step superpixel classification

strategy is used to predict each superpixel as cloud or non-cloud. Thirdly, a fully connected

Conditional Random Field (CRF) model is used to refine the cloud detection result, and accurate

cloud borders are obtained. In the two-step superpixel classification strategy, the bright and thick

cloud superpixels, as well as the obvious non-cloud superpixels, are firstly separated from potential

cloud superpixels through a threshold function, which greatly speeds up the detection. The designed

double-branch PCA Network (PCANet) architecture can extract the high-level information of cloud,

then combined with a Support Vector Machine (SVM) classifier, the potential superpixels are correctly

classified. Visual and quantitative comparison experiments are conducted on the Landsat 8 Cloud

Cover Assessment (L8 CCA) dataset; the results indicate that our proposed method can accurately

detect clouds under different conditions, which is more effective and robust than the compared

state-of-the-art methods.

Keywords: cloud detection; multispectral remote sensing; superpixel; PCA network; conditional

random field

1. Introduction

With the development of remote sensing technology, remote sensing images are widely used

in land cover monitoring, environmental monitoring, geographic mapping and target recognizing

and other fields [1–5]. The Global Energy and Water Cycle Experiment (GEWEX) Cloud Assessment

database estimates that the global annual average cloud cover is approximately 68% [6]. As a result,

clouds will cause a lot of difficulty to target detection, object recognition and other tasks and ultimately

cause incorrect analysis results [7,8]. Therefore, cloud detection is an important preprocessing step in

various remote sensing applications.

Over the years, a number of cloud detection methods have been proposed for optical remote

sensing images. In general, these methods can be mainly classified into two categories [9]:

single-image-based methods and multiple-images-based methods. The multiple-images-based

methods [10–12] require a set of images taken under the same grounds at different times.

Hagolle et al. [13] developed a Multi-Temporal Cloud Detection (MTCD) method using time series

of images from Formosat-2 and Landsat, and the results indicate that the MTCD method is more
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accurate than the Automatic Cloud Cover Assessment method. Chen et al. [14] proposed an iterative

haze optimized transformation for automatic cloud/haze detection of Landsat image with the help

of a corresponding clear image. Qian et al. [15] designed an automated cloud detection algorithm

named Mean Shift Cloud Detection (MSCD) using multi-temporal Landsat 8 Operational Landsat

Imager (OLI) data without any reference images. However, these methods need more images over a

short time period to ensure that the ground surface underneath does not change much. In addition,

a clear reference image is difficult to acquire.

Compared with multiple-images-based methods, cloud detection methods based on a

single scene are more common and popular due to the reduced requirement for input data.

Early single-image-based methods are mainly based on threshold [16–18], which extract various

spectral features for each pixel, then use several thresholds to determine cloud pixels [19].

Cihlar and Howarth [20] used the Normalized Difference Vegetation Index (NDVI) to detect cloud

pixels in AVHRR images. Irish [21] performed the Automated Cloud Cover Assessment (ACCA)

system to screen clouds in Landsat data by applying a number of spectral filters, and depending

heavily on the thermal infrared band. Zhu et al. [22,23] provided a cloud detection method for Landsat

images by detecting potential cloud pixels combined with the cloud probability mask. Yang et al. [24]

developed a progressive optimal scheme for detecting clouds in Landsat 8 image, which is based

on the statistical properties and spectral properties derived from a large number of the images with

cloud layers. The threshold-based cloud detection methods usually utilize only the low-level spectral

information, and neglect the spatial information, which do not always work well for cloudy images

under different imaging conditions because of its sensitivity to the underlying surface and the range of

cloud cover [25,26].

Subsequently, more sophisticated methods have been developed [27–29]. Danda et al. [30]

presented a morphology-based approach to coarsely detect clouds in remote sensing images based on

a single band. As cloud and cloud shadow always occur in pairs, the relationship between cloud and

cloud shadow as well as sun and satellite angles were used to improve the detection accuracy of cloud

and cloud shadow [31]. An automatic multi-feature combined method for cloud and cloud shadow

detection in GaoFen-1 wide field of view image was proposed by Li et al. [32], and acquired relatively

satisfactory performance. In these methods, not only simple spectral information, but also other

manually selected information of images was used for cloud detection, such as texture information,

structure information, geometric information, and so on.

With the development of machine learning technology, machine-learning-based cloud detection

methods [33,34] have attracted increasing study, which can extract more robust and high-level

information from images. Hu et al. [35] adopted a visual attention technique in computer vision

based on random forest to automatically identify images with a significant cloud cover. Li et al. [36]

exploited the brightness and texture features to detect clouds based on SVM. An and Shi [37] proposed

an automatic supervised remote-sensing image cloud detection approach based on the scene-learning

scheme with two modules: feature data simulating and cloud detector learning and applying. In these

machine-learning-based methods, a larger number of features were artificially designed and extracted

as the input of classifier. These artificially designed features rely on prior knowledge and sensor, and

they are difficult to accurately represent the characteristics of clouds with complex underlying surface.

Recently, deep learning methods have made significant progress in many computer visual

tasks [38–41], and the cloud detection methods based on deep learning have attracted attention [42,43].

Shi et al. [44] and Goff et al. [45] used superpixel segmentation and deep Convolutional Neural

Networks (CNNs) to detect clouds from Quickbird and Google Earth images and SPOT 6 images,

respectively. Ozkan et al. [46] adapted a deep pyramid network to tackle cloud detection task,

which can obtain accurate pixel-level segmentation and classification results from a set of noisy labeled

RGB color remote sensing images. These methods achieved higher cloud detection accuracy than

traditional machine learning methods.
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In this paper, a novel cloud detection method is proposed for the multispectral remote sensing

images with 9 bands from Landsat 8 OLI. The proposed method firstly obtains the coarse result by a

spectral threshold function, then the accurate cloud detection result is obtained by a double-branch

PCANet combined with SVM. The remainder of this paper is organized as follows. Section 2 presents

the details of the proposed cloud detection method. Experimental results and analysis are described

and discussed in Section 3. Finally, a conclusion is drawn in Section 4.

2. Methodology

Cloud is an aerosol comprising a visible mass of condensed droplets or frozen crystals suspended

in the atmosphere. In the visible bands, the optical properties of water droplets and frozen crystals

not only make clouds reflective, but also increase light absorption, thus reducing the transmittance of

the radiation information from the underlying surface [47]. Intuitively, it seems that clouds are easily

separable from ground objects, as clouds are generally white and bright compared to the underlying

surface. Nevertheless, there are clouds that are not white or bright as well as bright ground objects,

such as semitransparent thin clouds, bright buildings and snow, which are difficult to distinguish

by spectral characteristics alone. Therefore, for high-accuracy cloud detection, both the spectral and

spatial information of remote sensing image should be adequately considered.

In this paper, a novel cloud detection method considering both spectral and spatial information

is proposed for the multispectral remote sensing images, which is a combination of threshold-based

method and machine-learning-based method. Figure 1 shows the flow chart of the proposed method.

Firstly, the image is divided into spectrally homogeneous segments, namely superpixels, by SLIC [48]

method. Then, a two-step classification strategy is used to divide these superpixels into cloud and

non-cloud. The first step coarsely divides the superpixels into cloud, non-cloud and potential cloud

by a spectral threshold function. The second step further classifies the potential cloud as cloud and

non-cloud using the PCANet combined with SVM. Finally, a fully connected CRF [49] model is

employed to refine the cloud detection result and accurate cloud borders are obtained.

Figure 1. Flow chart of the proposed cloud detection method.

Cloud detection methods based on sub-region can utilize the local spatial information of the

image to avoid isolated point noise. Two deep-learning-based methods in [44,45] extracted features

and predicted the class of each sub-region to detect clouds. It is time- consuming when use supervised

learning methods to predict the class for all sub-regions. In addition, they learn features from all

sub-regions including easy distinguished samples and hard distinguished samples, which increases

the learning difficulty and causes low generalization ability.

In our framework, we pay more attention to hard samples through a two-step superpixel

classification strategy. These hard samples are usually corresponding to bright ground objects and thin

semitransparent clouds, which cannot be identified directly by spectral features. We use a threshold

function to separate the obvious cloud and non-cloud superpixels from the ambiguous superpixels,

thus improving cloud detection speed. Then, a double-branch PCANet is designed and combined

with SVM to further predict the ambiguous superpixels as cloud or non-cloud. The inputs of the two

branches of the designed PCANet are 9-dimensional Top of Atmosphere (TOA) reflectance data and
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5-dimensional spectral feature data, respectively. The double-branch PCANet takes both spectral and

spatial information into account. In addition, the classifier only needs to learn the features of the

ambiguous superpixels without interference from the easy distinguished superpixels, which make the

classification of the ambiguous superpixels become easier. Therefore, the combination of the two steps

can obtain a more accurate cloud detection result.

2.1. Data and Preprocessing

The Landsat 8 OLI data is used to evaluate our method in this paper, which consists of 9 spectral

bands with a spatial resolution of 30 m for Bands 1 to 7 and 9, and the resolution for Band 8 is 15 m.

Band 1 is specifically designed for water resources and coastal zone investigation, and Band 9 is useful

for cirrus cloud detection. Table 1 shows the details of the 9 bands.

Table 1. Landsat 8 OLI spectral bands.

Band
Wavelength

(Micrometers)
Resolution

(Meters)

Band 1—Coastal 0.43–0.45 30
Band 2—Blue 0.45–0.51 30

Band 3—Green 0.53–0.59 30
Band 4—Red 0.64–0.67 30

Band 5—Near Infrared (NIR) 0.85–0.88 30
Band 6—Short Wavelength Infrared (SWIR) 1 1.57–1.65 30
Band 7—Short Wavelength Infrared (SWIR) 2 2.11–2.29 30

Band 8—Panchromatic 0.50–0.68 15
Band 9—Cirrus 1.36–1.38 30

In the proposed method, the input data are TOA reflectances for Landsat 8 OLI bands. Standard

Landsat 8 OLI data products consist of quantized and calibrated scaled Digital Numbers (DN)

representing multispectral image data. To work on Landsat 8 OLI data, DN firstly need to be converted

to TOA reflectance following equations described in [50].

ρλ′ = MρQcal + Aρ (1)

where ρλ′ is TOA reflectance without correction for solar angle, Mρ is band-specific multiplicative

rescaling factor, Qcal is quantized and calibrated standard product pixel values (DN), and Aρ is

band-specific additive rescaling factor. TOA reflectance with a correction for the sun angle is then:

ρλ =
ρλ′

cos(θSZ)
=

ρλ′

sin(θSE)
(2)

where ρλ is TOA reflectance with correction for solar angle, ρλ′ is TOA reflectance without correction

for solar angle, cos(θSZ) is local solar zenith angle and sin(θSE) is local sun elevation angle.

In addition, as the spatial resolution of Band 8 is 15 m, which is higher than other bands, we first

resample it to 30 m spatial resolution for a uniform size.

2.2. Superpixel Segmentation

In [36], cloudy image was divided into sub-blocks of the same size according to the spatial

position, then, the brightness and textural features were calculated to predict the class for each

sub-block. However, the rigid division cannot be adaptive for the varied shape and size of clouds.

In this paper, SLIC [48] is used to divide remote sensing image into superpixels, which are taken as the

basic unit in the following procedures.

SLIC performs a local clustering of pixels and can efficiently generate compact and regular

superpixels as sub-regions, which adhere well to the boundaries. According to [48], the clustering is
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applied in the labxy color-image plane space defined by the pixel’s CIELAB color space [l, a, b]T and

the pixel’s position [x, y]T. The distance measure between the pixel i and pixel j in the labxy space is

defined as:

dc =
√

(li − lj)
2 + (ai − aj)

2 + (bi − bj)
2 (3)

ds =
√

(xi − xj)
2 + (yi − yj)

2 (4)

Ds =

√

(

dc

m

)2

+

(

ds

S

)2

(5)

where S is the square root of the required pixel number of the superpixel, m is the weight to control

the importance between color similarity and spatial proximity. In this paper, m and S are set to 20

and 50, respectively.

For Landsat 8 images, the Bands 6, 3 and 2 correspond to the short-wave infrared, green and

blue bands, respectively. In their color composite image, the cloud is more obvious and easily

distinguishable from snow/ice [51]. In this paper, SLIC method is executed on the color composite

image using Bands 6, 3 and 2. Figure 2 is an example of superpixel segmentation, where (a) is the

color composite image of Bands 6, 3 and 2, (b) is the superpixel segmentation result of (a). It can be

seen that the cloud superpixels adhere well to cloud boundaries. In this paper, we adopt a two-step

classification strategy to recognize each superpixel as cloud or non-cloud.

Figure 2. Example of superpixel segmentation. (a) Original color composite image. (b) SLIC

segmentation result. (c) Superpixel coarse classification result (white represents the cloud, black

represents the non-cloud and gray represents the potential cloud). (d) Two-step superpixel classification

result. (e) Fully connected CRF refinement result.

2.3. Superpixel Coarse Classification

It can be seen from Figure 2b that there are three kinds of superpixels in the image: (1) bright and

thick cloud superpixels, (2) obvious non-cloud superpixels, (3) potential cloud superpixels, including

dark cloud, semi-transparent thin cloud and bright non-cloud. The first two kinds of superpixels

are easily recognized, and we use a brightness feature combined with the threshold method to

separate them from the potential cloud superpixels, which can simplify the calculation and improve

detection speed.
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Clouds on the remote sensing images are mainly uniform flat, and a large proportion of them

are brighter than most of the Earth’s surface [9,36]. We define a brightness feature to enhance the

difference between cloud pixels and non-cloud pixels:

b =
1

3 ∑i∈2,3,6
Band i ×

mini∈2,3,6Band i

maxi∈2,3,6Band i
(6)

where Band i is the TOA reflectance of the i-th band, which is normalized to [0, 1].

For a cloud pixel, the TOA reflectance values are large and close to each other in Bands 6, 3 and 2,

and therefore the value of b is big. While for a non-cloud pixel, the TOA reflectance values are varied

in the three bands, and the average TOA reflectance value is small, and therefore the value of b is small.

Then, we calculate the brightness feature for each pixel. We selected 24 images from L8 CCA

dataset [51] (Landsat ID and Cloud Cover of the 24 images are given in Table A1), and calculated the

cumulative probability distribution of b for cloud pixels and non-cloud pixels, respectively, as shown

in Figure 3. The red line is the cumulative probability curve of non-cloud pixel, and the blue line is

that of cloud pixel. It can be observed that about 98% of the non-cloud pixels have a b value less than

0.176, and about 98% of the cloud pixels have a b value greater than 0.073.

Figure 3. Cumulative histogram of brightness feature b.

Therefore, for a superpixel, we define a threshold function as follows:

T(Ω) =

∑
z∈Ω

ψ(z)

N(Ω)
(7)

ψ(z) =











−1, b(z) < 0.073

0, 0.073 ≤ b(z) ≤ 0.176

1, b(z) > 0.176

(8)

where N(Ω) is the number of pixels in the superpixel Ω, and b(z) is the brightness feature b of pixel z.

If T(Ω) < −0.7, the superpixel Ω is predicted as non-cloud, and if T(Ω) > 0.7, the superpixel Ω

is predicted as cloud, and otherwise, it is potential cloud. Figure 2c shows the superpixel coarse

classification result of Figure 2b, where white represents the cloud superpixels, black represents the

non-cloud superpixels and gray represents the potential cloud superpixels.
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2.4. Identification of the Potential Cloud Superpixels

The potential cloud superpixels generally contain high brightness ground objects and thin

semitransparent clouds, which are difficult to be identified by the low-level spectral information.

We use PCANet to extract the high-level features of clouds, which are fed to a linear SVM classifier to

obtain a better classification result.

2.4.1. A Brief Introduction to PCANet

PCANet is a simple deep learning network for image classification [52,53]. Compared with

CNN, the most important change in PCANet is that the data-adapting convolution filter bank in

each stage is replaced by basic PCA filter, and the nonlinear layer adopting the simplest binary

quantization (hashing), and for the feature pooling layer, the block-wise histograms of the binary codes

are employed, which are the final extracted features of the network. PCANet is easy to be trained and

adapted to different data and tasks, and can avoid the problem of parameter training in traditional

CNN that consumes too much time and requires various ad hoc tricks [54,55].

PCANet is a cascaded network, which is based on three basic data processing components:

cascaded principal component analysis (PCA), binary hashing, and block-wise histograms.

Suppose that there are N training images {Ii}
N
i=1 of size w × h, and the filter size is k1 × k2 at all

stages. For the i-th training image Ii, PCANet takes a k1 × k2 patch around each pixel, and collects

all the vectorized mean-removed patches to form a matrix Xi ∈ R
(k1k2)×n, where n is the number of

patches extracted from Ii. By constructing the same matrix for all training images and combining them,

we obtain

X = [X1, X2, · · · , XN ] ∈ R
(k1k2)×(Nn) (9)

Assuming that the number of filters in the first layer is L1. PCA minimizes the reconstruction

error within a family of orthonormal filters, i.e.,

min
V∈R(k1k2)×L1

∥

∥

∥
X − VVTX

∥

∥

∥

2

F
, s.t. VTV = EL1

(10)

where EL1
is an identity matrix with size L1 × L1. The solution is the L1 principal eigenvectors of XXT.

Therefore, the PCA filters can be expressed as

W1
l

.
= mat(k1k2)(ql(XXT)) ∈ R

k1×k2 , l = 1, 2, · · · , L1 (11)

where mat(k1k2)(v) is a function that reshapes a vector v ∈ R
k1k2 to a matrix W ∈ R

k1×k2 , and ql(XXT)

denotes the l-th principal eigenvector of XXT. Then, the l-th filter output of the first layer can be

obtained by

Il
i

.
= Ii ∗ W1

l , i = 1, 2, · · · , N (12)

where ∗ denotes 2D convolution. For each input image Ii, the first layer will output L1 images.

Executing the same process as in the first layer for all the obtained Il
i , the output of the second layer

is obtained. Assuming that the number of filters in the second layer is L2, PCANet would output

L1L2 images for each input image. A deeper PCANet architecture can be built by repeating the above

process, to extract higher level features. Two layers are enough for most tasks according to [52].

After the process of PCA filter, a binary hashing process is followed. This process binarizes

L2 outputs and converts them into a single integer-valued “image”. Subsequently, each of the L1

images is divided into many local blocks. Then, computing the histogram of each block (with 2L2 bins),

and concatenating all the histograms into one vector, which is the feature expression for input image Ii.

Finally, the classification result is determined by a linear SVM classifier.
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2.4.2. Our Designed Double-Branch PCANet

In this paper, a double-branch PCANet is designed, as shown in Figure 4. The input of the

first branch is the 9-dimensional TOA reflectance data (Band 1–Band 9), which fuses the spectral

information of nine bands. In addition, the input of the second branch is five spectral feature maps

including Normalized Difference Snow Index (NDSI), NDVI, B5/B6, “Whiteness”, and Haze Optimized

Transformation (HOT), which are defined as:

NDSI = (Band 3 − Band 6) / (Band 3 + Band 6) (13)

NDVI = (Band 5 − Band 4) / (Band 5 + Band 4) (14)

meanVis = (Band 2 + Band 3 + Band 4) /3,

Whiteness =
4

∑
i=2

|(Band i − meanVis)/meanVis| (15)

HOT = Band 2 − 0.5 × Band 4 − 0.08 (16)

B5/B6 = Band 5/Band 6 (17)

In [21], Irish used NDSI, NDVI and B5/B6 indexes to separate clouds from the snow, vegetation

and bright rocks, respectively. “Whiteness” index was employed by Gomez-Chova et al. [56] to exclude

pixels that are not white enough to be clouds. The HOT index was firstly proposed by Zhang et al. [57],

which has been widely used for haze reduction and cloud detection. Zhu et al. [22] identified the

potential cloud pixels by combining five spectral feature maps. In this paper, we use the five spectral

feature maps to describe the features of the potential cloud pixels. The two branches of the designed

PCANet are used to retrieve the high-level features from 9-dimensional TOA reflectance data and

5-dimensional spectral feature data, respectively. Finally, these high-level features are fused and fed to

a linear SVM classifier to obtain the final classification result. Figure 2d shows the two-step superpixel

classification result of Figure 2b.

Figure 4. Flow chart of the cloud detection process based on PCANet.

2.5. Refinement with Fully Connected CRFs

Through Sections 2.3 and 2.4, each superpixel is classified as cloud or non-cloud, and the cloud

detection result is based on superpixel. However, the regions around the boundaries of the clouds are

usually thin semitransparent clouds, which will contain non-cloud pixels sometimes, and thus leading

to wrong classification result. In [24,32,58], a guided filter was implemented to refine the detected

cloud boundaries. It only utilizes the local spatial information and the binary cloud detection result,

which ignores the global spatial information and the cloud probability of each pixel. In this paper,
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a global optimization strategy with fully connected CRF model [49] is applied to capture the thin

clouds around cloud boundaries, then a more accurate refined cloud detection result is obtained.

The model employs the energy function [59]:

E(x) = ∑
i

θi(xi) + ∑
ij

θij(xi, xj) (18)

where x is the label of pixels, and xi and xj denote the labels of pixels i and j, respectively.

The first term in Equation (18) is a unary potential: θi(xi) = − log P(xi), where P(xi) is the cloud

probability of pixel i. In Section 2.3, the superpixels are divided into three classes: cloud, non-cloud

and potential cloud. The cloud probabilities of the pixels in cloud superpixel are set to 1, and those of

the pixels in non-cloud superpixel are set to 0. For the pixels in the potential cloud superpixel, their

cloud probabilities are obtained using the output of SVM in Section 2.4, which are normalized to [0, 1].

The second term in Equation (18) is a pairwise potential, which is the combination of two Gaussian

kernels in terms of the colors and positions for pixels i and j:

θij(xi, xj) = µ(xi, xj)

[

ω1 exp

(

−
||pi − pj||

2

2σ2
α

−
||ci − cj||

2

2σ2
β

)

+ ω2 exp

(

−
||pi − pj||

2

2σ2
γ

)]

(19)

where µ(xi, xj) is a binary function, which is 0 when pixel i has the same label with pixel j, otherwise 1.

pi and ci are the position and color vector (including Bands 6, 3 and 2 in this paper) of pixel i. The first

bilateral kernel depends on both pixel position and color, which forces nearby pixels with similar color

to have the same labels, and the second kernel only depends on pixel position, which only considers

spatial proximity when enforcing smoothness. The parameters ω1 and ω2 are linear combination

weights of the two Gaussian kernels, and σα, σβ and σγ control the scale of Gaussian kernels.

Minimizing the CRF energy function E(x) in Equation (18) yields the most probable label

assignment x for the given image. Since this strict minimization is intractable, a mean field

approximation to the CRF distribution d(x) = ∏idi(xi) is used for approximate maximum posterior

marginal inference. Figure 2e shows the fully connected CRF refinement result of Figure 2d.

3. Results and Discussion

In this paper, a cloud detection framework is proposed for multispectral remote sensing images,

which is implemented in MATLAB release 2016a on a computer with Intel CPU i7-6700K at 4.00 GHz

and 32.00 GB RAM.

The experimental images are from the L8 CCA dataset [51], which contains totally 96 images

and their ground truth, the image effective size is approximately 6400 × 6400. In these experimental

images, there are eight biomes including Barren, Forest, Grass/Cropland, Shrubland, Snow/Ice, Urban,

Water, and Wetlands, and each biome has 12 scenes. These images are divided to two parts: 24 images

(three for each biome) for training and the remaining 72 ones for test. The 24 training images are also

used to determine the threshold in Section 2.3 when coarsely classifying the superpixels.

We used four metrics to quantitatively evaluate the performance of the methods, including the

Right Rate (RR), Error Rate (ER), False Alarm Rate (FAR), and ratio of RR to ER (RER). They are

defined as:

RR =
CC

TC
(20)

ER =
CN + NC

TP
(21)

FAR =
NC

TC
(22)

RER =
RR

ER
(23)



Remote Sens. 2018, 10, 877 10 of 21

where CC denotes the number of cloud pixels detected as cloud pixels, TC denotes the total number

of cloud pixels in ground truth, CN denotes the number of cloud pixels detected as non-cloud pixels,

NC denotes the number of non-cloud pixels detected as cloud pixels, and TP denotes the total number

of pixels in the input image.

According to the definition, it is obvious that RR represents the information of correctly detected

clouds, ER provides us the information about the errors, and FAR indicates the information of

incorrectly detected clouds. Using only one of them to evaluate algorithms is insufficient, as some

methods may obtain high RR but also high ER. On the contrary, some methods may obtain low FAR

but also low RR. Therefore, RER is defined to obtain an integrated result as it considers the RR and ER.

A higher value of RER denotes better cloud detection result.

3.1. Training and Detection

For the proposed cloud detection framework, as shown in Figure 1, we need to train the PCANet

combined with a linear SVM classifier, and determine the optimal parameters of the fully connected

CRF model.

In the training stage, for the 24 training images, the superpixels are extracted using the SLIC

method. Through superpixel coarse classification, 140,000 potential cloud superpixels are obtained.

From the 140,000 superpixels (their ground truth are known), we randomly extract 35,000 cloud

patches as positive samples, and 35,000 non-cloud patches as negative samples, and the patch size

is 55 × 55. All the 70,000 samples are used to train the designed double-branch PCANet, which

parameters setting is: two layers, 7 × 7 patch size, eight filters in each layer, 7 × 7 size of block

histograms (non-overlapping).

In the refinement post-processing stage, we use default values of ω2 = 1 and σγ = 1, and search

for the best values of ω1, σα and σβ by cross-validation on the training set, and the final values of ω1,

σα and σβ are 10, 300 and 3, respectively. We employ 20 mean field iterations in this paper.

In the detection stage, superpixels are first obtained from the test image using the SLIC method.

Then, we calculate the brightness feature of the superpixels, and divide them into cloud, non-cloud and

potential cloud by the spectral threshold function. For each potential superpixel, an image patch

(55 × 55) centered at its geometric center pixel is extracted and inputted into the trained PCANet

model, and thus, the class of the potential superpixel is predicted. Merging the classification results of

all superpixels in the test image, the superpixel-based cloud detection result is obtained. Finally, a fully

connected CRF model is employed to refine the cloud detection result and accurate cloud borders

are obtained.

3.2. Effectiveness of Designed PCANet Architecture

Compared with the traditional CNNs, PCANet is simpler and faster. In this paper, a double-branch

PCANet architecture is designed to extract the features of the potential clouds, and using these features,

a linear SVM classifier is trained to classify the potential clouds.

In order to verify the effectiveness of the designed double-branch PCANet architecture,

we compare our PCANet architecture with three CNN architectures, including AlexNet [38], VGG-16

[39] and ResNet-20 [40], and two single-branch PCANet (see the two branches of Figure 4). For the

three compared CNNs, their inputs are the 9-dimensional TOA reflectance data. Since this experiment

is to verify the performance of different network architectures, it does not include the superpixel coarse

classification and the CRF refinement process. We extract 80,000 cloud patches and 320,000 non-cloud

patches from 24 training images as training set for AlexNet, VGG-16 and ResNet-20, and the patch size

is 55 × 55. Considering PCANet does not need a large training set, we extract 35,000 cloud patches

and 35,000 non-cloud patches for training.

Table 2 shows the statistical results of different network architectures on the test set. It can be

seen that, compared with the three CNNs, the 9-dimensional single-branch PCANet has the best

values in metrics ER, FAR and RER, in addition, its RR, the same as that of ResNet-20, is also the best.
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Therefore, the 9-dimensional single-branch PCANet outperforms the three compared CNNs. In two

single-branch PCANets, the 5-dimensional PCANet has lower performance than the 9-dimensional one

due to the incomplete spectral information input. In addition, when combining the two single-branch

PCANets together, it is exactly our final double-branch PCANet, which obtains a better cloud detection

result than both of the two single-branch PCANets. Overall, with the highest RR and RER and the

lowest ER, our double-branch PCANet outperforms the five compared network architectures.

Table 2. Statistical results of different network architectures.

Methods RR ER FAR RER

AlexNet [38] 0.8966 0.0955 0.0986 9.3848
VGG-16 [39] 0.8919 0.0903 0.0829 9.8719

ResNet-20 [40] 0.9023 0.0865 0.0853 10.4252
single-branch PCANet (9-D) 0.9023 0.0829 0.0775 10.8854
single-branch PCANet (5-D) 0.8010 0.1164 0.0470 6.8828

double-branch PCANet 0.9138 0.0729 0.0680 12.5289

3.3. Effectiveness of the Proposed Cloud Detection Framework

A cloud detection framework is proposed in this paper. Firstly, we separate the obvious cloud

and non-cloud superpixels from the potential cloud superpixels by superpixel coarse classification.

Then, the designed double-branch PCANet is used to identify the potential cloud superpixels.

Finally, the fully connected CRF is used to refine the cloud detection result, and we obtain the final finer

result. In order to evaluate the effectiveness of the proposed framework, we compare it with three other

frameworks, including the simple double-branch PCANet (without superpixel coarse classification and

refinement process), the two-step superpixel classification strategy (superpixels coarse classification

combined with double-branch PCANet, and without refinement process), and the two-step superpixel

classification strategy combined with guided filter based refinement process. Here, the simple

double-branch PCANet is exactly the double-branch PCANet used in Section 3.2, and the other

two compared frameworks have the same training stage with our final cloud detection framework.

Figure 5 shows two instances of cloud detection, where (a1,a2) are the cloudy images composited

of Bands 6, 3 and 2, (b1,b2) are ground truth and the white is cloud region, from (c1,c2) to (f1,f2) are

the results of three compared method and our proposed final framework. It can be seen that the cloud

in (a1) of Figure 5 is thick and clumpy, and the boundaries of the cloud detected by the first two

compared methods are unsmooth and with blocking effect, because the first two compared methods

are based on superpixel sub-region. While the last two methods (two-step strategy combined with

guided filter and our method) use guided filter and CRF to correct the misclassified pixels, respectively,

which are based on pixel, therefore the results have more accurate cloud boundary. The cloud is

fractional in (a2) of Figure 5. When a superpixel contains non-cloud region much more than thin and

small cloud region, it will probably be classified as non-cloud, and the cloud pixels in it are incorrectly

detected. Conversely, when a superpixel contains cloud region much more than non-cloud region,

it will probably be classified as cloud, and the non-cloud pixels in it are false detected. Therefore,

the first two compared superpixel-based methods will cause missed detection and false detection, see

(c2,d2) in Figure 5. When combining the two-step strategy with guided filter, the missed and false

detected pixels around the boundaries of the cloud regions are corrected. Because guided filter only

considers local information, the misclassified pixels are still obvious. Our method uses the global

optimal CRF model to refine the cloud detection result, and a more accurate result is obtained.
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Figure 5. Visual comparisons of cloud detection results of different frameworks. (a1,a2) Color

composite images (a1 and a2 are subsets of Landsat 8 images LC81930452013126LGN01 and

LC82290572014141LGN00, respectively). (b1,b2) Ground truth. (c1,c2) Results of the simple double-

branch PCANet. (d1,d2) Results of the two-step superpixel classification strategy. (e1,e2) Results of the

two-step strategy combined with guided filter. (f1,f2) Results of our proposed framework.

Table 3 shows the statistical results of three compared cloud detection frameworks and the

proposed framework on the test set. The last column in Table 3 shows the average detection time

of each image. In the two-step superpixel classification, the first-step threshold method separates

the easily distinguished superpixels from the potential cloud superpixels firstly, and the second-step

PCANet pays more attention to the potential cloud superpixels. It can be seen that the two-step

superpixel classification has a better cloud detection result than the simple double-branch PCANet,

and its time cost is only 52.3% of the latter. Guided filter improves slightly the detection accuracy of the

two-step superpixel classification, but its time cost increased greatly. While our proposed framework

uses CRF to correct the misclassified pixels, the accuracy is obviously improved. In addition, our

proposed framework only takes 26.7% more time than the two-step superpixel classification, but it still

saves 33.7% of the time compared to the simple double-branch PCANet. Considering that it yields the

best detection result, our final framework outperforms the other three methods.
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Table 3. Statistical results of different cloud detection frameworks.

Methods RR ER FAR RER Test Time

double-branch PCANet 0.9138 0.0729 0.0680 12.5289 19.3 min
two-step superpixel classification strategy 0.9194 0.0710 0.0695 12.9539 10.1 min

two-step strategy combined with guided filter 0.9192 0.0679 0.0628 13.5361 19.3 min
our proposed final framework 0.9338 0.0515 0.0426 18.1315 12.8 min

3.4. Comparison with Other Cloud Detection Methods

We compare our method with five other cloud detection methods including Zhu’s method [23],

Yang’s method [24], Li’s method [32], Shi’s method [44] and Goff’s method [45], where the first

three methods are unsupervised, and the last two methods are based on deep learning. In addition,

Zhu’s method was an implementation from Fmask 3.2 version (download from http://ftp-earth.bu.

edu/public/zhuzhe/Fmask_Windows_3.2v/), Shi’s method was implemented by Shi et al. (download

from http://xfy.buaa.edu.cn/), and we reproduced Yang’s method, Li’s method and Goff’s method

with default values. Figure 6 shows several cloud detection instances, where (a1–a3) are the original

color composite images, (b1–b3) are ground truth and the white is cloud region, (c1–c3)–(h1–h3) are

the results of five compared methods and our method. In Figure 6, the second image (a2) contains

both cloud and snow, which are easily confused with each other, and the last image (a3) only has

snow, without cloud. It can be observed that, for the three unsupervised methods, Li’s method is

completely failed for the second and the third images and the snow pixels are misidentified as cloud,

Zhu’s method misses many cloud pixels for the second image and falsely detects the snow pixels as

cloud for the last image; Yang’s result is better than Li’s and Zhu’s results, but its false detection is

obvious for the last image. For the two deep-learning-based methods, Shi’s method causes obviously

false detection in the first image, Goff’s method has a similar cloud detection result with our method,

but the former causes slight false detection in the last image. Overall, our cloud detection result is the

best among the six methods.

Table 4 is the statistical results of different methods on the test set. It can be observed that

Li’s method has the best RR, but its ER and FAR are rather high, which means there are many

misidentified clouds in the result. Our RR is better than the other four compared methods, and in

addition, our method acquires the best value in metrics ER, FAR and RER, our RER especially is much

higher than the other five cloud detection methods. Therefore, our method greatly outperforms the

compared methods overall.

Table 4. Statistical results of different cloud detection methods.

Methods RR ER FAR RER

Zhu’s method [23] 0.8714 0.1562 0.2017 5.5781
Yang’s method [24] 0.8935 0.1073 0.1203 8.3271

Li’s method [32] 0.9588 0.1586 0.2941 6.0466
Shi’s method [44] 0.8992 0.1013 0.1134 8.8789

Goff’s method [45] 0.8813 0.1096 0.1131 8.0381
Proposed method 0.9338 0.0515 0.0426 18.1315

http://ftp-earth.bu.edu/public/zhuzhe/Fmask_Windows_3.2v/
http://ftp-earth.bu.edu/public/zhuzhe/Fmask_Windows_3.2v/
http://xfy.buaa.edu.cn/
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Figure 6. Visual comparisons of cloud detection results of different methods. (a1–a3) Original

color composite images (a1: LC81330312013202LGN00; a2: LC80211222013361LGN00; a3:

LC81030162014107LGN00). (b1–b3) Ground truth. (c1–c3) Zhu’s method. (d1–d3) Yang’s method.

(e1–e3) Li’s method. (f1–f3) Shi’s method. (g1–g3) Goff’s method. (h1–h3) The proposed method.
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3.5. Accuracy Assessment of Cloud and Cloud Shadow Detection

Cloud shadow always occur in pairs with cloud, and it is also important for remote sensing

applications. Our method can detect cloud and cloud shadow simultaneously, when the designed

two-branch PCANet is trained with cloud, cloud shadow and non-cloud samples. The range of

the brightness feature b of cloud shadow pixels is similar to that of non-cloud pixels, that is to say,

we cannot distinguish cloud shadows from non-clouds by brightness feature. Therefore, the superpixel

coarse classification process is removed from the detection framework here.

There are some images from the L8 CCA dataset, in which the clouds and cloud shadows are

both manually labeled. We selected eight images from them for experiments, five images for training

and three images for test (Landsat ID of the eight images are given in Table A2). We randomly extract

10,000 cloud samples, 5000 cloud shadow samples and 15,000 non-cloud samples from the five training

images, and all 30,000 samples are used to train the designed double-branch PCANet.

In this section, five metrics are used to assess the accuracy of cloud and cloud shadow detection

results, including Overall Accuracy (OA), Precision of cloud (Precision_c), Recall of cloud (Recall_c),

Precision of cloud shadow (Precision_s), and Recall of cloud shadow (Recall_s). OA is used for overall

accuracy assessment, including cloud, cloud shadow and non-cloud. Precision_c and Recall_c are

used for cloud accuracy assessment, and Precision_s and Recall_s are used for cloud shadow accuracy

assessment. They are defined as follows:

OA =
CC + SS + NN

TP
(24)

Precision_c =
CC

DC
(25)

Recall_c =
CC

GC
(26)

Precision_s =
SS

DS
(27)

Recall_s =
SS

GS
(28)

where CC, SS and NN denote the number of pixels correctly detected as cloud, cloud shadow and

non-cloud, respectively. TP denotes the total number of pixels in the image. DC and DS denote the

number of pixels detected as cloud and cloud shadow, respectively. GC and GS denote the number of

cloud pixels and cloud shadow pixels in ground truth, respectively.

We compare our method with two other cloud and cloud shadow detection methods including

Zhu’s method [23] and Li’s method [32]. Figure 7 shows several cloud and cloud shadow detection

instances, where (a1–a3) is the original image, (b1–b3) is ground truth, white represents the cloud,

gray represents the cloud shadow and black represents the non-cloud, (c1–c3)–(e1–e3) are the results of

two compared methods and our method. It can be observed that all three cloud detection methods can

effectively detect the clouds and their shadows. In addition, compared to the cloud shadow detection

results, the cloud detection results are more accurate. The statistical results in Table 5 also confirm the

conclusions above. From Table 5, we can see that our method obtains the highest OA, Precision_c,

Precision_s and Recall_s, which indicates that the proposed method is effective for cloud and cloud

shadow detection.

Table 5. Statistical results of different cloud and cloud shadow detection methods.

Methods OA Precision_c Recall_c Precision_s Recall_s

Zhu’s method [23] 0.8771 0.8062 0.9272 0.4956 0.3686
Li’s method [32] 0.8895 0.8367 0.8847 0.5459 0.5137

Proposed method 0.9116 0.8914 0.8933 0.5588 0.5486
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Figure 7. Visual comparisons of cloud and cloud shadow detection results of different

methods. (a1–a3) Original color composite images (a1–a3 are subsets of Landsat 8 images

LC81930452013126LGN01, LC80070662014234LGN00 and LC80010732013109LGN00, respectively).

(b1–b3) Ground truth (white represents the cloud, gray represents the cloud shadow and black

represents the non-cloud). (c1–c3) Zhu’s method. (d1–d3) Li’s method. (e1–e3) The proposed method.
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4. Conclusions

In this paper, a novel cloud detection method is proposed for the multispectral remote sensing

images from Landsat 8. Clouds are obvious and easily distinguished from snow and ice in the color

composite image of Bands 6, 3 and 2, and SLIC method is firstly used to cluster the color composite

image into superpixel sub-regions. In these superpixels, the bright and thick cloud superpixels, as well

as obvious non-cloud superpixels, are easily identified. Therefore, we use a threshold function in

brightness feature space to distinguish the obvious cloud and non-cloud superpixels from the potential

cloud superpixels, thus speeding up the detection. Potential cloud superpixels usually include dark

clouds, semi-transparent thin clouds and bright non-clouds, which are easily misclassified. In this

paper, a double-branch PCANet is designed to retrieve the high-level features of clouds, then combined

with a linear SVM classifier, the classes of potential cloud superpixels are predicted. Through the

two-step superpixel classification strategy, all the superpixels in the image are predicted as cloud or

non-cloud. Considering the sub-region-based method will cause misclassified pixels, a fully connected

CRF model is employed as the post-processing step to refine the final classification result. Because CRF

processing is based on pixel and the optimization is global, the final extracted cloud borders are more

accurate. Quantitative and qualitative experiments are performed on the L8 CCA dataset. Results

demonstrate that, compared with other state-of-the-art methods, the proposed method can correctly

detect cloud under different scenes. In addition, it can effectively distinguish the cloud with from

snow and ice. In the future, we will take more information into consideration to further improve the

accuracy of our cloud detection method. For example, we will consider the cloud shadow as it always

occur in pairs with cloud. In addition, we will adapt our work to detect thin cloud, thick cloud, cloud

shadow, ice/snow and water simultaneously.
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Appendix A

Table A1 shows the Landsat ID and Cloud Cover of the 24 training images used in Sections 3.2–3.4.

Table A1. Landsat ID and Cloud Cover of the 24 training images.

Biome Landsat ID Cloud Cover

LC80420082013220LGN00 0.00%
Barren LC81550082014263LGN00 100.00%

LC81990402014267LGN00 85.64%

LC80500172014247LGN00 65.83%
Forest LC81310182013108LGN01 5.44%

LC82310592014139LGN00 99.68%

LC81320352013243LGN00 32.41%
Grass/Crops LC81440462014250LGN00 100.00%

LC81490432014141LGN00 0.12%

LC80670172014206LGN00 92.81%
Shrubland LC80750172013163LGN00 0.12%

LC80760182013170LGN00 52.91%

LC80250022014232LGN00 79.49%
Snow/Ice LC81321192014054LGN00 20.01%

LC82171112014297LGN00 54.47%
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Table A1. Cont.

LC80410372013357LGN00 1.03%
Urban LC81620432014072LGN00 20.29%

LC81940222013245LGN00 100.00%

LC80650182013237LGN00 51.32%
Water LC81660032014196LGN00 95.24%

LC81910182013240LGN00 0.42%

LC81070152013260LGN00 100.00%
Wetlands LC81080182014238LGN00 53.07%

LC81460162014168LGN00 0.00%

Table A2 shows the Landsat ID and Cloud Cover of the 8 images used in Section 3.5.

Table A2. Landsat ID and Cloud Cover of the 8 images used in Section 3.5.

Stage Biome Landsat ID Cloud Cover

Barren LC81640502013179LGN01 7.33%
Grass/Crops LC80290372013257LGN00 25.61%

Training Grass/Crops LC81750512013208LGN00 58.97%
Shrubland LC81020802014100LGN00 76.28%

Urban LC81620432014072LGN00 20.29%

Barren LC81930452013126LGN01 64.06%
Test Forest LC80070662014234LGN00 5.05%

Shrubland LC80010732013109LGN00 6.71%
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