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A Cloud-Removal Algorithm for SSM/I Data
David G. Long, Senior Member, IEEE, Quinn P. Remund, and Douglas L. Daum

Abstract—Microwave radiometers, while traditionally utilized
in atmospheric and oceanic studies, can also be used in land
surface applications. However, the problem of undesirable at-
mospheric effects caused by clouds and precipitation must be
addressed. In this paper, temporal composite surface bright-
ness images are generated from special sensor microwave/imager
(SSM/I) data with the aid of new algorithms to eliminate small-
scale distortion caused by clouds or precipitation. Mean, second-
highest value, modified maximum average (MMA), and hybrid
compositing algorithms are compared. The effectiveness of each
algorithm is illustrated through simulation and real data distri-
bution analysis. The results show that the second-highest value
algorithm is biased high. MMA provides a more accurate bright-
ness temperature estimate in areas of atmospheric distortion,
while the mean is superior in regions with little or no distortion.
A hybrid algorithm is developed that is a combination of MMA
and mean. It utilizes the strengths of both to create a superior
algorithm for regions with varying levels of distortion. Uses of
composite images produced by these algorithms include stud-
ies of vegetation change, land cover classification, and surface
parameter extraction.

Index Terms— Cloud removal, compositing, electromagnetic
atmospheric interference, microwave radiometry.

I. INTRODUCTION

MICROWAVE radiometers, such as the special sensor
microwave/imager (SSM/I) [5], [6] have wide applica-

tion in atmospheric remote sensing over the ocean and provide
essential inputs to numerical weather prediction models. SSM/I
data have also been used for land and ice studies, including
measurements of snow cover classification [4], soil and plant
moisture content [8], [15], atmospheric moisture over land
[10], land surface temperature [12], and mapping polar ice
[18].
Because the surface brightness observed by the SSM/I may

be adversely affected by spatial variations in the atmospheric
profile over the surface, algorithms for cloud removal have
been developed [1], [10]. In this paper, we compare several
new algorithms that generate cloud-free composite images
from multiple passes of the study region. Simulations to
determine the effectiveness of these algorithms are performed.
Actual SSM/I data are analyzed by exploring the effects of
compositing algorithms on the pixel surface brightness temper-
ature distributions. This paper is organized as follows. After a
brief background discussion in Section II, Section III discusses
the production of no-cloud composite images. Section IV
introduces the modified maximum average (MMA) and hybrid
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TABLE I
SSM/I CHANNELS

algorithms. A simulation experiment to compare the cloud-
removal algorithms is presented in Section V. Section VI
discusses the analysis of actual SSM/I data. Finally, the
conclusions are given.

II. BACKGROUND
The SSM/I is a total-power, seven-channel, four-frequency

radiometer [5]. The channels are horizontal and vertical polar-
izations at 19.35, 37.0, and 85.5 GHz and vertical polarization
at 22.235 GHz. It utilizes an integrate-and-dump filter as
the antenna scans the ground track [7]. The 3-dB antenna
footprints range from about 15 to 70 km in the along-track
direction and 13 to 43 km in the cross-track direction (see
Table I). The 3-dB antenna footprints, which are different
for each frequency, generally have an elliptical shape on the
surface of the earth due to the elevation angle of the radiometer
[6].
The brightness temperatures observed by the SSM/I are a

function of the effective brightness temperature of the earth’s
surface and the emission, scattering, and attenuation of the
atmosphere. Because of the spatial and temporal variability of
the surface brightness, which is a function of the properties of
the soil and overlaying vegetation and their physical tempera-
tures, it is difficult to decompose the observed brightness into
its individual components. The most crucial factors affecting a
radiometric measurement, however, are the surface emissivity
and temperature, the vegetation canopy, and the atmospheric
conditions [19].

III. GENERATION OF CLOUD-FREE IMAGES
One of the challenges in mapping the surface brightness

from spaceborne radiometer data is atmospheric distortion.
Cloud cover and precipitation are two primary sources of this
distortion. Although cloud and rain cause little microwave
attenuation for frequencies less than 10 GHz, the higher
microwave frequencies of the SSM/I (19.35, 22.235, 37.0, and
85.0 GHz) show substantial atmospheric loss due to scattering
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Fig. 1. Individual SSM/I swath examples of temporal atmospheric distor-
tions. These images were created by assigning the closest measurement value
to each pixel. Columns (from left to right) correspond to 1992 Julian Days
245, 248, 261, and 264 of the passes. Rows (from top to bottom) indicate
SSM/I channels 19 V, 22 V, 27 V, and 85 V.

from hydrometeors and water vapor. Over the ocean, the
atmospheric signal is used to deduce cloud water content
from the change in brightness. For studies of the land surface,
however, these atmospheric effects may be unwanted [17].
Clouds and precipitation affect surface brightness measure-

ments in two ways. First, the cloud scattering nonuniformly
lowers the measured brightness temperature for all frequencies
of the SSM/I with higher frequencies progressively more
sensitive. The reduction in brightness temperature can be
confused with surface features. Second, the clouds attenuate
the polarization differences caused by the geometric or chem-
ical composition of different surface types. This prevents the
surface polarization difference from being used to discriminate
between vegetation types and/or standing water.
Fig. 1 illustrates examples of atmospherically distorted

brightness temperature images in a region of the Amazon
Basin for all vertical polarization SSM/I channels. These
images, like those in this paper, were generated by assigning
to each pixel covered by the swath the value of the nearest
measurement. Other single-pass imaging techniques can also
be used, e.g., [2] and [11]. The distortions are evident in
the temporal variation of surface brightness temperature in
different areas. Note that, as expected, the distortions are more
pronounced in the higher frequency channels. This follows the
trend of increased atmospheric scattering due to clouds and
precipitation with increasing frequency. The distortions of
pixel values can be as high as 60 K for the higher frequency

channels. These distortions can greatly hinder the application
of SSM/I data to land studies.
While multichannel- and/or multisensor-based algorithms

for cloud removal have been previously used (e.g., [4], [14],
[16], and [17]), we use a single-channel algorithm similar to
[1]. By using only single-frequency information to generate
a “cloud-free” image of the surface, we avoid introducing
spurious correlation between the channels. For example, since
each frequency has a different footprint size, using lower fre-
quency data to remove atmospheric distortion effects in higher
frequency channels may unnecessarily exclude undistorted
values in the higher frequency channels [1].
Our algorithm is based on the assumption that temporal

surface brightness variations over an area are caused by small-
scale atmospheric effects rather than temporal changes in the
surface brightness. Using multiple passes over the surface,
we generate a composite image that represents the effective
surface brightness temperature over a multiday period. The
composite image is generated from images created from each
descending pass, though ascending passes can also be used.
In the example data that follow, 20 days of descending pass

SSM/I data (September 1992) over South America are used.
During this period, each pixel is observed from five to ten
times. The value of the composite pixel is computed from this
ensemble. The study region is considered a worst-case exam-
ple, with frequent rain and distortion events occurring up to
several times during the compositing interval. For this region,
20 days offers a good balance between the number of undis-
torted measurements in the ensemble and temporal variations
due to seasonal radiometric surface response variations. This is
some what less than the 30 days used by previous investigators
[1], but it provides adequate results. Areas with less-frequent
distortion events may be able to use shorter periods.
Choudhury and Tucker [1] removed temporal atmospheric

distortion by using the second-highest pixel value from the
ensemble as the composite pixel value. Since the atmo-
spheric distortion generally lowers the brightness temperature
measurements over land, high pixel values have the least
atmospheric influence. They reason that, since the highest
value is often strongly influenced by noise or processing
artifacts, they used the second-highest pixel value.
Choosing the second-highest value is an example of a rank

order statistic [3]. Another rank order technique is the median
filter [9]. As an estimator, a rank order statistic is noise-
reducing, but it is sensitive to the underlying distribution of the
samples [13]. Thus, the second-highest value technique’s abil-
ity to reduce noise is strongly influenced by the measurement
distribution.
Unfortunately, the distribution function for the SSM/I data

is not precisely known and it is not possible to analytically
determine the estimator variance. However, it is known that
in the presence of atmospheric distortion over land, the distri-
bution is skewed low, while the desired estimation parameter
is the mode on the high end of the distribution [14]. This
strongly suggests that the rank order statistic needed for this
application is a value closer to the highest value than to the
median value. Given this insight, the second-highest value
method is a reasonable approach.
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IV. MMA ALGORITHM
In an effort to improve the performance of a cloud-removal

algorithm, an MMA technique was developed. This algorithm
attempts to estimate the cloud-free surface brightness of a pixel
by choosing a subset of pixel values from the ensemble of
measurements of that pixel and then averaging the selected
values together. By properly selecting the subset from the
ensemble, the cloud distortion is eliminated. Averaging of the
subset reduces the noise and attenuates any residual bias.
To select pixel values from the ensemble in the MMA

technique, the sample mean of the entire pixel ensemble is first
computed. Measurements greater than the sample mean yield a
subset of the complete ensemble corresponding to its highest
values. The highest value of this subset is then eliminated.
The remaining values consist of those values that are above
the ensemble mean but less than the maximum value of the
ensemble. This is the MMA subset. The estimated pixel value
is then determined as the mean of this subset.
Analyzing this technique statistically is challenging for two

reasons: 1) the distribution of pixel values when distortions are
included is not clearly known and 2) the algorithm combines
both box averaging statistics and order statistics. To qualita-
tively justify this approach, consider a simple model for the
pixel measurements. In this model, the measurement is the
sum of a Gaussian-distributed surface brightness temperature
and a weighted binary random variable

(1)
where is the measured brightness temperature, is the
Gaussian distribution with mean and standard deviation ,
is a binary-valued random variable of the probability that a

measurement contains cloud distortion (less than 30% based on
a simple examination of SSM/I in the study region described
later), and is a positive random variable representing the
drop in brightness temperature due to a cloud ( depends on
the cloud thickness, water content, etc., the statistics of which
are unknown). A schematic example of the distribution of is
given in Fig. 2(a), where K and %. The right
mode corresponds to the distribution of surface brightness,
while the lower mode represents the distribution of cloudy
pixels. The “X” marks below the temperature axis illustrate
an ensemble of seven random measurements for a given pixel.
Also illustrated are the results from applying the MMA and
second-highest value techniques.
Good metrics for comparing estimation algorithms include

the mean estimate error (bias) and the estimate variance.
Ideally, the estimate should have no bias and minimum vari-
ance. To compare the variances of the MMA algorithm and
the second-highest value technique, consider Fig. 2(b). As in
Fig. 2(a), the X’s represent an ensemble of seven samples
taken from the distribution. The variance of the second-highest
value technique is governed by the average temperature dif-
ference between the highest and third highest value of the
ensemble. The variance of the MMA algorithm depends on
the variances of the second, third, and fourth measurements.
Graphically, we may see that the averaging of these values
lowers the estimate variance more than just using the second-
highest value.

(a)

(b)

Fig. 2. Illustration of hypothetical radiometric measurement distribution for
a cloudy region. (a) Sample discrete ensemble. (b) Variance of the modified
maximum and second-highest value.

Like the second-highest value estimate, the MMA estimate
in this example is biased high, and it is high whenever the
ensemble includes more than one sample from the lower mode
of the mixture distribution. However, it is clear that the MMA
bias is less than the second-highest value estimate. Further,
the estimator variance is smaller for MMA.
While MMA produces a less-biased estimate for pixels with

high cloud contamination than the second-highest value, it
is still biased high for pixels with little or no contamina-
tion. Fig. 3 depicts a hypothetical distribution of brightness
temperatures for a noncloud-affected pixel. In this case, the
second-highest value and MMA estimates are biased high.
The desired value is the mean of the overall distribution in
the absence of clouds or precipitation. As previously noted, a
simple examination of SSM/I data reveals a probability of less
than 30% that a measurement is distorted by clouds or rain.
Thus, MMA may be unnecessarily biased somewhat high for
many of the measurements.
In an effort to ameliorate this problem, a hybrid of the mean

and MMA methods has been developed. Ideally, this hybrid
implements MMA in the presence of clouds and takes the
mean in their absence. This reduces the overshoot of MMA
for low atmospheric distortions and provides a better estimate
of the actual surface brightness temperature.
To implement the hybrid algorithm, a metric is required for

the decision making process. The chosen metric is the temporal
standard deviation of the values for a particular pixel. The pres-
ence of clouds skews the brightness temperature distribution
low for affected passes, thus increasing the standard deviation.
Fig. 4 shows a mean SSM/I composite image along with

Authorized licensed use limited to: Brigham Young University. Downloaded on February 2, 2009 at 16:49 from IEEE Xplore.  Restrictions apply.



LONG et al.: CLOUD-REMOVAL ALGORITHM FOR SSM/I DATA 57

(a)

(b)

Fig. 3. Illustration of hypothetical radiometric measurement distribution for
a clear region. (a) Sample discrete ensemble. (b) Variance of the modified
maximum and second-highest value.

its corresponding temporal standard deviation image for the
85-GHz vertically polarized channel. This visually illustrates
that the standard deviation highly correlates with atmospheric
distortions. Areas that appear darkened in the mean composite
image exhibit relatively high values in the standard deviation
image.
In the standard deviation image of Fig. 4, the areas with

low values correspond to regions with little or no atmospheric
distortion. A small 2 2 spatially homogeneous subregion,
which will be more explicitly defined in a later section, is
chosen as an example of an area with low temporal variation
and thus low atmospheric distortion. The temporal mean and
standard deviation of all swath pixel values are calculated
for each vertically polarized SSM/I channel in this subregion
and shown in Table II. The standard deviations represent the
temporal variance of surface brightness temperature in the
absence of atmospheric distortion. According to the previous
discussion, any kind of temporal variation, such as atmospheric
distortion, will cause the standard deviation to rise above these
values. All channel standard deviation values are similar with
the 19-V channel exhibiting the highest and the 37-V channel
the lowest. Ideally, optimum values should be used for each
channel in implementing the hybrid algorithm. However, since
the temporal standard deviations are similar, and for the sake
of simplicity, we chose to use the highest of these values
1.25 K as the hybrid threshold metric for the results presented
in this paper. In the hybrid algorithm, the standard deviation is
computed for each pixel ensemble of brightness temperatures.
If it is above 1.25 K, the MMA algorithm is used to produce
the composite value for that particular pixel to select only

nondistorted measurements. Otherwise, the mean is used. We
note that this threshold has been chosen for use in the study
region and should be tuned for other regions.

V. SIMULATION
To further compare and contrast the mean, second-highest

value, MMA, and hybrid algorithms, a simple Monte Carlo
analysis for a single pixel is presented. This simulation as-
sumes that the true pixel brightness for a geographical area is
280 K. An ensemble of seven pixel values is then created by
adding a Gaussian random variable of standard deviation 1 K
to the “true” value. This represents the radiometric “noise”

inherent to the radiometer measurements. Seven pixels
simulate the average number of radiometric measurements in
the 20-day study period. Two of the ensemble measurements
then have simulated atmospheric distortion added. The first
measurement is reduced by and the second measurement
by 2. This models a pixel that is contaminated by clouds
at two different times with one cloud twice as distorting as
the other. The seven-member ensemble is then processed by
each algorithm, and the results are saved. The results of 1000
simulations are then analyzed to give the results in Fig. 5.
For comparison, the ensemble mean is plotted along with the
windowed mean. The windowed mean is the mean of values
within one standard deviation of the ensemble mean.
For pixels with little or no atmospheric distortion, the mean

or windowed average is closer to the 280 “true” value than
MMA or the second-highest value. For ensembles that have
greater ( 5 K) atmospheric distortion, the second-highest
value and MMA techniques are superior. The MMA tech-
nique has the smallest bias of the two. Since it also has the
smallest variance, the MMA algorithm is considered superior
to the second-highest value algorithm. The hybrid algorithm
combines the strengths of the mean method for low distortion
temperatures and MMA for high distortion temperatures. This
is evident in Fig. 5 by the closer estimates to 280 K for small

. The simulation results indicate that MMA is superior
in the presence of significant distortion and mean is best
with little or no distortion present, while the hybrid algorithm
combines the two in a manner that uses the appropriate
algorithm for each pixel.

VI. SSM/I DATA ANALYSIS
To validate the algorithms with actual data, a region of

the Amazon Basin was chosen for SSM/I data analysis. The
region lies primarily within Brazil and is bounded by the
coordinates: 48–63 W longitude and 1–16 S latitude. Its
characteristic high precipitation levels make it a good study
region, representing a worst-case scenario with frequent rain
and distortion events. The mean, second-highest value, MMA,
and hybrid composite images of this region were created for all
vertically polarized SSM/I channels. Examples are presented
in Figs. 6 and 7. In the interest of space, only the 37- and
85-V images are shown here. Due to smaller 3-dB antenna
footprints, the higher frequency images exhibit better effective
resolution.
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Fig. 4. Temporal mean and standard deviation images of the 85-GHz vertically polarized SSM/I channel. These were generated using 44 descending single-pass
images corresponding to days 245–264 of 1992. The left panel is the mean image, and the right panel is the standard deviation image. The boxes define two
2 � 2� subregions used later in the assessment of algorithm effectiveness. One is an example of a cloudy region, and the other is a region with little or no
distortion. The band in the lower-right area of the standard deviation image results from atmospheric distortions affecting only some passes.

TABLE II
TEMPORAL MEANS AND STANDARD DEVIATIONS

OF PIXEL BRIGHTNESS TEMPERATURES IN A 2 � 2�
DISTORTION-FREE SUBREGION OF THE AMAZON BASIN

Fig. 5. Simulation results of atmospheric distortion removal (true value is
280 K).

Two small nearly spatially-homogeneous regions were cho-
sen from the larger study region for brightness tempera-
ture distribution analysis. Each is 2 square in latitude and
longitude. The first region, with bounding coordinates of
54.5–56.5 W longitude and 11.5–13.5 S latitude, exhibits
temporal variations consistent with atmospheric distortion.
The second was chosen for its apparent absence of cloud
or precipitation distortion with boundaries of 58.5–60.5 W
longitude and 10.5–12.5 S latitude. Both subregions are
shown in Fig. 4.

Fig. 6. SSM/I 37-V Brazil region composite images. From top left to bottom
right: mean, second-highest value, MMA, and hybrid.

The brightness temperature distribution of all SSM/I swath
measurement data over the small regions is presented in
Figs. 8 and 9. These help validate the distortion model used
previously. Fig. 8 depicts distributions for the cloudy region,
and Fig. 9 shows the same for the clear region. Note that a
log vertical scale has been used to emphasize the distribution
tails. These distributions demonstrate the difference between
cloudy and clear regions. The cloudy region distribution has
a relatively wide peak at the high end with a long tail
of lower temperatures. The peak corresponds to undistorted
brightness temperatures, while the tail represents pixels that
have experienced some level of atmospheric distortion. We
consider only the 85-GHz channel for the rest of the analysis
for conciseness.
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Fig. 7. SSM/I 85-V Brazil region composite images. From top left to bottom
right: mean, second-highest value, MMA, and hybrid.

Fig. 8. Cloudy region temporal and spatial measurement histograms for all
SSM/I vertically polarized channels. A log vertical scale has been used to
emphasize the tails of the distributions. These tails correspond to atmospheric
distortions that lower the overall brightness temperature.

Fig. 9. Clear region temporal and spatial measurement histograms for all
SSM/I vertically polarized channels. Compare these distributions with those
in Fig. 10. The lack of tails on the distributions indicates the absence of
significant atmospheric distortions.

The clear region has a clean single-modal distribution with
a tight peak and no trailing tail, indicating the absence of any
distortion. Hence, the effect of atmospheric distortion on the
surface brightness distribution is to widen the upper modal
peak and add a lower tail of brightness values. A good cloud-
removal algorithm would select only values within the mode
that represent the undistorted brightness temperatures.
Images for both subregions were created using the mean,

second-highest value, MMA, and hybrid algorithms. These
images are shown in Figs. 10 and 11. Since no surface
brightness temperature ground truth is available for validation
of the estimated surface brightness temperature, it is difficult
to objectively assess the effectiveness of each algorithm.
However, a visual interpretation of these images yields some
important information.
Fig. 10 illustrates each composite image for the cloudy

region at 85-GHz vertical polarization. Here, the presence of
clouds and precipitation is evident. Certainly, it can be seen
that the second-highest value, MMA, and hybrid algorithms
all perform superior to mean. The distortions are still evident
in the mean composite image, while the others appear to
remove the distortions to some degree. The average and
standard deviation of pixel values were computed for each
composite image. The results are given in Table III. Without
knowledge of the true surface brightness temperature, it is not

Authorized licensed use limited to: Brigham Young University. Downloaded on February 2, 2009 at 16:49 from IEEE Xplore.  Restrictions apply.



60 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 1, JANUARY 1999

Fig. 10. SSM/I 85-V cloudy region cloud-removal composite images. From
top left to bottom right: mean, second-highest value, MMA, and hybrid.

Fig. 11. SSM/I 85-V clear region cloud-removal composite images. From
top left to bottom right: mean, second-highest value, MMA, and hybrid.

TABLE III
PIXEL VALUE AVERAGES AND STANDARD DEVIATIONS OF EACH

ALGORITHM COMPOSITE IMAGE FOR THE CLOUDY AND CLEAR REGIONS

possible to determine the bias in each image. However, we
note that the mean image has the highest standard deviation.
This is expected since the atmospherically distorted values
were included in the mean. The second-highest value standard
deviation is governed by the variance of the second-highest
value only. As a result, this statistic is greatly improved
over the mean image case. MMA yields the lowest standard
deviation. The averaging contained in the MMA algorithm
provides some additional noise reduction over the second-
highest value. The hybrid image has the same mean as MMA
and a slightly higher standard deviation, indicating that the
two algorithms performed similarly for the cloudy region.
This shows that, as predicted, the hybrid algorithm effectively
chooses MMA in cloudy regions.

Fig. 12. SSM/I 85-GHz vertical channel cloudy region spatial brightness
temperature distributions for each cloud-removal algorithm. The temporal and
spatial measurement distribution has been plotted to provide a reference.

Fig. 11 shows the 85-V channel composite images for
a clear or distortion-free region. The average and standard
deviation of all pixel values for each image are shown in
Table III. Since we have chosen this region specifically be-
cause it apparently has no distortion problems, the mean image
is unbiased—unlike the other algorithms’ composite images.
Hence, we can treat its average as the ground truth in this
instance. With this in mind, the hybrid algorithm provides
the best estimate to the true brightness temperature and is
the least biased according to its average value. The second-
highest value is the most biased, with MMA falling in between.
Thus, the hybrid provides the closest approximation to the
“actual value,” with MMA following closely behind. A closer
examination of the standard deviation image (Fig. 4) reveals
that some of the pixels in this area have values higher than
the 1.25-K threshold, indicating that some subtle temporal
variations exist due to minor atmospheric distortions or small
seasonal surface brightness temperature changes. Regardless,
the hybrid algorithm provides the estimate with the least bias.
As in the cloudy region, MMA has a lower standard deviation
than the second-highest value. The hybrid noise level is only
slightly higher than MMA.
The spatial pixel brightness temperature distributions for

the composite images are plotted for both regions after each
compositing algorithm is run. Figs. 12 and 13 present the re-
sults. Each of the distributions is plotted over the full temporal
and spatial measurement distribution for that particular region.
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Fig. 13. SSM/I 85-GHz vertical channel clear region spatial brightness
temperature distributions for each cloud-removal algorithm. The temporal and
spatial measurement distribution has been plotted to provide a reference.

These help validate the assumptions on which the algorithms
were based and provide a measure of algorithm performance.
Fig. 12 illustrates the algorithm composite image brightness

temperature distributions of the cloudy region for the 85-GHz
channel. Clearly, the MMA and the hybrid most closely match
the upper mode of the raw data distribution. Their similar
performance indicates that hybrid primarily used the MMA
algorithm in the presence of atmospheric distortion.
Distributions for the clear region are given in Fig. 13. The

high bias inherent to the second-highest value method is once
again evident. In the clear region, MMA also demonstrates
some bias, although not as large. This is because MMA re-
moves pixel values regardless of the actual presence of clouds
or precipitation. On the other hand, the hybrid distribution has
less bias and most closely matches the distribution of the raw
data.

VII. CONCLUSION
A comparison of several different methods (mean, second-

highest value, MMA, and hybrid) for creating cloud-free
temporal composite surface brightness temperature images
from SSM/I has been presented. Taking the mean is optimum
in the absence of clouds and hydrometeors. The second-highest
value algorithm removes distorted pixel brightness temperature
measurements, but it has an inherent high bias in its brightness
temperature distribution. The MMA algorithm more accurately
estimates the desired value and has a lower variance; however,

it may have an undesirable bias for instances in which no
distortion is present. The hybrid algorithm combines the
strengths of the mean and MMA algorithms. It contains
a decision making routine that switches between the mean
and MMA, depending on the apparent presence of clouds
or precipitation. Simulations indicate that the hybrid algo-
rithm more accurately approximates a pixel’s actual brightness
temperature for different distortion temperatures. Analysis of
the composite image distributions also shows that the hybrid
most closely approximates the upper mode of the real data
distributions for the study region considered.
We note that in the presence of persistent atmospheric

distortions, the distortion cannot be removed. However, the
effects of the more heavily distorted pixels can still be reduced
since MMA and the hybrid algorithms choose only the less-
distorted pixels in the averaging. It should also be noted that
the algorithms can be optimized for specific study regions.
Areas with different latitudes may be able to use shorter col-
lection periods to gather the same number of measurements per
pixel due to the satellite orbit geometry. The decision threshold
for the hybrid can be tuned for specific regions according to
the expected number of local atmospheric distortion events.
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