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Abstract

In the traditional economic order quantity/economic production quantity model, most of the items considered are of perfect 
type. But this situation rarely takes place in practice. Thus, in this paper, an economic order quantity model with imperfect-
quality items is developed. 100% screening process is performed, and the items of imperfect quality are sold as a single batch. 
A proportionate rate of discount for the items of imperfect quality has also been studied. Moreover, a case study has been 
incorporated to comprehend the model. To nullify the issues of non-random uncertainties of demand rate in business scenario, 
cloudy fuzzy method has been utilized here. Numerical study reveals that cloud model along with its new defuzzification 
methods can give maximum profit of the model all the time instead of deterministic ones. Finally, sensitivity analysis and 
graphical illustrations are made to justify the novelty of the model.

Keywords EOQ · Screening cost · Imperfect quality · Cloudy fuzzy number · New defuzzification method · Optimization

Introduction

In the beginning of twentieth century, Harris (1913) first 
studied a classical EOQ model. Wilson (1934) contributed a 
statistical approach to find order points where demand rate is 
assumed to be constant. Since then, a great amount of effort 
has been paid by several researchers in formulating more 
realistic lot sizing model by considering imperfect-quality 
items. As the classical EOQ model is oldest and simplest, the 
academicians as well as the business persons are experienc-
ing with some new ideas that genuinely improve the weak-
nesses of the existing research. In fact, a common assump-
tion of traditional EOQ model was that all produced items 
would be of perfect quality. But this assumption was not 
logical for several reasons, including faulty production pro-
cess, failure in the process of transportation, instant power 
cut during production, etc. Thus, it is difficult to produce 

or purchase items with 100% perfect type. Therefore, the 
screening of lot of items becomes emergent. These practices 
have received attention from many researchers, and many 
authors have addressed to this issue of lot sizing decision 
for imperfect-quality items recent times. Consequently, a 
vast literature on imperfect type inventory production model 
has come up, by generalizing the EOQ model in numerous 
directions.

Karlin (1958) was one of the first to address on the EOQ 
model of imperfect type items. He studied the assumptions 
underlying the structure of the inventory cost components 
and presented three single-stage newsvendor models to char-
acterize the optimal ordering policy under random supply. 
Porteus (1986) incorporated the effect of defective items 
into the original EOQ model. For the production process, 
he introduced ‘ p ’ as the percentage of defective and also 
assumed that the percentage of defective random variable p 
obeys the geometric distribution. Rossenblatt and Lee (1986) 
assumed that the time between the beginnings of the produc-
tion run until the process goes out of control is exponential 
and that defective items can be reworked instantaneously at 
a low cost, and they conclude that the presence of defective 
products motivates customers to buy smaller lot sizes. Sub-
sequently, Lee and Rossenblatt (1987) considered process 
inspection during the production run so that the shift to out-
of-control state can be detected and restoration made earlier. 
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A joint lot sizing and inspection policy is studied under an 
EOQ model where random proportions of units are defec-
tive. These units can be discovered only through expensive 
inspections. Hence, the problem is bivariate; both normal lot 
size and fractional lot size for inspection are to be chosen. 
Gerchak et al. (1988) analyzed a single-period production 
problem where the production process was characterized 
by uncertain demand and variable yield. The single-period 
model was then extended to n-period model. Cheng (1991) 
proposed an EOQ model with demand dependent on unit 
production cost and imperfect production processes. He 
formulated this inventory decision problem as a geometric 
program (GP), and it is solved to obtain closed-form optimal 
solutions. Urban (1992) modeled the defect rate of a produc-
tion process as a function of the run time length and derived 
closed-form solutions for the model. This model accounted 
for either positive or negative learning effects in production 
process. Ben-Daya (1999) proposed multistage lot sizing 
models for imperfect production processes. Rezaei (2005) 
extended the model by assuming shortages in a cycle result-
ing from defective items are completely backordered in the 
beginning of each cycle and he also determined an optimal 
lot size of the order and the backorder. Salameh and Jaber 
(2000) developed an extended EOQ model where imperfect-
quality items are salvaged at a constant discounted price. 
Two years later, Goyal and Cárdenas-Barrón (2002) pro-
vided a new simple approach to the inventory model of Sala-
meh and Jaber (2000). Chan et al. (2003) presented a new 
EPQ model in which three different situations of reselling, 
reworking, or rejecting imperfect products are incorporated.

Afterward, Papachristos and Konstantaras (2006) pre-
sented an extension to the work of Salameh and Jaber 
(2000). In their model, they considered another situation 
where the retailer sells these defective items at the end of 
replenishment interval but not at the end of screening pro-
cess. Considering the unavoidable shortages in real-life 
situations, Eroglu and Ozdemir (2007) developed an EOQ 
inventory model with a random percentage of defective 
products every cycle. In their paper, shortages are assumed 
to be backordered, and the research results show that an 
increase in rate of defective leads to a decrease in the opti-
mal total profit. Maddah and Jaber (2008) revisited the 
inventory model introduced by Salameh and Jaber (2000) 
and also given a new version to the EOQ model with imper-
fect items by considering that several batches of defective 
items are delivered in a single lot. Cárdenas-Barrón (2009) 
developed an EPQ model with planed backorders and 
reworking of imperfect items from the perspective of single-
stage manufacturing system. Khan et al. (2011) provided a 
comprehensive literature review for the extensions of EOQ 
model with imperfect products. Meanwhile, Sarkar (2012) 
investigated an EOQ model in which defective products are 
assumed to occur every cycle under dependent demand and 

progressive payment scheme. Jaber et al. (2014) proposed a 
new variant for the inventory model of Salameh and Jaber 
(2000) by considering options of buying new ones or repair-
ing imperfect ones for defective products. Taleizadeh et al. 
(2016) presented an EOQ model in which defective items are 
sent to a local repair store and the shortages are assumed to 
be partial backordered, which extended the EOQ inventory 
model discussed by Jaber et al. (2014). In most recent years, 
Pal and Mahapatra (2017) developed an inventory model 
with imperfect products for a three-level supply chain, and 
three different ways of dealing with defective products were 
investigated in their model. From a sustainable point of view, 
Kazemi et al. (2018) studied EOQ model by considering 
carbon emissions and products with imperfect quality. Aghili 
and Hoseinabadi (2017) studied over the repairable items 
under fuzzy environment. The pricing and ordering poli-
cies of imperfect items in a supply chain have been devel-
oped by Taleizadeh et al. (2015). Also, Mondal et al. (2013) 
considered the inflation of money in production-repairing 
inventory model in fuzzy rough systems. For the cases of 
pharmacological products Taleizadeh and Noori-daryan 
(2015, 2016) discussed over rework process of the items 
considering game theoretic approach in a supply chain.

Moreover, the essential and impractical assumptions are 
that all the inventory scenarios occur under a certain and 
deterministic environment. But in today’s competitive and 
dynamic business world, it is not possible to access all the 
necessary information. Hence, the information related to 
the inventory system is not well-defined as assumed in the 
traditional models. One of the effective methods to over-
come these drawbacks is using fuzzy set theory, developed 
by Zadeh (1965), making possible to transform ill-defined 
information to powerful mathematical expressions.

For more than half of a century, fuzzy set theory has been 
gaining a noticeable momentum by applying in many fields 
of operations research (Gholizadeh and Shekarian 2012; 
Shekarian and Gholizadeh 2013; Shekarian et al. 2016a) 
as well as inventory management (Shekarian et al. 2016b, 
c). Numerous variants and extensions of fuzzy inventory 
models have been offered on the evolution of classical inven-
tory models including news vendor, reorder point, inventory 
control, joint economic lot size models, etc. Inventory man-
agement requires demand forecasts as well as parameters 
for inventory-related costs such as holding, replenishment, 
shortages and backorders (Kahraman et al. 2006). As the 
precise estimations of these model attributes are often dif-
ficult in practice, the inventory-related data can be calibrated 
using the fuzzy techniques, which facilitates dealing with the 
real-world cases in a more proper way.

Some notable recent works in fuzzy system like Das et al.
(2015) presented an integrated production inventory model 
under interactive fuzzy credit period for deteriorating item 
with several markets. Due to randomness and fuzziness, 
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Kumar and Goswami (2015) and Mahata and Goswami 
(2013) proposed a fuzzy random EPQ model for imperfect-
quality items with possibility and necessity constraints. Cur-
rently, Mahata (2017) investigated the learning effect of the 
unit production time on optimal lot size for the imperfect 
production process with partial backlogging of shortage 
quantity in fuzzy random environments. He assumed that 
the setup cost, the average holding cost, the backorder cost, 
the raw material cost, and the labor cost are characterized 
as fuzzy variables, and the elapsed time until the machine 
shifts from “in-control” state to “out-of-control” state is 
characterized as a fuzzy random variable. Articles on learn-
ing effect have been discussed wisely by Shekarian et al. 
(2016b). Alternatively, De and Beg (2016a, b) introduced 
dense fuzzy approach to capture the degree of learning expe-
riences recent times. After that, the idea of dense fuzzy num-
ber was extended by De and Mahata (2017). To do this, they 
have developed a cloud-type fuzzy number incorporating the 
inventory cycle time to the measure of fuzziness. To resolve 
the difficulties and to defuzzify the cloud-type fuzzy number, 
they invented a new defuzzification method also. Recently, 
Karmakar et al. (2017) first established a pollution-sensitive 
dense fuzzy economic production quantity model with cycle 
time-dependent production rate. Concurrently, De and Sana 
(2015) developed a backlogging model implementing a phi 
coefficient test for pentagonal fuzzy number. Chakraborty 
et al. (2015) investigated a supply chain model with stock-
dependent demand under fuzzy random and bi-fuzzy envi-
ronments. Beyond this, researchers like De and Sana (2013), 
De et al. (2014), Karmakar et al. (2015), etc., have kept a 
remarkable destination over the fuzzy backlogging models.

From the above study, it is seen that not a single article 
for defective items has been developed utilizing the con-
cept of non-randomly uncertainty over demand rate as well 
as order quantity for cloudy fuzzy environment. Thus, an 
inventory model with imperfect quantity items with allow-
able proportionate discounts has been discussed over here. 
A new defuzzification method has been utilized to optimize 
the model. Based on new approach, numerical and graphical 
illustrations are made and end with a sensitivity analysis of 
the several parameters as well.

Preliminary concept (De and Beg 2016a, b; 
De and Mahata 2017)

Here few essential definitions and formulas which have 
been used frequently for solving the proposed model are 
discussed.

Normalized general triangular fuzzy number 
(NGTFN)

Let ã be a NGTFN having the form ã =

(

a1, a2, a3

)

 . Then its 
membership function is defined by

Now, the left and right �-cuts of �(ã) are given by

Note that the measures of fuzziness can be obtained from 
the following formula:

Yager’s (1981) ranking index

If L(�) and R(�) are the left and right �-cuts of a fuzzy num-
ber ã , then the defuzzification rule under Yager’s ranking 
index is given by

Note that the measures of fuzziness (degree of fuzziness 
d

f
 ) can be obtained from the formula d

f
=

U
b
−L

b

2m
 , where L

b
 

and U
b
 are the lower bounds and upper bounds of the fuzzy 

numbers, respectively, and m being their respective mode.

Cloudy normalized triangular fuzzy number (CNTFN)

A fuzzy number of the form Ã = a1, a2, a3 is said to be 
cloudy triangular fuzzy number if after an infinite time the 
set itself converges to a crisp singleton. This means that, as 
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The graphical representation of CNTFN (Fig. 1) can be 
obtained as follows:

Ranking index over CNTFN

Let us take left and right �-cuts of �(x, t) from (5) noted 
as L(�, t) and R(�, t) respectively. Then the defuzzification 
formula under time extension of Yager’s ranking index is 
given by

Note that, � and t are independent variables.
Let Ã be a CNTFN stated in (4) with its membership 

function (5). Now utilizing (5) the left and right �-cuts of 
�(x, t) are given by

Thus (6) gives

Again (8) can be rewritten as I(Ã) = a2

[

1 +
�−�

4

log (1+T)

T

]

.

Obviously, lim
T→∞

log (1+T)

T
= 0 and therefore I(Ã) → a

2
 as 

T → ∞.

and the time T is measured by days in practice. The nature 
of cloud index is shown in Fig. 2.

In general, for practical purpose the time horizon cannot 
be infinite so after defuzzification the indexed values do not 

(6)I(Ã) =
1

2T

�=1,t=T

∬
�=0,t=0

{

L
−1(�, t) + R

−1(�, t)
}

d�dt.

(7)
L
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(

1 −
�

1 + t
+

��

1 + t

)

and R
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(
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�
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−

��

1 + t

)

(8)I(Ã) =
a2

2T

[

2T +
� − �

2
log (1 + T)

]

(9)

Note that the factor
log (1 + T)

T
is called the cloud index(CI).

come back to its crisp original even the restrictions have 
been removed in our assumptions.

Inventory process and cloudy fuzzy environment 
(De and Mahata 2017)

The measure of fuzziness depends upon what quantities are 
going to measure. In inventory process, the cycle time is 
one of the most important decision variable, so it is quite 
clear that fuzziness might have some relations on elapsed 
cycle time. In any inventory process, initially the uncertain-
ties viewed are high and as the time progresses everything is 
began to clear for an inventory practitioner/decision maker 
(DM). As time progresses, the ambiguities underlying in 
the inventory system began to remove, and it is experienc-
ing from the very ancient stage of any management sys-
tem. When the inventory cycle time is low, the ambiguity 
becomes high and vice versa.

Let us discuss about the ambiguity over the demand rate, 
a most vital parameter of an inventory process. Here at the 
beginning the ambiguity over demand rate is high because, 
the people will usually take much time (no matter what 
offers have been declared or how attractive the getup of the 
system be) to accept and adopt the process.

If the cycle time ends prior to the “fully adopted” time 
period, then the cost becomes high. The basic insight over 
the public opinion is that ‘the system is less reliable’ as 
because the DM is hesitating to run the process for a longer 
time. This feeling must affects directly to the customers’ 
satisfactions level as well as on demand rate. However, as 
the cycle time becomes more the customers are began to get 
more satisfaction. A saturation on adoptability and reliability 
reaches. So the ambiguities have been removed from the 
process, and a grand paradigm shift on progress (financial 
development, cost minimization, achievement of large cus-
tomer, etc.) of that system has been viewed.

Fig. 1  Membership function of CNTFN
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Problem de�nition and case study

In December 2018, a visit has been performed at “Mon-
dal Trading Company Soft Toy” along with a shop situated 
near Goriahat, Kolkata, India. It is observed that during the 
production process some items arrive as defective which 
are in small percentage with respect to the total production. 
The retailers are purchasing these items in a lot from this 
company without getting any scope to choice the good items 
only. After receiving the items in a lot, at the retailer’s shop, 
the screening process to separate the defective items starts 
and at the same time the sale of good items begins with a 
fixed selling price. As soon as the whole items have been 
screened out, the retailer sells these items in a lot with offer-
ing some discounts. Moreover, it is noticed that, since the 
defective items are repairable and they began to look as good 
as new so by the declaration “items of discounted price” 
motivates customers to purchase more items. By this time, 
usually the retailer decides not to get shortage of the items 
between two consecutive orders. Thus the basic problem is 
to know:

(1) How much amount of items to be ordered so that short-
age will never come?

(2) What will be the inventory run time so as to keep maxi-
mum average profit all the time?

The several cost components associated with the retailer’s 
inventory system are studied as follows:

The inventory operation operates on 8 hours/day, 
so that for 365 days a year, the annual screening rate 
x = 1 × 60 × 8 × 365 = 175200 unit∕year t[1  unit/min], 
screening cost � = $0.5/unit, yearly demand d = 5000 units, 
ordering cost k = $200/cycle, holding cost per unit item per 
year h = $5 , purchase cost c = $25/unit, selling price of 
good-quality items s = $50/unit.

Notation and assumptions

Assumptions

The following fundamental assumptions and notation are 
made for developing the mathematical model in this paper:

(a) Items, received or produced that are not of perfect qual-
ity and that are not necessarily defective, could be used 
in another production/inventory situation.

(b) A lot size is delivered instantaneously with a purchas-
ing price of per unit and an ordering cost for the total 
lot.

(c) Each lot received contains percentage of defectives with 
a known probability density function.

(d) Good-quality items have a fixed selling price.
(e) Defective items are sold as a single batch at a propor-

tionate discounted price.
(f) A
(g) 100% screening process of the lot is conducted.
(h) Shortages are not allowed.
(i) Lead time is zero.

Notations

y  Order size, is a decision variable
d  Demand rate
x  Screening rate, x > d

c  Unit purchasing price ($)
k  Fixed cost of placing an order ($)
p  Percentage of defective items in y
f (p)  Probability density function of p
s  Unit selling price of items of good quality ($)
�  Unit screening cost ($)
T   Cycle length (years), is a dependent variable

Formulation of mathematical model

Let d be the demand rate per unit time of an inventory pro-
cess. An order of size y is placed whenever the inventory 
level reaches zero. The items are received instantaneously 
with a unit purchasing price c , fixed ordering cost k ,and the 
unit inventory holding cost h per unit time. Each lot received 
contains percentage defectives. A 100% screening process of 
the lot is conducted at a rate of x units per unit time with unit 
screening cost � . After completion of the screening process, 
items of poor quality are sold as a single batch at proportion-
ate discounted price. However, the price of a good-quality 
item is s per unit.

The behavior of the inventory level is as shown in Fig. 3, 
where T  is the cycle length, py is the number of defectives 

Fig. 3  EOQ model for defective items
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withdrawn from inventory and t is the total screening time 
of y units per order cycle.

The number of good items in each order is equal to the lot 
size less defective items,

Under the assumption of Salameh and Jaber (2000), in 
order to avoid shortages the number of good items, (1 − p)y 
is at least equal to the demand during the screening time t 
i.e.,

where d is the demand per year or equivalently,

With the above assumptions, the total cost per cycle for 
the modified EOQ model for imperfect-quality items is:

TC(y) = Fixed cost of placing an order + variable cost of 
lot size + screening cost of lot size + holding cost

In the proposed model, a proportionate rate of discount 
is introduced depending on the quality of the imperfect type 
items. Out of the imperfect type items, the best item is sold 
with minimum discount. Subsequently, depending on the 
quality of all other imperfect type items, a proportionate rate 
of discount has been introduced.

The total revenue per cycle TR(y) = Total sales volume of 
(good-quality items + imperfect-quality items).

The following is the result for TR(y) obtained after 
simplification.

Thus, total profit per cycle = Total revenue per 
cycle − Total cost per cycle.

(10)y − py = (1 − p)y.

(11)(1 − p)y ≥ dt,

(12)p ≤ 1 −

d

x
.

(13)TC(y) = K + cy + �y + h

(

y(1 − p)T

2
+

py2

x

)

(14)

TR(y) = sy(1 − p) +

yp
∑

i=1

(
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(

1 −
yp − i

yp

)(

TR(y) − TC(y)

y

))

(15)

TR(y) =

2sy2 + K + cy + �y + h
(

y(1−p)T

2
+

py2

x

)

(yp + 1)

2y + (yp + 1)

(16)
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=
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−
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�
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2
+

py2

x

��

Since the replenishment cycle length T =
(1−p)y

d
 . So, by 

dividing the total profit per cycle by the cycle length, the 
total profit per unit time can be written as:

Since p is a random variable with a known probabil-
ity density function f (p) , the expected value of Eq. (17), 
ETPU(y) , is given as

The optimality condition meant for the concavity of the 
expected total profit in per unit time is demonstrated by find-
ing the first derivative of Eq. (18).

The second derivative of ETPU(y) is negative for all val-
ues of y which implies that there exists a unique value of y∗ 
that maximizes (18) and it is given as follows:

and

(17)

TPU(y)
TP(y)

T
=

2d

2y + yp + 1
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(

1
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−
hy2
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[
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For large value of y , 1
y
→ 0 giving

In addition, when p = 0 , � + c = s , Eq. (21) reduces to 
the traditional EOQ formulae,

Numerical Example 1

Referring to the numerical data obtained from case study a 
numerical illustration has been done. Also, as per case study, 
the defective percentage p follows random variable, and it is 
uniformly distributed with its probability density function as

Utilizing these data in Eqs. (18), (21), and (22), the opti-
mum value of y is given by: y∗ = 1556units , the optimal 
cycle time is T∗

= 0.3015 years, and the maximum profit per 
year is given as ETPU(y∗) = 1230057/year.

Comparison with the traditional EPQ/EOQ model

First of all, for different values of E
[

p
]

(0.02 ≤ E
[

p
]

≤ 0.25, 
the basic classical model has been studied. The ratio of y∗ 
(modified EPQ/EOQ) to the y∗

trad
 (traditional EPQ/EOQ) is 

given as,

The change in the expected total profit per unit 
time, � , is determined from Eq.  (18) and Eq.  (26) as 
� = ETPU(y∗) − ETPU

(

y
∗
trad

)

The example presented earlier is repeated for different 
values of E

[

p
](

0.02 ≤ E
[

p
]

≤ 0.25
)

 where the values of � 
and � in Eq. (26) an Eq. (27) respectively, are plotted against 
those of E

[

p
]

 as shown in Figs. 4 and 5. It is observed that, 

(22)T∗
=

(

1 − E
[

p
])

y∗

d

(23)y∗ =

√

√

√

√

2dS − 2dc − 2�d + 4dk + 2dkE
[

p
]

2h − 2h
(

E
[

p
])2

+ hE
[

p
]

− h
(

E
[

p
])3

(24)y =

√

2kd

h
.

(25)f (p) =

{

25 0 ≤ p ≤ 0.05

0 otherwise

(26)� =
y∗

y∗
trad

=

√

√

√

√

√

(

s−c−�

K

)

+ 2 + E
[

p
]

2 − 2
(

E
[

p
])2

+ E
[

p
]

−

(

E
[

p
])3

(27)
=

(� − 1)y∗
trad

[

{

2d
(

s − c − � + 2k + kE
[

p
])}

+ y∗
trad

h
{(

1 −
(

E
[

p
])2

)

(

2y∗
trad

� + y∗
trad

�E
[

p
]

+ � + 1
)

}]

(

2y∗
trad

+ y∗
trad

E
[

p
]

+ 1
)(

2y∗
trad

� + y∗
trad

�E
[

p
]

+ 1
) .

for the present situation more units are to be ordered in each 
lot, i.e., y∗ ≥ y

∗

trad
 for E

[

p
]

> 0 . Moreover, from Fig. 5, it is 
observed that low percentage of defective creates more profit 
as compared to the traditional model, and when this defec-
tive percentage goes up, the profit becomes less.  

Fig. 4  Behavior of the ratio of modified EPQ/EOQ to the traditional 
EPQ/EOQ, � , to the increase in the expected value of the number of 
imperfect-quality items

Fig. 5  Behavior of the savings in the expected total profit per unit 
time of the modified to that of the traditional EPQ/EOQ model to 
the increase in the expected value of the number of imperfect-quality 
items
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Comparison with Salameh and Jaber (2000) model

The optimum lot size in Salameh and Jaber’s (2000) model 
is:

So for different values of E
[

p
]

 ( 0.02 ≤ E
[

p
]

≤ 0.25 ) (26) 
gives

The optimal lot size in proposed model is greater than the 
lot size in Salameh and Jaber’s (2000) model.

The total profit per unit time in Salameh and Jaber’s 
(2000) model is:

(28)y∗
s
=

√

√

√

√

√

√

2dkE
(

1

1−p

)

h
[(

1 − E
[

p
]

−
2d

x

(

1 − E
(

1

1−p

)))]

(29)

�1 =
y∗

y∗
s

=

√

√

√

√

√

√

[(

s−c−�

k

)

+ 2 + E
[

p
]

][

1 − E
[

p
]

−
2d

x

{

1 −

(

1

1−E[p]

)}]

(

1

1−E[p]

)[

2 − 2
(

E
[

p
])2

+ E
[

p
]

−
(

E
[

p
])3

]

The change in the expected total profit per unit time, �
1
 

is determined from (18) and (26) as;

Fuzzy mathematical model

Let us assume the demand rate d for the above proposed 
model behaves a cloud-type fuzzy number. Since the amount 
of perfect items y is functionally related to the demand rate 
so from Eq. (18), the fuzzy problem becomes

(30)

ETPU
(

ys

)

=d

(

s − v +
hy

x

)

+ d

(

v −
hy

x
− c − � −

k

y

)

E

[

1

1 − p

]

− h

(

y
(

1 − E
[

p
])

2

)

(31)

�1 = ETPU
�
ys

�
− ETPU(y)

=
1

1 − E
�
p
�
⎡
⎢⎢⎢⎣

⎧
⎪⎨⎪⎩

2dsy − 2dk − 2dcy − 2d�y

2y + yE
�
p
�
+ 1

−

hy2

�
1 −

�
E
�
p
��2

�

2y + yE
�
p
�
+ 1

⎫
⎪⎬⎪⎭

−d

�
v −

hy

x
− c − � −

k

y

��

− d

�
s − v +

hy

x

�
+ h

�
y
�
1 − E

�
p
��

2

�

(32)

⎧
⎪⎪⎨⎪⎪⎩

Maximize z̃ =
A

Bỹ+1
d̃ỹ −

2kA∕d̃

Bỹ+1
−

A∕∕

Bỹ+1
ỹ2

Where, A =
�

2s−2c−2�

1−E[p]

�
, B = 2 + E(p), A∕ = 1∕

�
1 −

�
E
�
p
���

, A∕∕ = h
�
1 +

�
E
�
p
���

Subject to ỹ =
d̃T

1−p

Now, the membership function of the demand rate d is given by

(33)�
�
d̃, T

�
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 if d

�
d2

�
1 −

�

1+T

�
and d

�
d2

�
1 +

�

1+T

�
�

d−d2

�
1−

�

1+T

�

�d2
1+T

�
if d2

�
1 −

�

1+T

�
≤ d ≤ d2

�
d2

�
1+

�

1+T

�
−d

�d2
1+T

�
if d2 ≤ d ≤ d2

�
1 +

�

1 + T

�

for 0 < �, � < 1

Therefore, using the constraint of (32), the membership 
function of the fuzzy order quantity ỹ is obtained as

�(ỹ, T) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 if
(1−p)y

T

�
d2

�
1 −

�

1+T

�
and

(1−p)y

T

�
d2

�
1 +

�

1+T

�
�

(1−p)y

T
−d2

�
1−

�

1+T

�

�d2

1+T

�
if d2

�
1 −

�

1+T

�
≤

(1−p)y

T
≤ d2

�
d2

�
1+

�

1+T

�
−

(1−p)y

T

�a2

1+T

�
if d2 ≤

(1−p)y

T
≤ d2

�
1 +

�

1+T

�
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Moreover, the �-cuts of �
(

d̃, T
)

 and �(ỹ, T) are obtained 
by using (33) and (34), and they can be put as 
[

d2

(

1 −
�

1+T

)

+
��d2

1+T
, d2

(

1 +
�

1+T

)

−
��d2

1+T

]

 a n d 
[

d2T

1−p

(

1 −
�

1+T

)

+
��Td2

(1+T)(1−p)
,

d2T

1−p

(

1 +
�

1+T

)

−
��Td2

(1+T)(1−p)

]

, 

respectively.
Thus, the corresponding index value of ỹ and d̃ are 

obtained as

and

(34)⇒ �(ỹ, T) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 if y

�
d2T

�
1 −

�

1+T

�
∕(1 − p) and y

�
d2T

�
1 +

�

1+T

�
∕(1 − p)�

y−d2T

�
1−

�

1+T

�
∕(1−p)

�Td2

(1+T)(1−p)

�
if d2T

�
1 −

�

1+T

�
∕(1 − p) ≤ y ≤ Td2∕(1 − p)

�
d2T

�
1+

�

1+T

�
∕(1−p)−y

�Td2

(1+T)(1−p)

�
if d2T∕(1 − p) ≤ y ≤ d2T

�
1 +

�

1+T

�
∕(1 − p)

(35)

I(ỹ) =
1

2�

�

∫
T=0

1

∫
�=0

[
d2T

1 − p

(
1 −

�

1 + T

)
+

��Td2

(1 + T)(1 − p)

+
d2T

1 − p

(
1 +

�

1 + T

)
−

��Td2

(1 + T)(1 − p)

]
d�dT

=
1

2�(1 − p)

�

∫
T=0

[
d2T

(
1 −

�

1 + T

)
+

�Td2

2(1 + T)

+d2T

(
1 +

�

1 + T

)
−

�Td2

2(1 + T)

]
dT

=
d2

2�(1 − p)

�

∫
T=0

[
2T −

(� − �)T

2(1 + T)

]
dT

=
d2

2�(1 − p)

[
�2 +

(� − �)

2
{log |1 + �| − �}

]

=
d2

2(1 − p)

[
� −

(� − �)

2

{
1 −

log |1 + �|
�

}]

(36)

I
(
d̃
)
=

d2

2�

�

∫
T=0

1

∫
�=0

[(
1 −

�

1 + T

)
+

��

(1 + T)
+

(
1 +

�

1 + T

)
−

��

(1 + T)

]
d�dT

=
d2

2�

�

∫
T=0

[
2 +

� − �

2(1 + T)

]
dT = d2

[
1 +

(� − �)

4

{
1 −

log |1 + �|
�

}]

Therefore utilizing (32) and using (35, 36) the index value 
of the fuzzy objective function is given by

Particular Cases

(1) I f  (� − �) → 0  t h e n  I(z̃) →

[

1

d2B

(1−p)

[

�

2

]

+1

]

×

[

d
2

[

d
2
A

(1−p)

[

�

2

]

−2kA∕

]

−
A∕∕d2

2

(1−p)2

[

�

2

]2

]

(37)

I(z̃) = I

�
1

Bỹ + 1

�
Ad̃ỹ − 2kA∕d̃ − A∕∕ỹ2

��

= I

�
1

Bỹ + 1

��
I
�
d̃
�
I
�
Aỹ − 2kA∕

�
− A∕∕I

�
ỹ2
��

=

�
1

BI(ỹ) + 1

��
I
�
d̃
��

AI(ỹ) − 2kA∕
�
− A∕∕{I(ỹ)}2

�

=

⎡⎢⎢⎢⎣
1

d2B

(1−p)

�
�

2
−

(�−�)

4

�
1 −

log �1+��
�

��
+ 1

⎤⎥⎥⎥⎦
×

�
d2

�
1 +

(� − �)

4

�
1 −

log �1 + ��
�

��

�
d2A

(1−p)

�
�

2
−

(�−�)

4

�
1 −

log �1+��
�

��

−2kA∕

�

−
A∕∕d2

2

(1 − p)2

�
�

2
−

(� − �)

4

�
1 −

log �1 + ��
�

��2
�

Table 1  Optimal solution for the imperfect EOQ model

Model T
∗ (days) y

∗ (Unit) z
∗
 ($) CI = log|1+T∗|

T∗

Crisp 90 651.406 122465.80

General fuzzy 46 643.205 119362.80 0.0840

Cloudy fuzzy 101 720.38 122816.4 0.0454

  ⇒

[

1

By+1

]

×
[

d
(

Ay − 2kA∕
)

− A∕∕y2
]

⇒ z , which is 

similar to crisp objective function.
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Numerical Example 2

In our proposed fuzzy model, let d = 5000 , = 100 , 
h = 5 , � = 0.5 , c = 25 , s = 50 , p = 0.05 for crisp solu-
tion and for fuzzy solution assume � = 0.4, � = 0.3 and 
d̃ = ⟨5000(1 − �), 5000, 5000(1 + �)⟩ . Keeping the other 
parameters as fixed stated above. The optimal results are 
put in Table 1.

Sensitivity analysis

The sensitivity analysis of the objective function with 
respect to the changes of each of the parameters { d

0
 , p, k, 

h,�, c, s} from − 50 to + 50% are stated in Table 2.

Table 2  Sensitivity analysis 
of the imperfect cloudy fuzzy 
EOQ model

Parameters % change T
∗ (Days) y

∗ (Unit) z
∗ ($) RC =

z
∗
−z

∗

z
∗

× 100% CI =
log |1+T

∗|

T∗

d
0

+ 50 84 887.830 185260.5 + 51.07 0.0529

+ 30 90 824.751 160335.5 + 30.75 0.0502

− 30 121 599.137 85691.02 − 30.12 0.0396

− 50 143 503.365 60889.55 − 50.35 0.0349

� + 50 137 927.337 123839.8 + 0.99 0.0360

+ 30 121 830.442 123466.8 + 0.68 0.0398

− 30 88 640.738 122562.5 − 0.05 0.0510

− 50 81 599.444 122314.9 − 0.26 0.0540

� + 50 86 624.323 122467.1 − 0.13 0.0521

+ 30 92 658.411 122661.3 + 0.03 0.0495

− 30 115 799.378 123337.5 + 0.58 0.0412

− 50 126 864.252 123601.6 + 0.79 0.0384

p + 50 100 722.634 124863.1 + 1.82 0.0460

+ 30 101 721.662 124093.4 + 1.2 0.0459

− 30 104 719.306 121914.1 − 0.58 0.0450

− 50 105 718.703 121229.0 − 1.14 0.0440

h + 50 81 570.295 122205.9 − 0.34 0.0540

+ 30 88 618.550 122494.4 − 0.11 0.0511

− 30 125 894.138 123562.2 + 0.76 0.0383

− 50 157 1109.482 124044.1 + 1.16 0.0322

� + 50 102 719.390 121693.3 − 0.76 0.0450

+ 30 102 719.787 122208.0 − 0.34 0.0450

− 30 102 720.974 123751.9 + 0.92 0.0454

− 50 102 721.371 124266.6 + 1.34 0.0453

k + 50 123 868.140 122364.3 − 0.13 0.0390

+ 30 115 812.520 122597.2 − 0.03 0.0413

− 30 87 613.338 123419.7 + 0.65 0.0515

− 50 75 529.062 123761.8 + 0.93 0.0577

c + 50 95 673.484 58655.8 − 52.17 0.0480

+ 30 98 691.642 84383.83 − 31.19 0.0470

− 30 106 751.067 161581.1 + 31.76 0.0440

− 50 109 772.692 187318.1 + 52.75 0.0430

s + 50 118 831.242 251671.2 + 105.27 0.0410

+ 30 111 783.786 200187.5 + 63.25 0.0420

− 30 94 664.689 45792.57 − 62.66 0.0480

− 50 No… Feasible.. Solution. …. …



581Journal of Industrial Engineering International (2019) 15:571–583 

1 3

Discussion on sensitivity analysis

From the sensitivity analysis Table 2, it is seen that the 
parameters like the initial demand d

0
 , the unit purchas-

ing price c, and the unit selling price s are highly sensi-
tive parameters. The range of these changes assumes values 
between − 62.66 and + 105% as a whole. The other param-
eters have negligible effect on the proposed model for the 
changes of the parameters {�, �, p, k, h, �} within − 50 to 
+ 50%. Also the study reveals that for the case of highly 
sensitive parameters the optimum cycle time varies within 
the range 84–118 days with respect to the variation of max-
imum order quantity 831.242–887.830 units. Throughout 
the whole table, the minimum cloud index (0.0322) appears 
whenever the parameter h has been changed to − 50%, but 
for cloud index 0.0410 (> 0.0322) the profit curve assumes 
value 1.05 times with respect to the crisp optimum.

Graphical illustrations

Here several graphs have been drawn using the numeri-
cal results obtained from the proposed model. Figure 6 
shows the trends of average profit maximization due to 
cloudy fuzzy model, the results of general fuzzy model 
is inferior than those of crisp as well as cloudy fuzzy 
models. Figure 7 reveals a beautiful flower type figure 
that corresponds the behavior of the profit function over 
the changes of the cost parameters on and from (− 50 to 
+ 50%) exclusively. It is seen that the change of holding 
cost did not give a considerable effect on profit func-
tion. But for fixed cost and unit selling price, the profit 
function gets monotonic increasing and decreasing, 
respectively, and vice versa within the specific range of 
the parameters. Moreover, the variation of the unit vari-
able cost and unit screening cost shows that the profit 
value of the model gets almost same. Figure 8 explores 
the variation of the average profit function with respect 
to the variation of the order quantity of perfect items 
over different cloud index. Also, for the lesser fuzziness 
intervals (322–384)10−4 and (453–460)10−4, the profit 
value assumes almost same. But for the range of fuzziness 
(384–453)10−4 and (460–577)10−4, the profit function 
itself gets pyramid type curves. Near 0.041 fuzzy meas-
ure, the profit value gets maximum value with highest 
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peak but near 0.043 and 0.0529 gets lower peaks. Fig-
ure 9 indicates that at 109 days cycle time the model gives 
maximum profit value with respect to the profit value 
obtained within the cycle time duration (75–84) days. 
The other cases give the objective value near $123,000 
exclusively.

Conclusion

Cloudy fuzzy system is the latest enriched and established 
methodology in the fuzzy literature, but yet no such article 
has been studied in this direction. Basically, this paper has 
focused the novel application of new defuzzification method 
studies over the EOQ model with imperfect items devel-
oped by Salameh and Jaber (2000). Moreover, the model 
has been discussed over crisp, general fuzzy, and cloudy 
fuzzy environment exclusively. Numerical study reveals the 
superiority of the cloudy fuzzy environment with respect 
to that of general fuzzy model. The managerial insights are 
observed as follows:

(1) Cloudy fuzzy model always gives average maximum 
profit value of the model.

(2) Lesser ambiguities (less fuzziness) do not mean more 
profit of the model.

(3) All cost parameters are not similarly responsible for the 
enhancement of profit curve.

(4) Choice of perfect order quantity and the specific cycle 
time can change the overall decision of an inventory 
process.
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