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A CLT FOR INFINITELY STRATIFIED ESTIMATORS, WITH APPLICATIONS

TO DEBIASED MLMC ∗

Zeyu Zheng1 and Peter W. Glynn2

Abstract. This paper develops a general central limit theorem (CLT) for post-stratified Monte Carlo
estimators with an associated infinite number of strata. In addition, consistency of the corresponding
variance estimator is established in the same setting. With these results in hand, one can then construct
asymptotically valid confidence interval procedures for such infinitely stratified estimators. We then
illustrate our general theory, by applying it to the specific case of debiased multi-level Monte Carlo
(MLMC) algorithms. This leads to the first asymptotically valid confidence interval procedure for such
stratified debiased MLMC procedures.

1. Introduction

Suppose that our goal is to compute α = EX, and that the sample space Ω underlying X can be partitioned
into events A1, A2, . . . for which pi , P (Ai) is known for i ≥ 1. Let Ii = I(Ai) be the indicator random
variable (rv) corresponding to Ai, and suppose that (X1, Ii1 : i ≥ 1), (X2, Ii2 : i ≥ 1), . . . is an independent
and identically distributed (iid) sequence of copies of (X, Ii : i ≥ 1). The conventional (crude) Monte Carlo
estimator for α is then

X̄n ,
1

n

n∑
j=1

Xj =

∞∑
i=1

I(Nn(i) ≥ 1) · Nn(i)

n
·
∑n
j=1XjIij

Nn(i)
, (1)

where Nn(i) ,
∑n
j=1 Iij is the number of times the event Ai occurs in the first n samples generated.

The idea behind stratification is to exploit our knowledge of the pi’s. In particular, the post-stratified version
of X̄n replaces Nn(i)/n by pi, thereby yielding the estimator

Pn ,
∞∑
i=1

pi ·
∑n
j=1XjIij

Nn(i)
· I(Nn(i) ≥ 1); (2)

the events A1, A2, . . . are then known as the strata associated with the estimator Pn. When the number of strata
is finite, it is known that Pn exhibits smaller variance than does X̄n; see p.151 of [Asmussen and Glynn(2007)].

In this paper, we provide a central limit theorem (CLT) for Pn. The novelty here is an extension of the
CLT to the case of infinitely many strata; CLT’s for the case in which the number of strata is finite (i.e.,
A1, A2, . . . , Am partition Ω for m < ∞) are known; see, for example, p.151 of [Asmussen and Glynn(2007)].
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The technical complication in the infinite case involves controlling the infinitely many random ratio estimators
implicit in (2). This CLT allows us to construct asymptotically valid fixed sample size confidence intervals for
α.

Our main motivation for proving such CLT’s for infinitely stratified estimators has to do with their application
to debiased multi-level Monte Carlo (MLMC) estimators. This class of algorithms was first introduced by
[Rhee and Glynn(2015)] and involves a randomization that produces an unbiased estimator for α; see also
[McLeish(2011)] and [Rhee and Glynn(2012)]. It has recently been noted by [Vihola(2015)] that the variance of
these debiased MLMC estimators can be reduced by taking advantage of stratification. However, in this setting,
the estimator is invariably infinitely stratified, and no corresponding CLT is provided there. This paper fills in
this missing gap. Such a CLT plays an essential role in constructing asymptotically valid confidence intervals
for α, so we also provide here the first asymptotically valid confidence interval procedure for stratified debiased
MLMC.

This paper is organized as follows. Section 2 provides the necessary CLT for infinitely stratified estimators,
while Section 3 provides conditions under which the associated variance estimator converges consistently. Section
4 concludes the paper with a brief discussion of the application to debiased MLMC.

2. The CLT for Post-stratified Estimators with Infinitely Many Strata

Assume that E|X| < ∞, set µi = E(X|Ai) and σ2
i = Var(X|Ai) for i ≥ 1, and put Vj =

∑∞
i=1(Xj − µi)Iij

for j ≥ 1. Also, let Gn = σ(Nn(i) : i ≥ 1) be the σ-algebra generated by the Nn(i)’s. Then,

E[Pn|Gn] =

∞∑
i=1

piµiI(Nn(i) ≥ 1),

so that

Pn − α = Pn − E[Pn|Gn]−
∞∑
i=1

piµiI(Nn(i) = 0). (3)

Observe that

Pn − E[Pn|Gn] =

∞∑
i=1

pi

(∑n
j=1XjIij

Nn(i)
− µi

)
I(Nn(i) ≥ 1))

=

∞∑
i=1

pi

(∑n
j=1(Xj − µi)Iij

Nn(i)

)
I(Nn(i) ≥ 1))

D
≈ 1

n

∞∑
i=1

n∑
j=1

(Xj − µi)Iij

=
1

n

n∑
j=1

Vj ,

where
D
≈ denotes “has approximately the same distribution as” (and is intended to carry no rigorous meaning).

This suggests that if σ2 , Var V1 =
∑∞
i=1 piσ

2
i <∞, the CLT (and the observation that EV1 = 0) should imply

that √
n(Pn − E[Pn|Gn])⇒ σN(0, 1) (4)

as n→∞, where ⇒ denotes weak convergence and N(0, 1) is a mean zero normal rv with variance 1.
Our first theorem makes (4) rigorous.

THEOREM 1. If
∑∞
i=1 piσ

2
i <∞ and E|X| <∞, then (4) holds.
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Before proceeding to the proof, for i ≥ 1, let (Xj(i) : j ≥ 1) be an independent sequence of iid rv’s with
common distribution P (X ∈ ·|Ai), and suppose that (Xj(i) : i, j ≥ 1) is also independent of (Nn(i) : i, n ≥ 1).

Note that (Pn : n ≥ 1)
D
= (P ′n : n ≥ 1), where

P ′n =

∞∑
i=1

pi

∑Nn(i)
j=1 Xj(i)

Nn(i)
I(Nn(i) ≥ 1)

and
D
= denotes “equality in distribution.” So, we can prove Theorem 1 with P ′n replacing Pn.

Proof. Set X̃j(i) = Xj(i)− µi for i, j ≥ 1 and put P̃ ′n = P ′n − E[Pn|Gn] = P ′n − E[P ′n|Gn]. Then,

P̃ ′n = βn +
1

n

∞∑
i=1

Nn(i)∑
j=1

X̃j(i)

where

βn =

∞∑
i=1

(
pi

Nn(i)
− 1

n

)Nn(i)∑
j=1

X̃j(i)I(Nn(i) ≥ 1).

Note that

1

n

∞∑
i=1

Nn(i)∑
j=1

X̃j(i)
D
=

1

n

n∑
j=1

Vj ,

so (4) follows if we can show that n1/2βn ⇒ 0 as n→∞.
For m ≥ 1, set

βnm =

m∑
i=1

pi

∑Nn(i)
j=1 X̃j(i)

Nn(i)
I(Nn(i) ≥ 1)− 1

n

m∑
i=1

Nn(i)∑
j=1

X̃j(i)

and note that
m∑
i=1

pi

∑Nn(i)
j=1 |X̃j(i)|
Nn(i)

I(Nn(i) ≥ 1) +
1

n

m∑
i=1

Nn(i)∑
j=1

|X̃j(i)|

is square-integrable (since Nn(i) ≤ n and σ2
i <∞ for i ≥ 1). It follows that

Eβ2
nm =

m∑
i=1

m∑
j=1

E

( pi
Nn(i)

− 1

n

)(
pj

Nn(j)
− 1

n

)Nn(i)∑
k=1

X̃k(i)

Nn(j)∑
l=1

X̃l(j) I(Nn(i) ≥ 1, Nn(j) ≥ 1)

 .
But

E

( pi
Nn(i)

− 1

n

)(
pj

Nn(j)
− 1

n

)Nn(i)∑
k=1

X̃k(i)

Nn(j)∑
l=1

X̃l(j) I(Nn(i) ≥ 1, Nn(j) ≥ 1)|Gn


=

(
pi

Nn(i)
− 1

n

)(
pj

Nn(j)
− 1

n

)
I(Nn(i) ≥ 1, Nn(j) ≥ 1)E

Nn(i)∑
k=1

X̃k(i)

Nn(j)∑
l=1

X̃l(j)|Gn


= 0
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for i 6= j, since the X̃k(i)’s are independent of the X̃l(j)’s for i 6= j and EX̃k(i) = 0 for i, k ≥ 1. So,

Eβ2
nm =

m∑
i=1

E

( pi
Nn(i)

− 1

n

)2
Nn(i)∑

k=1

X̃k(i)

2

I(Nn(i) ≥ 1)

 .
Furthermore,

β2
nm → β2

n a.s.

as m→∞, so Fatou’s lemma implies that

Eβ2
n ≤ lim

m→∞
Eβ2

nm

≤ lim
m→∞

m∑
i=1

E

( pi
Nn(i)

− 1

n

)2
Nn(i)∑

k=1

X̃k(i)

2

I(Nn(i) ≥ 1)


=

∞∑
i=1

E

( pi
Nn(i)

− 1

n

)2
Nn(i)∑

k=1

X̃k(i)

2

I(Nn(i) ≥ 1)

 , (5)

where we used the fact that the finite sum (to m) increases monotonically to the infinite sum for the final step.
Note that

E

( pi
Nn(i)

− 1

n

)2
Nn(i)∑

k=1

X̃k(i)

2

I(Nn(i) ≥ 1)

∣∣∣∣∣∣∣Gn


=

(
pi

Nn(i)
− 1

n

)2

Nn(i)σ2
i I(Nn(i) ≥ 1)

=
(pin−Nn(i))2

Nn(i)n2
σ2
i I(Nn(i) ≥ 1)

≤ (Nn(i)− pin)2

n2
σ2
i .

Consequently,

nE

( pi
Nn(i)

− 1

n

)2
Nn(i)∑

k=1

X̃k(i)

2

I(Nn(i) ≥ 1)


≤ 1

n
E(Nn(i)− pin)2σ2

i = pi(1− pi)σ2
i ≤ piσ2

i . (6)
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Also,

nE

( pi
Nn(i)

− 1

n

)2
Nn(i)∑

k=1

X̃k(i)

2

I(Nn(i) ≥ 1)


= σ2

iE

[
(pin−Nn(i))2

Nn(i)n
I(Nn(i) ≥ 1)

]
= σ2

iE

[
(pin−Nn(i))2

Nn(i)n
I(Nn(i) ≥ pin/2)

]
+ σ2

iE

[
(pin−Nn(i))2

Nn(i)n
I(1 ≤ Nn(i) < pin/2)

]
≤ 2σ2

i

E (pin−Nn(i))2

n2pi
+ σ2

i nE

[
1

Nn(i)
I(1 ≤ Nn(i) < pin/2)

]
≤ 2σ2

i

n
+ σ2

i nP (1 ≤ Nn(i) < pin/2)→ 0 (7)

as n→∞, where we apply a standard large deviations bound at the final step to conclude that P (Nn(i) ≤ pin/2)
converges to 0 exponentially rapidly in n; see, for example, p.95 of [Serfling(1980)].

Since
∑∞
i=1 piσ

2
i <∞, (6) and (7) imply that we may apply the Dominated Convergence Theorem to obtain

the conclusion

n

∞∑
i=1

E

( pi
Nn(i)

− 1

n

)2
Nn(i)∑

k=1

X̃k(i)

2

I(Nn(i) ≥ 1)

→ 0

as n→∞. The inequality (5) then establishes that nEβ2
n → 0 as n→∞. Finally, Markov’s inequality shows

that n1/2βn ⇒ 0 as n→∞, proving the theorem. �

We note that Theorem 1’s centering is not α = EX, but instead involves the random centering E[Pn|Gn].
Since our main rationale for proving a CLT is its application to construction of approximate confidence intervals
for α, we need to now obtain conditions under which the random centering can be replaced by α. This requires
proving that the remainder term in (3) converges to zero. In other words, we now need to study conditions
under which

n1/2
∞∑
i=1

piµiI(Nn(i) = 0)⇒ 0 (8)

as n→∞.
A natural additional condition to consider is

∑∞
i=1 piµ

2
i <∞, in view of the identity

Var(X) = E [Var(X|Ij : j ≥ 1)] + Var (E[X|Ij : j ≥ 1])

=

∞∑
i=1

piσ
2
i +

( ∞∑
i=1

piµ
2
i − α2

)
;

see, for example, p.56 of [Bratley, Fox and Schrage(1987)]. However, this condition fails to be sufficient to
guarantee (8).
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Example 1. We start by observing that

n Var

( ∞∑
i=1

piµiI(Nn(i) = 0)

)

=n

∞∑
i=1

p2iµ
2
i

[
(1− pi)n − (1− pi)2n

]
+ 2n

∑
i<j

pipjµiµj(1− pi − pj)n
[
1−

(
1− pi − pj + pipj

1− pi − pj

)n]

≤n
∞∑
i=1

p2iµ
2
i (1− pi)n = n

∞∑
i=1

p2iµ
2
i exp(n log(1− pi))

≤
∞∑
i=1

piµ
2
i (npi)e

−npi ,

But xe−x ≤ e−1 for x ≥ 0, so the i-th term is bounded by piµ
2
i e
−1, uniformly in n. On the other hand,

np2iµ
2
i e
−npi → 0 as n → ∞, for each i ≥ 1. So, if

∑∞
i=1 piµ

2
i < ∞, the Dominated Convergence Theorem

applies, and

n Var

( ∞∑
i=1

piµiI(Nn(i) = 0)

)
→ 0 (9)

as n→∞.
We now consider the case in which pi = ci−p for c > 0 and p > 1, with µi = iq. We require that 2q < p− 1,

in order that
∑∞
i=1 piµ

2
i <∞. Note that

n1/2E

∞∑
i=1

piµiI(Nn(i) = 0)

= cn1/2
∞∑
i=1

i−p+q exp(n log(1− pi))

≥ cn1/2
∑

i:pi≤ 1
2n

i−p+q exp(−2npi)

≥ ce−1n1/2
∑

i:pi≤ 1
2n

i−p+q

= Ω(n
1
2+

1
p (1−p+q)) = Ω(n

1
p+

q
p−

1
2 ),

where Ω(an) denotes a sequence which is bounded below by a positive multiple of (an : n ≥ 1). It follows that
if (1 + q)/p ≥ 1/2 (e.g. q = 0 and 1 < p ≤ 2), limn→∞ n1/2E

∑∞
i=1 piµiI(Nn(i) = 0) is positive. In view of (9)

and Chebyshev’s inequality, we conclude that (8) does not hold for such examples.

The above example makes clear that Var X < ∞ does not guarantee that the CLT for our post-stratified
estimator holds with α as its centering. Different conditions are required.

Let J be a rv with probability mass function given by {pi : i ≥ 1}.

PROPOSITION 1. Suppose that E|µJ |r <∞ and EJα <∞, where α > 1 and r > 2α
α−1 . Then

n1/2
∞∑
i=1

µipiI(Nn(i) = 0)⇒ 0

as n→∞.
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Proof. We start by applying Hölder’s inequality, so that

n1/2
∞∑
i=1

|µi|piI(Nn(i) = 0) ≤

( ∞∑
i=1

|µi|rpi

) 1
r

·

(
n

r
2(r−1)

∞∑
i=1

piI(Nn(i) = 0)

) r−1
r

.

Then, the result follows from Markov’s inequality if we prove that

n
r

2(r−1)

∞∑
i=1

piP (Nn(i) = 0) = n
r

2(r−1)

∞∑
i=1

pi(1− pi)n → 0 (10)

as n→∞.
Now, Markov’s inequality and the fact that xe−x ≤ e−1 for x ≥ 0 imply that for a > 0,

∞∑
i=1

pi(1− pi)n ≤
∞∑
i=1

pi exp(−npi)

≤ n−1
∑
i≤na

(npi) exp(−npi) + P (J > na)

≤ n−1+ae−1 + n−aαEJα,

so (10) follows if we can find a > 0 such that r(2(r−1))−1−1+a < 0 and r(2(r−1))−1−aα < 0. This requires
that r(2(r − 1)α)−1 < a < 1 − r(2(r − 1))−1. The inequality r(2(r − 1)α)−1 < 1 − r(2(r − 1))−1 is equivalent
to requiring r > 2α/(α− 1), proving the result. �

Note that if the µi’s are bounded, all that is needed is α > 1 (since we can choose r arbitrarily large in the
bounded case). This is equivalent to requiring that p > 2 in the context of Example 1, so that Proposition 1’s
conditions are sharp in that case.

Theorem 1 and Proposition 1 together provide our desired CLT for Pn with centering given by α.

THEOREM 2. If
∑∞
i=1 piσ

2
i <∞, E|µJ |r <∞, and EJα <∞ for α > 1 and r > 2α/(α− 1), then

n1/2(Pn − α)⇒ σN(0, 1)

as n→∞.

We close this section by noting that while Pn is only asymptotically unbiased, it can easily be modified so
that it is exactly unbiased for each n ≥ 1. In particular, let

P ′′n =

∞∑
i=1

pi

∑n
j=1Xj(i)

Nn(i)

I(Nn(i) ≥ 1)

1− (1− pi)n
,

and note that if E|X| <∞, then EP ′′n = α for n ≥ 1. This estimator achieves unbiasedness by heavily weighting
the sample strata with extreme values of i. We leave the development of CLT’s for infinitely stratified versions
of this modified estimator to future work.
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3. Aysmptotic Confidence Intervals for Post-Stratified Estimators

In view of Theorem 2, we can obtain a fixed sample size confidence interval procedure for α by constructing
an appropriate sample variance estimator for σ2. On {Nn(i) ≥ 2}, set

X̄(i, n) =

∑n
j=1XjIij

Nn(i)
,

s2(i, n) =
1

Nn(i)− 1

n∑
j=1

(Xj − X̄(i, n))2Iij

and put

s2n =

∞∑
i=1

pis
2(i, n)I(Nn(i) ≥ 2).

Finally, put ηi , E(X1(i)− µ1)4.

PROPOSITION 2. Suppose that
∑∞
i=1 p

2
i ηi <∞ and

∑∞
i=1 piσ

2
i <∞. Then

s2n ⇒ σ2

as n→∞.
Proof.

s2n − σ2 =

∞∑
i=1

pi[s
2(i, n)− σ2

i ]I(Nn(i) ≥ 2)−
∞∑
i=1

piσ
2
i I(Nn(i) ≤ 1),

and observe that

E

∞∑
i=1

piσ
2
i I(Nn(i) ≤ 1) =

∞∑
i=1

piσ
2
i P (Nn(i) ≤ 1)→ 0

as n→∞, by the Dominated Convergence Theorem. Markov’s inequality then implies that
∑∞
i=1 piσ

2
i I(Nn(i) ≤

1)⇒ 0 as n→∞.
Furthermore, for i 6= j,

E[(s2(i, n)− σ2
i )(s2(j, n)− σ2

j )I(Nn(i) ≥ 2, Nn(j) ≥ 2)|Gn]

= I(Nn(i) ≥ 2, Nn(j) ≥ 2)E[(s2(i, n)− σ2
i )|Gn]E[(s2(j, n)− σ2

j )|Gn]

= 0.

Hence, as in the proof of Theorem 1,

E

( ∞∑
i=1

pi[s
2(i, n)− σ2

i ]I(Nn(i) ≥ 2)

)2

≤
∞∑
i=1

p2iE(s2(i, n)− σ2
i )2I(Nn(i) ≥ 2). (11)

But p.348 of [Cramér(1946)] shows that there exists a constant c <∞ such that

E[((s2(i, n)− σ2
i )2)|Gn] ≤ cηi/Nn(i)

on {Nn(i) ≥ 2}. Since
∑∞
i=1 p

2
i ηi <∞ and ENn(i)−1I(Nn(i) ≥ 2)→ 0 as n→∞ for each i ≥ 1, the Dominated

Convergence Theorem implies that (11) converges to 0 as n→∞. Markov’s inequality then shows that

∞∑
i=1

pi[s
2(i, n)− σ2

i ]I(Nn(i) ≥ 2)⇒ 0
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as n→∞, proving the result. �

We are now ready to state a CLT that can be used to justify asymptotic confidence intervals for α.

THEOREM 3. Suppose that 0 <
∑∞
i=1 piσ

2
i <∞,

∑∞
i=1 p

2
i ηi <∞, E|µJ |r <∞ and EJα <∞ for α > 1 and

r > 2α/(α− 1). Then,

n1/2(Pn − α)/
√
s2n ⇒ N(0, 1)

as n→∞.

The proof is immediate from Theorem 2 and Proposition 2.

Theorem 3 proves that if z is chosen so that P (−z ≤ N(0, 1) ≤ z) = 1− δ, then

P

(
α ∈

[
Pn − z

√
s2n
n
,Pn + z

√
s2n
n

])
→ 1− δ (12)

as n→∞. The result (12) justifies the use of[
Pn − z

√
s2n
n
,Pn + z

√
s2n
n

]

as an asymptotic 100(1− δ)% confidence interval for α.

4. Application to Debiased MLMC

We start with a brief discussion of debiased MLMC. Suppose that our goal is to compute α = EY , where
E|Y | < ∞ and Y is either expensive or impossible to exactly simulate. For example, Y could be some path
functional associated with the solution to a stochastic differential equation (SDE). In such a setting, it is natural
to seek alternative numerical algorithms that utilize approximations to Y rather than Y itself.

One means of constructing such alternatives starts with a sequence (Yn : n ≥ 1) of integrable approximations
to Y for which Yn is cheaper to simulate and satisfies

∞∑
n=1

E|Yn − Y | <∞.

Set ∆n = Yn − Yn−1 for n ≥ 1 (with Y0 , 0). If N is a positive integer-valued rv independent of (∆n : n ≥ 1),
then

Z ,
N∑
n=1

∆n

P (N ≥ n)
(13)

is unbiased for α. One can now compute α by generating iid copies of Z, and averaging them to estimate α.
This is the basis of debiased MLMC; see [Rhee and Glynn(2015)].

Under suitable additional assumptions, Var(Z) <∞ and is given by

Var(Z) =

∞∑
n=1

ν̄n
P (N ≥ n)

− α2, (14)

where
ν̄n = ‖Yn−1 − Y ‖22 − ‖Yn − Y ‖22,

and ‖W‖2 ,
√
EW 2 for a generic rv W . Note that the rv Z is randomized via the use of N , and this adds some
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unnecessary random variability to Z. It is therefore natural to consider the use of stratification as a means of
eliminating some or all of this additional randomness. [Vihola(2015)] shows that when stratification is applied,
the corresponding unbiased estimator has an asymptotic variance given by

∞∑
n=1

βn
P (N ≥ n)

, (15)

where
βn = Var(Yn−1 − Y )−Var(Yn − Y ).

Furthermore, the variance (15) is smaller than the variance (14) associated with Z by an amount

∞∑
n=1

(EYn − EY )2
(

1

P (N ≥ n+ 1)
− 1

P (N ≥ n)

)
; (16)

see Remark 20 of [Vihola(2015)]. The variance reduction (16) can be substantial in some cases.
The obvious strata (Ai : i ≥ 1) to use here correspond to setting Ai = {N = i} for i ≥ 1. In this case, the

rv Z has the distribution of

Z(i) ,
i∑

k=1

∆k

P (N ≥ k)
,

conditional on Ai, for i ≥ 1. Then,

σ2
i = Var(Z(i)) = E

(
i∑

k=1

∆̃k

P (N ≥ k)

)2

,

where ∆̃k = ∆k − E∆k for k ≥ 1.
The theory of Sections 2 and 3 now applies directly to the above debiased MLMC estimator. Consequently,

our theory allows one, for the first time, to construct asymptotically valid confidence intervals for stratified
debiased MLMC estimators.

5. A Numerical Example

To illustrate the performance of our infinitely stratified estimators, we consider an option pricing problem in
the SDE context. The underlying diffusion process obeys the SDE

dX(t) = rX(t)dt+ σX(t)dB(t),

where the parameters are r = 0.05, σ = 0.2 and X(0) = 100. We focus on computing the “final value” European
call option price e−rtE(max(X(t)−K, 0)) with maturity t = 1 at various strike prices K = 90, 100, 110.

We implement the debiased MLMC estimator introduced in Section 4 and its stratified version, with approx-
imating sequence (Yn : n ≥ 1) constructed from the Milstein time-discretization of the SDE with step size 2−nt.
The randomization N is chosen as a positive integer-valued rv with tail probabilities P (N ≥ n) = 2−1.25(n−1)

for n ≥ 1 and we use the natural strata Ai = {N = i} for i ≥ 1 for the stratified debiased MLMC estimator.
For each strike price, we implement both estimators for sample sizes of 1000, 4000, 16000 and 64000. Finally, in
each experiment, we construct a 90% confidence interval (c.i.) for the mean based on the normal approximation,
and then run 1000 independent replications of each experiment.

In Table 1, we report the computational results. The columns labeled C.I. report the average midpoint
of the 1000 intervals, together with the average confidence interval half-width, again averaged over the 1000
replications. The columns labeled Coverage C.I. report 90% confidence intervals (based on the normal approx-
imation) for the percentage of the 1000 replications in which the confidence interval contains the true option
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price. As shown in the table, the stratified estimator achieves a variance reduction universally in all settings,
with associated variance reductions of up to 50%. (The variance reduction can be even larger when K is smaller
(based on other unreported computations).) We further note that the stratified estimator demonstrates square
root convergence rate, as the length of the confidence interval roughly halves each time that the sample size is
multiplied by a factor of four.

Table 1. Computational Performance for Stratified and Non-Stratified Debiased MLMC

Strike True Sample Stratified Non-Stratified
Price Value Size C.I. Coverage C.I. Coverage
K = 90 16.6994 1000 16.67± 0.91 89.0% ± 1.62% 16.70± 1.23 91.1% ± 1.48%

4000 16.69± 0.45 90.1% ± 1.55% 16.69± 0.62 90.8% ± 1.50%
16000 16.70± 0.23 88.9% ± 1.63% 16.70± 0.31 89.2% ± 1.61%
64000 16.70± 0.11 89.6% ± 1.58% 16.70± 0.16 89.5% ± 1.59%

K = 100 10.4506 1000 10.42± 0.77 88.0% ± 1.69% 10.44± 0.94 93.7% ± 1.26%
4000 10.44± 0.38 90.2% ± 1.54% 10.45± 0.47 91.4% ± 1.45%
16000 10.45± 0.19 89.7% ± 1.58% 10.45± 0.23 88.9% ± 1.63%
64000 10.45± 0.09 90.3% ± 1.53% 10.45± 0.11 90.5% ± 1.52%

K = 110 6.0401 1000 6.01± 0.61 90.1% ± 1.55% 6.03± 0.68 88.1% ± 1.68%
4000 6.04± 0.31 88.9% ± 1.63% 6.04± 0.34 91.2% ± 1.47%
16000 6.04± 0.15 91.0% ± 1.48% 6.04± 0.17 91.0% ± 1.48%
64000 6.04± 0.08 89.4% ± 1.60% 6.04± 0.09 89.3% ± 1.60%
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