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A Cluster-Based Approach for Detecting Man-Made
Objects and Changes in Imagery

Mark J. Carlotto, Senior Member, IEEE

Abstract—A new unified approach to object and change detec-
tion is presented that involves clustering and analyzing the dis-
tribution of pixel values within clusters over one or more images.
Cluster-based anomaly detection (CBAD) can detect man-made
objects that are: 1) present in a single multiband image; 2) appear
or disappear between two images acquired at different times;
or 3) manifest themselves as spectral differences between two
sets of bands acquired at the same time. Based on a Gaussian
mixture model, CBAD offers an alternative to compute-intensive,
sliding-window algorithms like Reed and Yu’s RX-algorithm for
single-image object detection. It assumes that background pixel
values within clusters can be modeled as Gaussian distributions
about mean values that vary cluster-to-cluster and that anomalies
(man-made objects) have values that deviate significantly from the
distribution of the cluster. This model is valid in situations where
the frequency of occurrence of man-made objects is low compared
to the background so that they do not form distinct clusters, but
are instead split up among multiple background clusters. CBAD
estimates background statistics over clusters, not sliding windows,
and so can detect objects of any size or shape. This provides the
flexibility of filtering detections at the object level. Examples show
the ability to detect small compact objects such as vehicles as well
as large, spatially extended features (e.g., built-up and bomb-dam-
aged areas). Unlike previous approaches to change detection,
which compare pixels, vectors, features, or objects, cluster-based
change detection involves no direct comparison of images. In fact,
it is identical to the object detection algorithm, different only
in the way it is applied. Preliminary results show cluster-based
change detection is less sensitive to image misregistration errors
than global change detection. The same cluster-based algorithm
can also be used for cross-spectral anomaly detection. An example
showing the detection of thermal anomalies in Landsat Thematic
Mapper imagery is provided.

Index Terms—Change detection, Gaussian processes, image
analysis, image representations, image sequence analysis, object
detection, pattern clustering methods, vector quantization.

I. INTRODUCTION

T
HE DETECTION of man-made objects and changes is im-

portant across a broad range of mapping and reconnais-

sance applications. Although a variety of change detection al-

gorithms exist, most cannot effectively discriminate between

man-made and natural change. This is a problem in that changes

in the natural clutter (e.g., differences in vegetation state, soil

moisture, water quality, etc.) often exceed man-made changes

in magnitude and number. This results in a large number of false

alarms that reduce system performance. Performance is further

reduced by false alarms induced by differences in lighting and
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imaging geometry between images. In single-image object de-

tection, man-made objects are usually modeled as compact re-

gions (e.g., vehicles, buildings, etc.) that are spectrally (or tex-

turally) different from the background. When the characteris-

tics of clutter are similar to the objects of interest, or when the

objects of interest are not compact but spatially extended (e.g.,

built up areas), the false-alarm rate will be high, resulting in poor

performance.

The goal of the present work is to develop techniques for de-

tecting man-made objects and changes while maintaining a low

false-alarm (FA) rate in the presence of significant natural back-

ground clutter. Historically, a considerable amount of cross fer-

tilization has occurred between object and change detection re-

search. Hunt and Cannon [15] first showed that images could be

modeled as Gaussian-distributed intensity fluctuations around

a nonstationary ensemble mean. Motivated by this observation,

Chen and Reed [11] and Reed and Yu [23] developed object

detection techniques based on a local Gaussian model (RX-al-

gorithm). Margalit et al. [36] applied the model to change de-

tection; Hoff et al. [14] and Yu et al. [33] further extended it to

cross-spectral anomaly detection.

Therrien et al. [29] proposed an object detection approach

based on linear filtering similar to Chen and Reed’s. Tom de-

veloped a linear prediction algorithm for change detection [16]

based on Therrien’s image filtering approach. The linear predic-

tion algorithm can also be applied globally to compute the linear

transformation that best predicts (in the minimum mean square

error sense) a new image from a reference image. This is the

basis of the hyperspectral change detection technique described

by Stein et al. [27]. Instead of using a linear estimator, Carlotto

[3], [5], [6] computes a nonlinear minimum mean square error

estimate of the background from multiple reference images for

change detection.

Early change detection techniques were based on statistical

features such as cross correlation and entropy [17]. Mandelbrot

[19] showed that fractals are good models for a variety of nat-

ural phenomena that are self-similar in structure over scale or

resolution. That man-made objects tend to have structure that

varies over scale led Stein [28] to develop an object detection

technique that fits a fractal model to the image within a sliding

window, and detects pixels within the window whose features

deviate from a fractal model. Carlotto and Stein [8] used differ-

ences between fractal features to detect man-made changes.

A variety of change vector techniques have been developed

for multispectral change detection. Byrne et al. [1] perform a

principal components analysis of Landsat data and show that

gross differences in overall radiation and atmospheric changes

appear in the major component images and changes in land
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cover appear in the minor component images. Others compare

physically significant band combinations such as tasseled-cap

features [9], or change vectors [35].

Most change detection techniques require the images to be

physically registered. Symbolic techniques [22] detect changes

by segmenting and comparing regions in terms of their size,

shape, spectral properties, and spatial relations. Object-level

change detection [12], [30] is an outgrowth of the symbolic

approach.

From this brief overview, change detection seems inexorably

tied to the comparison of images, e.g., of pixels, vectors, fea-

tures, or objects extracted from two or more images. Differences

in sensor geometry, environmental conditions, and other factors

have limited the application of change detection techniques to

images taken under relatively similar conditions. Methods have

been developed to estimate and account for global atmospheric

and illumination differences [13], [27]. However, it is more dif-

ficult to model and correct for local (but correlated) changes in

the background (e.g., changing patterns of shading, shadows,

layover, vegetative state, etc.), which are often a major source

of false alarms.

A new unified approach for detecting man-made objects and

changes is described that involves clustering and analyzing the

distribution of pixel values in background clusters over one or

more multispectral image. Known as the cluster-based anomaly

detector (CBAD), this approach assumes the image background

can be partitioned into a set of clusters, where the pixel values

in a cluster are modeled by a multivariate Gaussian distribu-

tion. In single-image object detection, when the frequency of

man-made object pixel values is small compared to background

pixel values, man-made objects do not form their own, distinct

clusters. Instead they are each assigned the nearest background

cluster, becoming an outlier (anomaly) in that cluster (i.e., their

value lies farther from the mean than background pixel values

in the cluster). For change detection, a reference image (against

which change is measured) is divided into clusters. Each cluster

represents a homogenous population of pixels in the reference

image. Over the set of pixel locations in a reference image

cluster, a different set of pixel values are observed in a second

test image. If there is no change over this cluster, pixel values

in the test image will be clustered around the mean. In clusters

affected by change (i.e., clusters that contain changed pixels),

new pixel values will be introduced, which will tend to lie

farther from the mean than background pixel values in those

clusters.

CBAD detects man-made objects and changes by finding spa-

tially connected groupings of outlier pixels in clusters. Based

on a Gaussian mixture model [27], CBAD can be used to detect

man-made objects that are as follows:

• present in a single multiband image;

• appear or disappear between two images acquired at dif-

ferent times;

• manifest themselves as differences between two sets of

spectral bands acquired at the same time.

The organization of the paper is as follows. Section II de-

scribes the CBAD algorithm. In the same way RX is predi-

cated on Hunt and Cannon’s observation that an image can be

modeled as Gaussian fluctuations around a local mean, it is

shown that an image can also be described as Gaussian fluc-

tuations around a mean that varies cluster to cluster. Although

CBAD does not require any particular clustering algorithm, a

vector quantization (VQ) approach was used for its computa-

tional efficiency. Unlike RX whose window size is related to

the size of the objects one wishes to detect, CBAD makes no

assumptions about an object’s size or shape. Examples are pre-

sented illustrating the detection of small compact vehicles as

well as large spatially extended features. Section III describes

the application of CBAD approach to change detection. Unlike

previous methods for change detection that involve a compar-

ison of pixels, vectors, features, or objects, the cluster-based

method involves no direct comparison between images. Prelim-

inary results show it is less sensitive to image registration er-

rors than pixel-based global change detection. Section IV shows

how CBAD can be used to detect man-made objects that mani-

fest themselves in a wavelength-dependent manner between two

sets of bands. Section V addresses similarities between CBAD

and other methods, discusses its shortfalls, and outlines future

work. The Appendix illustrates how size, shape, and other fil-

tering techniques can be used to reduce false alarms at the ob-

ject level for both object and change detection.

II. CLUSTER-BASED ANOMALY DETECTION

Hunt and Cannon [15] proposed that images could be mod-

eled as Gaussian-distributed intensity fluctuations around a

nonstationary ensemble mean. They demonstrated this behavior

in optical imagery by blurring the image, which provides a local

estimate of the mean, and subtracting the blurred (local mean)

image from the original image. The statistics of the resulting

difference image closely approximate white Gaussian noise.

Reed and Yu [23] applied this model for detecting objects of

known shape, but unknown spectral characteristics. Following

their definitions, the shape of the object (template) is specified

by an pixel (lexicographically ordered) vector ; is an

band by pixel matrix of measurements over the region under

test. They derive the generalized-likelihood ratio test (GLRT),

also known as the RX-algorithm for detecting instances of

objects of known shape whose spectral characteristics differ

from those of the background:

then object

then background.
(1)

Stein et al. [27] show that for a single-pixel object, denoted

by the band vector , as the window size , the test

statistic is

(2)

where and are the band sample mean vector and

band covariance matrix computed over the sliding window. For

the hypothesis under test (the null hypothesis), the test statistic

has a Chi-square distribution with degrees of freedom, and

so has a constant false-alarm rate (CFAR) independent of the

background clutter statistics [11]



376 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 2, FEBRUARY 2005

Fig. 1. Cluster-based anomaly detection example. Portion of multispectral
image containing a man-made object (a). Cluster image (b). Assignment of
grayscales to clusters is arbitrary. Note that object pixels do not form their own
cluster but are assigned multiple background clusters. Mahalanobis distance
image (c) shows pixels that do not fit their assigned background cluster model.

A. Gaussian Mixture Model

Instead of a local Gaussian model, CBAD uses a Gaussian

mixture model [27]. Image statistics are computed over clus-

ters as opposed to a sliding window. CBAD assumes that back-

ground pixel values within clusters can be modeled as Gaussian

distributions about mean values that vary cluster-to-cluster, and

that anomalies (man-made objects) have pixel values that de-

viate significantly from the distribution of the cluster. It is con-

jectured that this model is valid in situations where the fre-

quency of occurrence of man-made objects is low compared to

the background and so do not form distinct clusters. Instead,

man-made object pixels are split up among multiple background

clusters as shown in Fig. 1. CBAD exploits this effect by using

the Mahalanobis distance [31], which is the same as the test

statistic (2), as a means for identifying pixels that do fit well

in their assigned cluster.

Multiband data are decomposed into a set of Gaussian

clusters

(3)

where is the number of pixels in cluster . The cluster map

[Fig. 1(b)] assigns an index to each pixel location based on its

cluster membership

(4)

The Mahalanobis distance of a pixel relative to its cluster

[Fig. 1(c)] is

(5)

where and denote the mean and co-

variance for the cluster at location .

The Mahalanobis distance (5) is the same test statistic as the

RX-algorithm for single pixels under test against the local back-

ground (2), and so has the same CFAR property independent of

the background clutter statistics. In CBAD, statistics are com-

puted over clusters that are spatially distributed over the image,

in contrast to the those computed within a sliding window in

RX. The size of the window in the RX-algorithm is related to

the size of the objects of interest. CBAD estimates background

statistics over clusters, not sliding windows, and so can detect

anomalies of any size (or shape) as shall be demonstrated below.

This provides the flexibility of filtering detections by size and

shape at the object-level. The Appendix discusses detection and

object-level (postdetection) processing in CBAD.

B. Clustering by Vector Quantization

CBAD is potentially more compute-efficient than the

RX-algorithm, since it operates over clusters. If is the

number of pixels in an image, the complexity of RX is

, where is the window size. CBAD’s complexity is

plus clustering. This factor of

savings in computation can only be realized if an efficient clus-

tering algorithm is chosen. Iterative algorithms like K-means

[31], expectation-maximization [37], and others can require

as many as operations per iteration, and require many

iterations to converge. Although the cluster-based approach is

not predicated on any particular clustering algorithm, a non-

iterative, vector quantization (VQ) technique, based on ideas

summarized in Pratt [21], was chosen for its computational

efficiency.

In one dimension, the VQ algorithm assigns image pixel

values one of levels

(6)

The levels are chosen so as to minimize the

mean square quantization error

MSQE (7)

where is the probability density of the image. For a uni-

form density, the levels are equally spaced between the min-

imum and maximum image values. In general, a companding

approach [21] can be used that histogram equalizes the image

to force it to have a uniform density

(8)

The cumulative distribution function (cdf) of the histogram-

equalized image is divided into equally spaced probability

intervals

(9)

These intervals are mapped back via the inverse transform

to obtain the variably spaced quantization levels of the orig-

inal image

(10)

Pratt [21] discusses several VQ strategies for multiband

data. If the data are Gaussian, one approach is to spectrally
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Fig. 2. (a) Example image, (b) cdf, and quantization levels, and (c) cluster mean image.

decorrelate (rotate) the data using a principal components (PC)

transformation

... (11)

where rows of the spectral whitening matrix are the eigenvectors

are the covariance matrix

(12)

and the eigenvectors and eigenvalues of the covari-

ance matrix satisfy

(13)

Each PC image can then be quantized individually and the

results combined. For Gaussian data, the total entropy

(14)

where is the density of the th PC image. The entropy in

the th PC image is [24]

(15)

where .

It is noted that (14) is only an approximation if the data are not

Gaussian. Provided the Gaussian assumption is valid, bits can

be allocated to PC images based on their relative information

content. If is the desired number of clusters, ,

where is an integer (i.e., ), and ,

(16)

is the number of bits assigned to the th PC image. A block

quantization scheme is used to allocate an integer number of

bits to each PC based on their information content. The resulting

cluster decision regions are the intersection of individual PC

decision intervals.

C. Cluster-Based Whitening

RX assumes that images can be modeled as Gaussian-dis-

tributed intensity fluctuations around a nonstationary local

mean. CBAD assumes that images can be modeled as Gaussian

distributions about a mean value that varies cluster to cluster.

To assess the empirical validity of the cluster-based model,

consider the image in Fig. 2(a) containing two vehicles in a

complex natural background. The cdf of the image is plotted

along with (plus zero) quantization levels [Fig. 2(b)].

Fig. 2(c) is the quantized image where each pixel value in the

original image is replaced by the average of its respective upper

and lower quantization levels. This is an image of ensemble

means computed over clusters (quantization intervals) as op-

posed to local means computed in a sliding window.

It is now demonstrated that the statistics of the difference

between the cluster-based mean image and the original image

approximates white Gaussian noise. Fig. 3(a) is the upper left

corner of the image in Fig. 2(a) containing only background

clutter. Fig. 3(b) is its histogram; Fig. 3(c) is the autocorrela-

tion function. Fig. 3(d) is the upper left corner of the difference

between the image in Fig. 2(a) and the image of cluster means

in Fig. 2(c). Its histogram [Fig. 3(e)] is much more Gaussian

than that of the original image [Fig. 3(b)], and its autocorrela-

tion [Fig. 3(f)] closely resembles that of white noise.

Fig. 4(a) is the difference between the original image in

Fig. 2(a) and the image of ensemble means in Fig. 2(c). Log

plots of the cdf of difference images computed for , 8,

and 64 levels are shown in Fig. 4(b). For levels, essen-

tially Gaussian behavior is exhibited over a large portion of the

distribution. Too many or too few clusters

result in difference images that are not Gaussian, analogous

to those resulting from smoothing windows that are either too

small or too large [15].

The image of Mahalanobis distances [Fig. 4(c)] reveals those

pixels that do not cluster well. They can be visualized in the

isometric plot [Fig. 5(a)] which displays the Mahalanobis dis-

tance as a function of image value and cluster. Clusters at the

low and high ends contain the tails of the distribution [Fig. 5(b)].

Shadows and bright materials are farthest from the mean in these

clusters and so have the highest Mahalanobis distance.

D. Object Detection Examples

Fig. 6(a) shows a slightly larger portion of the image of the

two vehicles shown earlier in Fig. 2 (image size 400 400

pixels). Fig. 6(b) is the output from single-pixel RX-algorithm

(2) and Fig. 6(c) is the Mahalanobis distance (5). Even though

the vehicles are similar in tone to the background, both RX and

CBAD are to detect them from their cast shadows. Fig. 6(d) and

(e) plot the receiver operating characteristic (ROC) curves for



378 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 2, FEBRUARY 2005

Fig. 3. Subimage containing background (a) only, (b) histogram, and (c) autocorrelation plot. (d) Difference image, (e) histogram, and (f) autocorrelation plot.

Fig. 4. (a) Difference image, (b) cdfs of difference images, and (c) Mahalanobis distance image. CDFs (of pixel counts) in (b) are plotted on a log scale. Linear
portions of plot are indicative of Gaussian behavior.

Fig. 5. (a) Isometric plot and (b) histogram of image in Fig. 2(a).
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Fig. 6. Comparison of CBAD and RX performance for single-band image. (a) Image containing two vehicles. (b) RX output (N = 160 � 160). (c) CBAD
output (R = 32). (d) Pd versus Pfa (log scale) for RX. (e) Pd versus Pfa (log scale) for CBAD. (f) comparison of CBAD and RX performance.

RX and CBAD. The probability of detection (Pd) and proba-

bility of false alarm (Pfa) are based on the fractions of object and

background pixels detected relative to a truth mask as a function

of detection threshold. The single-pixel version of RX was ap-

plied using window sizes of 40 40, 80 80, and 160 160

pixels. CBAD was run at and clusters (quantization

levels). A comparison of curves [Fig. 6(f)] indicates that CBAD

has better a Pd at low Pfa, and RX has a better Pd at high Pfa in

this particular example.

Figs. 7 and 8 present two multispectral object detection ex-

amples illustrating the use of CBAD in detecting large spatially

extended features and small compact objects. A portion of an

Ikonos image1 over Dawrah, Iraq [Fig. 7(a)] shows a built up

area (top) and bomb-damage (bottom). The first three Ikonos

bands were divided into clusters bits . Fig. 7(b)

is the cluster map, and Fig. 7(c) plots cluster versus Ikonos

band 1 and band 3 values. The rectangular decision regions

are result of block quantization. The global Gaussian assump-

tion (14) appears to be reasonably valid for the data in this ex-

ample. Fig. 7(d) plots the Mahalanobis distance versus Ikonos

bands 1 and 3. Pixels that lie in the tails of the global distribu-

tion have high Mahalanobis distance relative to their assigned

cluster [Fig. 7(e)]. Being large and spatially extended, these re-

gions would be difficult to detect using the RX-algorithm. The

result of size filtering after detection CFAR for regions

larger than 500 pixels in area (arbitrary threshold) is shown in

Fig. 7(d). (The Appendix discusses detection, region labeling,

and filtering.)

The second example involves the detection of small compact

objects (ground vehicles) in multispectral imagery consisting

1http://www.spaceimaging.com/gallery/default.htm.

of three visible and one near-infrared (NIR) band [Fig. 8(a)].

Fig. 8(b) is the cluster map, and Fig. 8(c) plots cluster versus

band 4 and band 3 values. The Gaussian assumption does not

appear as valid as in the previous example, yet the algorithm

still performs well. Fig. 8(d) plots the Mahalanobis distance

versus bands 4 and 3. The vehicles (and some trees), which

lie at the periphery of the global distribution [Fig. 8(d)], have

a high Mahalanobis distance with respect to their assigned clus-

ters [Fig. 8(e)]. Like ground vehicles, certain tree spectra have

a low frequency of occurrence in the limited area processed

and are a source of false alarms. Size filtering after detection

CFAR eliminates trees leaving vehicle-sized detec-

tions [Fig. 8(f)].

III. CLUSTER-BASED CHANGE DETECTION

Consider two coregistered multiband images: a reference

image and a test image acquired at a latter time

containing a man-made change. The test image contains two

components

(17)

where is the background, and is change. If the

two images are acquired under identical conditions,

. Image subtraction yields

(18)

In practice, atmospheric and sensing conditions also change,

and so the appearance of the background is different in the two

images. The key challenge in detecting man-made change is the

elimination of nonsignificant changes in the background.
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Fig. 7. Extraction of large spatially extended features using CBAD.
(a) Ikonos bands 1–3 over Dawrah, Iraq. Band centers at 0.48, 0.55, and
0.66 �m. (b) False-color (in grayscale) rendition of cluster map (R = 16
clusters). (c) Cluster map displayed as a function of the band 1 (horizontal axis)
and band 3 (vertical axis) value. (d) Mahalanobis distance (brightness) plotted
as a function of the band 1 (horizontal axis) and band 3 (vertical axis) value.
(e) Mahalanobis distance image. Large values occur over built up area (top)
and bomb damage (below). (f) Detected regions greater than 500 pixels in area
ranked by their average Mahalanobis distance (Pfa = 0:1).

A change detection technique described by Stein et al. [27]

exploits the fact that under certain conditions spectral measure-

ments of the same material viewed at different times are linearly

related. This leads to the linear transform

(19)

where the parameters are determined by linear regression.

Often images have systematic background differences, e.g.,

poorly drained fields are wetter in one image, or bodies of water

have a higher turbidity, etc. These correlated differences in the

background are not considered significant, yet they are a major

source of false alarms.

Rather than use a single (global) function [Fig. 9(a)], one

could cluster the two images, match clusters in the reference

image to those in the test image, and use a different function for

the pixels in each cluster. For example, a linear transform could

be computed over each cluster

(20)

where the functions vary by cluster [Fig. 9(b)]. The would pro-

vide the change detector additional degrees of freedom to adapt

to background differences.

Fig. 8. Extraction of compact objects using CBAD. (a) False-color (in
grayscale) multispectral image (bands 4, 3, and 2 in medium, light, and dark
areas, corresponding to red, green, and blue). (b) False-color (in grayscale)
rendition of cluster map (R = 4 clusters). (c) Cluster map displayed as
a function of the band 4 (horizontal axis) and band 3 (vertical axis) value.
(d) Mahalanobis distance (brightness) plotted as a function of the band 4
(horizontal axis) and band 3 (vertical axis) value. (e) Mahalanobis distances
image. Large values occur over vehicles and trees. (f) Detected regions within
the size range of vehicles ranked by their average Mahalanobis distance and
compactness. (Pfa = 0:01).

Instead of actually estimating these functions over each

cluster and performing change detection by subtraction (18),

an alternative method is proposed that is based on analyzing

the distribution of pixel values within clusters. In cluster-based

change detection (CBCD), the reference image is divided into

clusters as in CBAD. Each cluster represents a homogenous

population of pixels in the reference image. Over the set of

pixel locations in a reference image cluster, a different set of

pixel values are observed in the test image. If there are no

man-made changes affecting this cluster, the pixel values in the

test image will be related to those in the first. Instead of trying

to determine an explicit relation to account for any background

differences over the cluster, pixel statistics in the second image

are examined to determine whether or not man-made changes

have occurred. If there are correlated changes in the back-

ground over the cluster, the test image mean and covariance

may be different from the reference image, but the pixels in

the cluster will remain clustered around the mean. But if the

cluster is affected by man-made change, new (uncorrelated)

values will be introduced tending to produce clusters with a

mixed population of pixels, having a wider spread of values.

As in CBAD these man-made change pixels will have a higher

Mahalanobis distance relative to the background.
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Fig. 9. (a) Global change detection uses a single function to relate reference and test image spaces. (b) Cluster-based change detection effectively assumes
different functions for each cluster.

Fig. 10. Illustration of cluster-based change detection concept. (a) Reference image (blue band), (b) test image (blue band). (c) False-color (in grayscale) rendition
of reference image cluster map. (d) Blue band reference image histogram over no change cluster. (e) Blue band test image histogram over no change cluster.
(f) Pixel locations of no-change cluster. (g) Blue band reference image histogram over cluster with a change. (h) Blue band test image histogram over cluster with
a change—note presence of second population. (i) Pixel locations of cluster containing change.

Assume the reference image has been divided into a set of

clusters where each cluster is represented by a set of pa-

rameters (3). Let be the set of cluster parameters computed

from the test image over the spatial extent of the clusters

derived from , i.e., where

(21)

The reference image statistics model random back-

ground fluctuations within a cluster as a multivariate Gaussian

distribution. For each pixel in the reference image, its Maha-

lanobis distance is given by (5). Now, for each pixel in the test

image, its Mahalanobis distance image relative to is

(22)

Within-cluster differences in the test image are caused by

background fluctuations and changes in the test image. It is con-
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Fig. 11. Comparison of CBCD and global change detection algorithm results. (a) Reference image. (b) Test image. (c) Global change detection difference image.
d) CBCD Mahalanobis distance image (R = 2 clusters). (e) CBCD Mahalanobis distance image (R = 256 clusters). (f) ROC curves plotting Pd versus Pfa in
(percent object and background pixels detected as a function of operating point).

jectured that changed pixels in a cluster will have a higher Ma-

halanobis distance than background (no change) pixels.

A. Change Detection Example

Fig. 10 illustrates the change detection concept. A pair of

Ikonos images (bands 1–3) were registered. Consider a region

containing vehicle changes on a road [Fig. 10(a) and (b)]. A

cluster map ( clusters) was computed using the VQ

algorithm over this region [Fig. 10(c)]. Let us examine two

clusters: one over a region of no change [Fig. 10(f)], the other

containing a vehicle change in the test image [Fig. 10(i)].

The VQ algorithm produces clusters in the reference image

whose distributions are approximately Gaussian [Fig. 10(d)].

Assuming a linear relationship between the test and references

image pixels within this cluster, the distribution of pixel values

in the test image [Fig. 10(e)] should also be approximately

Gaussian. Changes in the test image generally affect multiple

clusters, e.g., the appearance of a vehicle replaces background

pixel values in some clusters by those of the vehicle. The value

of changed pixel(s) will, in general, differ from those of the

background leading to a mixed population. This is seen in one

such cluster [Fig. 10(i)], where the reference image distribution

is approximately Gaussian [Fig. 10(g)], while the test image

distribution is mixed [Fig. 10(h)]. If the frequency of change

within a cluster is small, the change pixels do not significantly

affect the statistics of the cluster, which is dominated by the

background. However, change pixels, which deviate from the

background, produce larger Mahalanobis distances than do

background pixels.

B. Comparison of CBCD and Global Change Detection

Fig. 11 compares CBCD with a global change detection al-

gorithm for the two images in the previous example. The global

change detection algorithm uses the reference image to estimate

the background in the test image by assuming a linear relation

(19). Significant differences in atmospheric state, illumination,

sensor geometry, and ground cover result in large background

differences between the two images [Fig. 11(a) and (b)]. In this

example, two vehicles appear, and one vehicle disappears. The

appearance of the two vehicles is clearly evident in the Ma-

halanobis distance image [Fig. 11(d) and (e)]. By comparison

these changes are much less obvious in the global change detec-

tion result [Fig. 11(c)], in which background differences domi-

nate. (Objects that disappear are detected by running the change

detector in the reverse direction.) Fig. 11(f) plots ROC curves for

the three results [Fig. (11c)–(e)]. At a given Pd, CBCD has about

an order of magnitude fewer false-alarm pixels than the global

change detection algorithm. Changing the number of clusters

does not greatly affect CBCD results, since the changes are

spectrally distinct from the background in this example.

C. Effect of Misregistration on Detection Performance

Misregistration is typically a significant factor limiting

change detection performance [10]. In order to assess its effect

on CBCD, the reference and test images were misregistered by

shifting one relative to the other. Fig. 12 plots the performance

of CBCD and global change detection for shifts of 0, 1, and 4

pixels in the horizontal direction. The performance of global

change detection decreases significantly as misregistration
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Fig. 12. Effect of misregistration on CBCD and global change detection
performance (Pd versus Pfa). (a) Global change detection performance
(Pd versus Pfa). (b) CBCD performance (R = 256 clusters). (c) CBCD
performance (R = 2 clusters). (d) Comparison of global change detection and
CBCD (+4 shift).

increases [Fig. 12(a)]. In comparison, CBCD performance

( clusters) decreases only slightly [Fig. 12(b)]. For

clusters, performance is relatively constant [Fig. 12(c)].

CBCD’s stability in performance is attributed to the fact that the

background is estimated over a set of pixels that are distributed

over the entire image. Spatial structure in images causes neigh-

boring pixels to be statistically correlated. The correlation

distance depends on the scale of the structure. In parts of the

image containing larger structures, the distance will be greater

than in parts containing smaller structures. CBCD operates over

spatially distributed, nonconnected pixel sets and so can take

advantage of spatial correlations where and when they occur.

At Pd CBCD has almost two orders of magnitude fewer

FA pixels than global change detection [Fig. 12(d)].

D. Results for Larger Image Pair

Results for a larger portion of the previous image pair are now

presented. Fig. 13(a) and (b) shows a registered pair of Ikonos

images (bands 1–3) acquired before and after the start of the

Iraqi War. Global change detection and CBCD results are shown

in Fig. 13(c) and (d). The global change detection algorithm re-

sponds largely to background differences, including changes in

the appearance of roads due to shading and shadowing differ-

ences, and vegetation changes. CBCD, on the other hand, re-

sponds strongly to the bomb damage, and to a lesser extent, to

changes in the built-area near the top of the image. The latter

are false-alarms caused by changing patterns of building lay-

over and shadows between the two dates. Discussions of these

effects and methods to reduce their impact on change detection

performance are contained in Section V and the Appendix.

Fig. 13. Comparison of global change detection and CBCD results over a
larger image. (a) Reference (old) image. (b) Test (new) image. (c) Global change
detection difference image. (d) CBCD Mahalanobis distances image (R = 256

clusters).

IV. CROSS-SPECTRAL ANOMALY DETECTION

Instead of operating on two images over time, one set of

image bands can be used to estimate another set of bands (from

the same or a different coregistered sensor) imaged at the same

time. For example, a technique for removing space-varying,

wavelength-dependent haze (and smoke) in multispectral im-

agery uses reflective infrared (IR) bands, which are less affected

by haze, to estimate the visible bands [4]. The technique effec-

tively removes the space-varying haze in the visible bands [26].

Haze and smoke can be interpreted as spectral anomalies—fea-

tures in one set of bands that are not predictable from another

set of bands. Hoff et al. [14] describe a generalized spectral

difference algorithm for detecting weak targets in multiband

imagery. It assumes that natural backgrounds behave as a gray

body (emitting more or less uniformly over wavelength), while

man-made objects emit radiation more strongly at particular

wavelengths. Stated another way, natural backgrounds tend

to be highly correlated while man-made objects exhibit less

correlation (are not predictable) band to band.

The cluster-based approach can be applied to cross-spectral

anomaly detection in the same way as change detection. Two

sets of bands are defined: reference bands in which the objects

of interest cannot be distinguished from the background, and

test bands which respond weakly to the objects of interest. The

reference bands are clustered (3), statistics of the test bands are

estimated over the spatial extent of the clusters derived from

the reference bands (21), and the Mahalanobis distance is com-

puted for each test pixel relative to its corresponding cluster

(22). Within-cluster differences in the test bands are caused by

background and object fluctuations. The cluster-based model as-

sumes spectrally anomalous object pixels will be farther from

the mean (have a higher Mahalanobis distance) than background

pixels in a cluster.

Fig. 14 illustrates cluster-based cross-spectral anomaly de-

tection on Landsat Thematic Mapper (TM) imagery. Landsat
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Fig. 14. Illustration of cluster-based cross-spectral anomaly detection concept. (a) One of several mixed urban clusters over band 4. (b) Band 4 histogram. (c) Same
mixed urban cluster over band 6. (d) Band 6 histogram. (e) One of several water clusters over band 4. (f) Band 4 histogram. (g) Same water cluster over band 6.
(h) Band 6 histogram showing evidence of second component due to warmer pixels from power plant.

TM contains three visible bands (bands 1, 2, and 3) and three

reflective IR bands (bands 4, 5, and 7) at 30 m/pixel, and one

thermal band (band 6) at 120 m/pixel. Landsat bands 1–5,

and 7 (reference bands) were clustered over a region north

of Boston. Band 6 (the test band) responds to the objects

of interest (thermally emissive features). Fig. 14(a) and (c)

highlights the pixel locations of a cluster (mixed urban) over

bands 4 and 6. Fig. 14(b) and (d) shows the histograms of

bands 4 and 6 over that cluster. This cluster does not contain

any thermally anomalous features, i.e., the thermal band is

correlated with the visible/relective IR bands. Fig. 14(e) and

(g) plots the pixel locations of a cluster (water) containing

a spectral anomaly (thermal discharge from a power plant)

over the same bands; Fig. 14(f) and (h) shows the histograms

over the cluster. The thermal discharge from the power plant

raises the temperature of the water which produces a mixed

population of cooler (background) and warmer (object) pixels

in the band 6 histogram [Fig. 14(h)].

Fig. 15 plots bands 4 and 6 values, and the Mahalanobis

distance along a transect over water through the power plant’s
thermal plume. While the IR reflectivity (band 4) over water

remains relatively constant, the thermal emissivity (band 6)

increases slightly in the plume. The mixed population of band

6 values over clusters containing the plume (one of which is

shown in Fig. 14) produces large within-cluster differences

(large values of the Mahalanobis distance). Stated another

way, the thermal discharge is not detectable in the visible and

reflective IR bands, and so cannot be predicted from these

bands. This leads to large prediction errors in the weighted

spectral difference algorithm [14, eq. (13)].

A. Thermal Anomaly Detection Example

Fig. 16(a) is a false-color image of Landsat TM bands 4, 3,

and 2 (same area as shown in Fig. 14). The thermal band image

is shown in Fig. 16(b). Two features of interest are identified

Fig. 15. Data along transect through power plant’s thermal plume. Bands 4
and 6 are raw (uncalibrated) pixel values. Mahalanobis distance increases as
one moves through the plume.

with arrows: a shopping center (upper left), and a coal-burning

power plant (lower right). Neither feature stands out from the

background in the visible and NIR (reference) bands. In the test

band (thermal band), the shopping center is warmer than the

surrounding area, but the power plant’s thermal discharge into

the cold water is not noticeably warmer than nearby regions

[Fig. 16(b)]. Mahalanobis distance images were computed for

different numbers of clusters. Fig. 16(c) is the result for

clusters, which clearly reveals the power plant, shopping

center, and several other smaller thermal anomalies. Fig. 16(d)

plots ROC curves for the thermal (band 6) image, and for CBAD

with and 256 clusters. As in previous examples the

Pd and Pfa are based on the fractions of object and background

pixels detected relative to a truth mask as a function of detec-

tion threshold. For clusters, at Pd , CBAD has

roughly two orders of magnitude fewer false-alarm pixels than

simple thresholding of band 6.
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Fig. 16. Thermal anomaly detection example. The object of interest is the
Salem Harbor power plant near the lower right corner of the image. (a) Landsat
TM bands 4-3-2. (b) Thermal band (TM 6). Arrows show thermally anomalous
features. (c) Mahalanobis distance image (R = 256 clusters). (d) ROC curves
plotting detection performance around the power plant. (Solid line) Band 6.
(Dashed line) CBAD (R = 32). (Dashed–dotted line) CBAD (R = 256).

V. DISCUSSION

CBAD provides a unified approach to object and change de-

tection based on a Gaussian mixture model. It has been shown

to be useful in detecting man-made objects that are: 1) present in

a single multiband image; 2) appear or disappear between two

images acquired at different times; or 3) manifest themselves as

spectral differences between two sets of bands acquired at the

same time.

The cluster-based method was motivated by previous work

in nonlinear mean square image estimation. Nonlinear image

estimation algorithms have been applied to change detection [5],

elevation data sharpening [6], and haze equalization [4]. In each

application, a nonlinear function is assumed to exist between

input and output subspaces. For change detection, it is between

two images acquired at different times, for haze equalization it

is between two sets of spectral bands acquired at the same time,

and for elevation sharpening it is between an image and gradient

information derived from lower resolution terrain elevation data.

A hash table implementation [2] stores the nonlinear estimate

for each unique combination of input pixel values

(pixel sets) computed from the output image:

(23)

where are the number of pixels with value .

Instead of computing estimates over pixel sets, the

cluster-based approach forms its estimates over clusters. It

can be viewed as a generalization of the nonlinear image

estimation technique. In nonlinear estimation, averaging is over

pixels with the same value. In cluster-based anomaly detection

averaging is over the pixels in a cluster

(24)

where are the number of pixels in cluster . The cluster-

based estimator thus reduces to the nonlinear image estimator

when clusters consist of unique pixel-value combinations.

The number of clusters is currently a user-specified param-

eter that depends on the spectral diversity of the scene. For large

spectrally diverse scenes, hundreds of clusters may be needed

to provide a sufficient number of degrees of freedom to adapt to

the different background types present. As a result noniterative

clustering algorithms like VQ, capable of efficiently partitioning

large images into large numbers of clusters, are desirable. Al-

though a VQ clustering algorithm was used here for efficiency

reasons, there is no reason why other techniques could not be

substituted. One area of future work is to evaluate alternative

algorithms, e.g., stochastic EM clustering algorithm [18], and

others.

The key question is how to determine the optimal number of

clusters. CBAD performance (Pd/Pfa) increases as the number

of clusters increases to a point, beyond which it decreases. Pfa

decreases as the background is subdivided into smaller, more

homogeneous clusters; Pd decreases when the number of clus-

ters become so large that the objects of interest form their own

clusters. The minimum description length (MDL) method [25]

can be used to pick the number of clusters that results in the

greatest compression of the data. McKenzie and Adler [20] find

MDL to be more efficient than Akaike information criterion for

Gaussian mixtures. Yeung et al. [34] describe a model-based ap-

proach using a Bayesian information criterion.

CBCD provides a fundamentally new approach to change de-

tection, one which does not involve a comparison of pixel values

(or linear functions of pixel values) between images. In contrast,

the Chronochrome algorithm estimates the background in the

test image as linear function of the reference image, and detects

changes on the whitened difference image [27]. Since CBCD

detects deviations in the background distribution over clusters,

changes that affect an entire cluster (correlated changes) are not

detected by CBCD. A large fraction of the background differ-

ences in the examples in Figs. 11 and 13 are correlated changes

(e.g., shading and shadow changes). They are a major source of

false change in the global change detection algorithm, but are

ignored by CBCD. Unfortunately, certain types of man-made

change (e.g., large scale forest clearing, cultivation, or urban de-

velopment) may appear as correlated changes and be missed by

CBCD.

CBCD, like most change detection techniques, requires the

images to be physically registered to each other. Preliminary

results indicate that CBCD is more tolerant of registration er-

rors than global change detection. The point where performance

breaks down needs to be explored further to determine its re-

lation to the size of the changes, their signal to noise ratio,

the number of clusters, and other factors. Differences in sensor

and lighting geometry produce false alarms due to layover and

shadow changes. CBAD currently uses an object-level strategy

to reduce false alarms as discussed in the Appendix. Another
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Fig. 17. CBAD object-level processing flow for object and change detection.

method, based on minimizing the Mahalanobis distance over a

local search window, is also being explored.

CBAD can be applied to cross-spectral (cross-sensor)

anomaly detection in the same way as it is used for two-image

change detection. Like CBCD, cross-spectral anomaly detec-

tion does not involve a comparison of pixel values (or linear

functions of pixel values) between bands. It differs from the

generalized spectral difference algorithm [14], which is a

whitened difference between linearly transformed reference

bands and test bands. The generalized spectral difference al-

gorithm operates between bands in much the same way as the

Chronochrome algorithm operates between images (compare

Hoff et al. [14, eq. (15)] with Stein et al. [27, eq. (24)]).

Algorithm fusion by combining local, reference image/band,

and cluster based models can offer significant performance

gains [7], [27] and is an important area of future work.

APPENDIX

OBJECT-LEVEL PROCESSING

Unlike RX, CBAD does not assume knowledge of an ob-

ject’s size or shape at the pixel level. Instead, it defers the use of

size/shape information until after detection, at the object level.

This allows different objects to be detected without having to

run multiple anomaly detectors.

Object and change detection systems often use a combina-

tion of pixel- and object-level processing techniques [7], [12].

Fig. 17 shows the object-level processing flow for object and

change detection. Objects (top path) are detected by thresh-

olding the Mahalanobis distance (MD) image from CBAD. Can-

didate man-made object pixels are those whose MD values (5)

exceed a threshold

otherwise
(A1)

where the threshold depends on the desired false-alarm rate.

Detected pixels are processed as spatially connected

regions [32]. This involves connected pixel labeling, which

builds a label map that represents each region (object) by a

unique value in the map. Next, a set of features are computed

for each connected region such as area, perimeter, centroid,

length, width, pose, average Mahalanobis distance within the

region, and others. Regions outside a given size range can be

Fig. 18. Change analysis example illustrating the remove of state changes.
(a) Forward change image. (b) Backward change image. (c) All changes.
(d) Object appearance and disappearance changes.

eliminated at this stage of processing, and remaining regions

scored based on desired object size/shape characteristics.

The two examples in Figs. 7 and 8 illustrate size filtering

and scoring. In the first example, the objective was to extract

large, spatially extended regions affected by bomb-damage. Re-

gions smaller than 500 pixels in area were eliminated. Those

that remained were scored by their average MD value. In Fig. 8,

the goal was to detect vehicle-size objects. Regions outside the

range of 15–30 pixels were eliminated. Remaining regions were

scored by their average MD value and compactness (area di-

vided by perimeter squared). (The values used in these examples

were empirically derived and are intended only to demonstrate

the ability to do filtering at the object-level.)

The same process is used for processing forward CBCD

changes. Forward changes are objects not present in a reference

image that appear in a new image. Candidate forward change

(appearance) object pixels are those whose MD values (22)

exceed a threshold

otherwise.
(A2)

The change detection examples addressed in Figs. 10–13 in-

volved forward change detection only.

Backward changes are objects present in the reference image

that disappear in the new image. Candidate backward change

(disappearance) object pixels are those whose MD values ex-

ceed a threshold

otherwise
(A3)

where

(A4)
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is the new image cluster map, and

(A5)

Detected changes can be further processed at the object level to

eliminate false alarms caused by differences in shadowing, lay-

over, object pose, etc. between images. This can be accomplished

by removing spatially overlapping changes that occur in both di-

rections, which is illustrated in Fig. 18. Fig. 18(a) are forward

changes, where the box identifies a vehicle of interest. Fig. 18(b)

are backward changes, where the box indicates the same vehicle

at a different location at a later time. Fig. 18(c) are all forward

and backward changes. Fig. 18(d) are only those changes greater

than 50 pixels in area that do not overlap any opposite change.
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