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Abstract

Developing an effective cooperative spectrum sensing (CSS) scheme in cognitive radio (CR), which is considered as

promising system for enhancing spectrum utilization, is necessary. In this paper, a cluster-based optimal selective CSS

scheme is proposed for reducing reporting time and bandwidth while maintaining a certain level of sensing

performance. Clusters are organized based on the identification of primary signal signal-to-noise ratio value, and the

cluster head in each cluster is dynamically chosen according to the sensing data qualities of CR users. The cluster

sensing decision is made based on an optimal threshold for selective CSS which minimizes the probability of sensing

error. A parallel reporting mechanism based on frequency division is proposed to considerably reduce the time for

reporting decision to fusion center of clusters. In the fusion center, the optimal Chair-Vashney rule is utilized to obtain

a high sensing performance based on the available cluster’s information.

Keywords: Cognitive radio, Cooperative spectrum sensing, Cluster, Selective combination, Parallel reporting

mechanism

1 Introduction
Cognitive radio (CR) has been recently proposed as a

promising technology to improve spectrum utilization by

enabling secondary access to unused licensed bands. A

prerequisite to this secondary access is having no interfer-

ence to the primary system. This requirementmakes spec-

trum sensing a key function in cognitive radio systems.

Among common spectrum sensing techniques, energy

detection is an engaging method due to its simplicity

and efficiency. However, the major disadvantage of energy

detection is the hidden node problem, in which the sens-

ing node cannot distinguish between an idle and a deeply

faded or shadowed band [1]. Cooperative spectrum sens-

ing (CSS) which uses a distributed detection model has

been considered to overcome that problem [2-12].

Cooperation among CR users (CUs) is usually coordi-

nated by a fusion center (FC). For each sensing interval,

CUs will send their sensing data to the FC. In the FC,

all local sensing data will be combined to make a final

decision on whether the primary signal is present or

absent. An optimal data fusion rule was firstly considered
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by Chair and Varshney in [13]. Despite a good perfor-

mance, the requirement for knowledge of detection and

false alarm probabilities at each local node is still a barrier

to the optimal fusion rule.

CSS schemes require a large communication resource

including sensing time delay, control channel overhead,

and consumption energy for reporting sensing data to the

FC, especially when the network size is large. There are

some previous works [3-9] that considered this problem.

In our previous work [3], we proposed an ordered sequen-

tial reporting mechanism based on sensing data quality

to reduce communication resources. A similar sequential

ordered report transmission approach was considered for

reducing the reporting time in [4]. However, the reporting

time of these methods is still unpredictably long. In [5],

the authors proposed to use a censored truncated sequen-

tial spectrum sensing technique for saving energy. On the

other hand, cluster-based CSS schemes are considered for

reducing the energy of CSS [6] and for minimizing the

bandwidth requirements by reducing the number of ter-

minals reporting to the fusion center [7]. In [8], Chen

et al. proposed a cluster-based CSS scheme to optimize

the cooperation overhead along with the sensing reliabil-

ity. In fact, these proposed cluster schemes can reduce

the amount of direct cooperation with the FC but cannot
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reduce the communication overhead between CUs and

the cluster header. A similar problem can be observed in

the cluster scheme in [9], though the optimal cluster size

to maximize the throughput used for negotiation is iden-

tified. Another consideration of the cluster scheme is to

enhance sensing performance when the reporting channel

suffers from a severe fading environment [10,11].

In this paper, we propose a cluster-based selective CSS

scheme which utilizes an efficient selective method for the

best quality sensing data and a parallel reporting mecha-

nism. The selective method, which is usually adopted in

cooperative communications [14,15], is applied in each

cluster to implicitly select the best sensing node during

each sensing interval as the cluster header without addi-

tional collaboration among CUs. The parallel reporting

mechanism based on frequency division is considered to

strongly reduce the reporting time of the cluster decision.

In the FC, the optimal Chair-Vashney rule (CV rule) is uti-

lized to obtain a high sensing performance based on the

available cluster’s signal-to-noise ratio (SNR). In this way,

the proposed cooperative sensing will be performed with

an extremely low cooperation resource while a certain

high level of sensing performance is ensured.

The remainder of this paper is organized as follows.

In Section 2, some background on spectrum sensing and

optimal fusion rule is described. In Section 3, we present

system descriptions. The proposed system model and

detailed descriptions of the proposed cluster-based selec-

tive CSS scheme are also given in Section 4. Simulation

results are shown in Section 5. Finally, the conclusions are

drawn in Section 6.

2 Preliminaries

2.1 Local spectrum sensing

Each CU conducts a spectrum sensing process, which is

called local spectrum sensing in distributed scenario for

detecting the primary user (PU) signal. Local spectrum

sensing at the ith CU is essentially a binary hypotheses

testing problem:
{

H0 : xi (t) = ni (t) ,

H1 : xi (t) = his (t) + ni (t) ,
(1)

where H0 and H1 correspond, respectively, to hypotheses

of absence and presence of the PU signal, xi (t) represents

received data at CUi, hi denotes the gain of the channel

between the PU and the CUi, s (t) is the signal transmitted

from the primary user, and n (t) is additive white Gaussian

noise. Additionally, channels corresponding to different

CUs are assumed to be independent, and further, all CUs

and PUs share a common spectrum allocation.

Among various methods for spectrum sensing, energy

detection has been shown to be quite simple, quick, and

able to detect the primary signal - even if the feature of the

primary signal is unknown. Here, we consider the energy

detection for local spectrum sensing. Figure 1 shows the

block diagram of an energy detection scheme. To measure

the signal power in a particular frequency region in a time

domain, a band-pass filter is applied to the received signal,

and power of the signal samples is then measured at CU.

The estimation of received signal power is given at CUi by

the following equation:

xEi =
N

∑

j=1

∣

∣xj
∣

∣

2
, (2)

where xj is the jth sample of the received signal and N =
2TW in which T andW correspond to detection time and

signal bandwidth in hertz, respectively.

If the primary signal is absent, xEi follows a central chi-

square distribution withN degrees of freedom; otherwise,

xEi follows a noncentral chi-square distribution with N

degrees of freedom and a noncentrality parameter θi =
Nγi, i.e.,

xEi ∼
{

χ2
N , H0,

χ2
N (θi) H1.

(3)

WhenN is relatively large (e.g.,N > 200) [16], xE can be

well approximated as a Gaussian random variable under

both hypotheses H1 and H0, according to the central limit

theorem such that

xEi ∼
{

N (N , 2N) , H0,

N (N (1 + γi) , 2N (1 + 2γi)) H1,
(4)

where γi is the SNR of the primary signal at the CU.

For the case of local sensing or hard decision fusion,

the CUs will make the local sensing decision based on an

energy threshold λi as follows:

Di =
{

1, xEi > λi,

−1, otherwise,
(5)

where Di = 1 and Di = −1 mean that the hypotheses of

H1 and H0 are declared at the ith CU, respectively. The

local probability of detection and the local probability of

false alarm can be determined based on (4) by:

pf i = Pr [Di = 1 |H0 ] = Q

(

λi − N
√
2N

)

(6)

and

pdi = Pr [Di = 1 |H1 ] = Q

(

λi − N (1 + γi)√
2N (1 + 2γi)

)

, (7)

Figure 1 Block diagram of the energy detection scheme.
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respectively, where Q (.) is the Marcum-Q function, i.e.,

Q (x) = 1√
2π

∫ ∞
x e− t2

2 dt.

2.2 The optimal fusion rule for global decision

Chair and Varshney provided the optimal data fusion rule

in a distributed local hard decision detection system [13].

This optimal rule is in fact the sum of weighted local deci-

sions where the weights are functions of probabilities of

detection and false alarm.

The optimal fusion rule is based on the likelihood ratio

test as follows:

Pr [D1, . . . ,Dn |H1 ]

Pr [D1, . . . ,Dn |H0 ]

H0

≷

H1

π0 (C10 − C00)

π1 (C01 − C11)
, (8)

where π0 and π1 are the prior probabilities of the presence

and absence of the PU signal, respectively, and C00, C01,

C10, and C11 are the decision costs. If we choose C00 =
C11 = 0 and C01 = C10 = 1, the likelihood ratio test now

follows the minimum probability of error criterion [17],

and (8) can be rewritten as:

Pr [D1, . . . ,Dn |H1 ]

Pr [D1, . . . ,Dn |H0 ]

H0

≷

H1

π0

π1
, (9)

Since the decision set {Di} is independent, the log-

likelihood ratio test corresponding to (9) is as follows:

log

n
∏

i=1
Pr [Di |H1 ]

n
∏

i=1
Pr [Di |H0 ]

H0

≷

H1

log
π0

π1
, (10)

If S+ and S- denote the set of all i such that {Di = 1} and
{Di = −1}, respectively, then (10) can be computed by:

∑

S+

Pr [Di = 1 |H1 ]

Pr [Di = 1 |H0 ]
+

∑

S−

Pr [Di = −1 |H1 ]

Pr [Di = −1 |H0 ]

H0

≷

H1

log
π0

π1
.

(11)

Finally, the Chair-Vashney fusion rule can be rewritten

in the form of the weighting formula as follows:

W0 +
n

∑

i=1

WiDi

H0

≷

H1

0, (12)

whereW0 = log π1
π0

and

Wi =

{

log
pdi
pf i

if Di = 1

log
1−pdi
1−pf i

if Di = −1
. (13)

Local false alarm probability pf i and local detection

probability pdi are defined in (6) and (7), respectively.

3 System description
In this paper, the CR network, which shares the same spec-

trum band with a license system, utilizes a cluster-based

CSS scheme as shown in Figure 2. The CR network is

organized in multiple clusters in each of which the CUs

have an identical average SNR of the received primary

signal. This identical SNR assumption can be practical

when the clusters are divided according to geographical

position, i.e., adjacent CUs in a small area are gathered

into a cluster. The header in each cluster is not fixed but

dynamically selected for each sensing interval based on

the quality of the sensing data at each CU. In detail, the

node with the most reliable sensing result will take on the

cluster header’s roles which include making and report-

ing the cluster’s decision to the FC. In order to reduce

the reporting time and bandwidth, only the sensing data

of the cluster header, which is the most reliable sensing

data, is utilized to make the cluster decision. This method

means that the decision of a cluster is made according to

the selective combination method. The FC will combine

all cluster decisions to make a final decision and broadcast

the final sensing decision to the whole network.

The fusion rule in the FC can be any kind of hard deci-

sion fusion rules such as an OR rule, AND rule, ‘K out of

N’ rule, or Chair-Varshney rule.Without loss of generality,

we propose the utilization of the optimal Chair-Varshney

rule at the FC since the SNR value of the received pri-

mary signal at the CU is available in this proposed scheme.

However, there are three issues with the proposed scheme

that need to be considered:

Figure 2 Systemmodel.
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1. How can the scheme efficiently select the cluster

header, which is the node with the best quality for

sensing data, for each sensing interval without any

extra overhead among nodes in the cluster?

2. How can the cluster header optimally make the

cluster decision?

3. What is the method for reporting the cluster decision

to the FC?

The answers to these questions are given in the following

section.

4 The proposed cluster-based selective CSS

scheme
4.1 Selective CSS mechanism

In this subsection, we suggest a cluster header selection

based on sensing data reliability. For each sensing interval,

the CU with the most reliable sensing data in a cluster is

selected to be the cluster header. Obviously, the reliability

of the sensing data can be evaluated by the log-likelihood

ratio (LLR) of the sensing result. The LLR value of the

received signal energy xEi is given by:

�i = log

(

fX|H1

(

xEi
∣

∣H1

)

fX|H0

(

xEi
∣

∣H0

)

)

, (14)

where fX|Hj

(

xEi
∣

∣Hj

)

, j = 0, 1 is the probability density

function (PDF) of xEi corresponding to each hypothesis.

Since the SNRs of the received primary signals in a clus-

ter are identical, the LLR of the ith user in the cjth cluster

�i,cj can be considered to be derived from the same dis-

tribution f�cj
(�) of LLR �. For each cluster, therefore, the

LLR value can be normalized such that it has a zero mean

as follows:

Yi,cj = �i,cj − E
[

�cj

]

. (15)

It is obvious that the reliability of the sensing data will

be higher if the absolute value of the normalized LLR

is larger. We propose utilization of the absolute value of

the normalized LLR
∣

∣Yi,cj
∣

∣ as the reliability coefficient for

selecting the cluster header as well as the selective cluster

data.

In order to implicitly select the most reliable sensing

data among CUs in a cluster without additional data col-

laboration, one contention time should be determined for

each CU as follows:

tcon = exp
(

−κ
∣

∣Yi,cj
∣

∣

)

, (16)

where κ is a predefined constant such that the contention

time is sufficient. Obviously, from this equation, the node

with the highest absolute value of the normalized LLR will

have the smallest contention time. In contention, each CU

must monitor the reporting channel and wait for a quies-

cent condition before considering itself as a cluster header,

i.e., the node with the most reliable sensing data, when

the contention time expires. The CU who wins the con-

tention will make a local cluster decision and report the

cluster decision to the FC based on its own sensing data

as follows:

Ycj

H1 : Dcj = 1

≷

H0 : Dcj = −1

τcj , (17)

where Ycj is equal to the normalized LLR with high-

est absolute value and τcj is the cluster threshold. Next,

we consider the problem of choosing the optimal cluster

threshold.

4.2 Cluster threshold determination

In order to make a controllable cluster decision that fol-

lows a certain criterion such as the Neyman-Pearson

criterion or minimum error probability criterion, one fac-

tor to consider is the probability density function of the

cluster’s selective sensing data which is utilized to make

the cluster decision. In this subsection, we will formulate

this requirement.

First, from (15), the normalized LLR distributions of a

CU in the cjth cluster are given by:
{

FYcj (y) = F�cj

(

y + E
[

�cj

])

fYcj (y) = f�cj

(

y + E
[

�cj

]) , (18)

where F�cj
(�) and f�cj

(�) are the cumulative distribu-

tion function (CDF) and PDF of the LLR of the received

primary signal power at the CUs in the cjth cluster, respec-

tively. These LLR distributions are given by:

{

F�cj
(�) = π0F�cj

|H0 (� |H0 ) + π1F�cj
|H1 (� |H1 )

f�cj
(�) = π0f�cj

|H0 (� |H0 ) + π1f�cj
|H1 (� |H1 )

(19)

where the conditional PDF’s of the LLR under H0 and H1

are determined in [12] as follows:

If � ≥ − b
a

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

f�|H0 (�) = be
−

( √
a+b�−N/2

2
√
N

)2

4
√

πN
√
a+b�

f�|H1 (�) = be
−

( √
a+b�−N(2γ+1)/2

2
√
N(2γ+1)

)2

4
√

πN(2γ+1)
√
a+b�

(20)

and
⎧

⎨

⎩

F�|H0 (�) = 1 − 1
2erfc

(√
a+b�−N/2

2
√
N

)

F�|H1 (�) = 1 − 1
2erfc

(√
a+b�−N(2γ+1)/2

2
√
N(2γ+1)

)

(21)

where a =
[

N2/4 + N log (2γ + 1) /γ
]

(2γ + 1) and

b = 2N (2γ + 1) /γ .

Otherwise, F�|H0 (�) = 0, F�|H1 (�) = 0,

f�|H0 (�) = 0, and f�|H1 (�) = 0.
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Since the SNRs of the received primary signal at the CUs

in a cluster are identical and the selective data for a cluster

is the highest absolute value of the normalized LLR, the

distribution of the selective cluster data will be equal to

the distribution of the n0th absolute order sample, i.e., the

sample with the highest absolute value, where n0 is the

number of CUs in the cluster. In addition, the PDF of the

n0th absolute order sample is given by:

fY(n0),cj
(y) = n0

∣

∣

∣
FYcj (y) − FYcj (−y)

∣

∣

∣

n0−1
fYcj (y) . (22)

The derivation of (22) can be found in the Appendix.

Similarly, the conditional PDF of the n0th absolute order

sample under the Hj hypothesis, j = 0, 1, fY(n0),cj |Hj
(y) can

be achieved.

For a specific value of threshold τcj , the probability of

false alarm and the probability of detection of the cjth

cluster are, respectively, given by:

PFcj =
+∞
∫

τcj

fY(n0),cj
|H0 (y) dy (23)

and

PDcj
=

+∞
∫

τcj

fY(n0),cj
|H1 (y) dy. (24)

Since the probabilities of false alarm and the proba-

bility of detection of the cjth cluster in (23) and (24)

mainly depend on the received primary signal SNR and

the number of nodes in the cluster, the cluster thresh-

old can be determined off-line in the initial phase of the

cluster establishment based on the Neyman-Pearson cri-

terion or the minimum error probability criterion. For the

Neyman-Pearson criterion, the probability of false alarm

PFcj is predefined. Also, the cluster threshold τcj is com-

puted based on (23). In this paper, we utilize the minimum

error probability criterion to numerically determine the

optimal cluster threshold through the following equation:

τ
opt
cj = arg

τcj

min
[

π0PFcj + π1

(

1 − PDcj

)]

. (25)

4.3 Parallel report mechanism

For implementing the proposed selective mechanism in a

cluster, all CUs in a cluster have to monitor the control

channel to determine the cluster header during the con-

tention time. One question raised here is how to arrange

the contention time for multiple clusters in the network.

Generally, there are two common solutions for this prob-

lem. The first approach is to assume that the contention

times of the clusters are carried out sequentially over time.

This method requires a strict synchronization among CUs

in the network and a long contention time tominimize the

collision in contention due to differences in transmission

range. Obviously, this method can cause a long reporting

time with a high rate of contention collision. The sec-

ond approach is to assume that the contention times of

different clusters are conducted in parallel with differ-

ent subcontrol channels. Since each cluster only reports

a 1-bit hard decision to the FC, the subcontrol channel

can be reduced to a pair of frequencies corresponding

to two possible values of a cluster decision. This means

that a node in a certain cluster only monitors two pre-

determined frequencies during the contention time, and

the node who wins the contention will transmit only one

predefined frequency to the FC according to its cluster

decision. Normally, a control channel bandwidth is suf-

ficient for allocating a reasonable number of frequency

pairs to clusters. For example, it is acceptable to divide 50

pairs of frequencies for 50 clusters in a 200-kHz control

channel. Figure 3 shows an example of a sensing frame

structure for the proposed parallel report mechanism

compared with the conventional fixed allocation direct

reporting method.

In this method, the problems of strict synchronization

and contention collision, which can occur with the pre-

vious method, are completely resolved. Indeed, with this

parallel contention and reporting mechanism, the syn-

chronization among CUs can be looser since there is only

one contention time that is identical to the reporting time.

No collision between two cluster reports will occur since

these cluster decisions are transmitted at different fre-

quencies. Even in the case that two CUs in a cluster have

the same value of themost reliable sensing data, a collision

still will not occur since the two nodes will transmit the

same frequency, and at the receiver side, two transmitted

frequencies can be considered as two versions of a mul-

tipath signal. The remainder problem with this parallel

reportingmethod is that the FC needs to be equipped with

parallel communication devices such as an FFT block,

which is usually used in an OFDM receiver, or a filter bank

block to detect multiple reporting frequencies. However,

this requirement is not a big issue.

5 Simulation results
The simulation of the proposed cluster-based selective

CSS scheme is conducted under the following assump-

tions:

• The LU signal is a DTV signal as in [18].
• The bandwidth of the PU signal is 6 MHz, and the

AWGN channel is considered.
• The local sensing time is 50 µs.
• The probability of the presence and absence of PU

signal is 0.5 for both.
• The network has N0 nodes and can be divided into nc

clusters. Each cluster includes n0 nodes.
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Figure 3 Sensing frame structure.

First, we evaluate the sensing performance of the selec-

tive method in the cluster with three different received

primary signal SNRs of −14, −12, and −10 dB when the

number of nodes in the cluster changes from 1 to 100. As

shown in Figure 4, the probability of error will decrease

along with the increase in the number of nodes in the clus-

ter. However, the decreasing rate of probability of error

is low when the number of nodes in the cluster is large,

Figure 4 Probability of sensing error in a cluster decision of the

proposed selective method. This is for different numbers of nodes

in the cluster when the received primary signal SNR is −14, −12, and

−10 dB.

specially when n0 > 10. Therefore, the selective method

only provides high sensing efficiency when the number of

nodes is in the range of 20.

Second, we assume that the network includes five clus-

ters with different SNR values corresponding to −20,

−18, −16, −14, and −12 dB. The error probabilities of

the global CV rule-based conventional direct reporting

scheme, the cluster and global CV rule-based conven-

tional cluster reporting scheme, and the proposed CSS

scheme are then observed according to different values of

cluster size. As illustrated in Figure 5, the error probabil-

ities of all CSS schemes decrease along with the increase

of the cluster size. The direct conventional CV rule-

based CSS scheme provides the best sensing performance.

The proposed CSS scheme outperforms the cluster and

global CV rule-based conventional cluster CSS scheme

when the cluster size is small, i.e., n0 < 8. When the

cluster size is large, i.e., n0 > 8, the sensing error prob-

ability of the proposed method is slightly higher than

that of the conventional cluster scheme, which utilizes

a CV rule at both cluster headers and FC. However, it

is noteworthy that the cost of this better performance

with the conventional cluster and direct schemes com-

pared with the proposed scheme are the extremely large

amount of overhead, energy consumption, and report-

ing time for collecting all decisions from all nodes in the

network.

Finally, to clarify the energy efficiency and collection

time savings, we first assume that E0 = kE1 where E0



Nguyen-Thanh and Koo EURASIP Journal onWireless Communications and Networking 2013, 2013:176 Page 7 of 9

http://jwcn.eurasipjournals.com/content/2013/1/176

Figure 5 Probability of sensing error of the proposed and

conventional CSS schemes. Probability of sensing error of the direct

conventional CV rule-based scheme, the cluster and global CV

rule-based conventional cluster reporting scheme, and the proposed

CSS schemes for different cluster sizes when the network includes

five clusters with a SNR value corresponding to −20, −18, −16, −14,

and −12 dB, respectively.

is the energy for transmitting the report from a cluster

header to the FC and E1 is the energy for transmitting

the report from a local node to the cluster header. Sim-

ilarly, we assume that Tp = lTr where Tp is the parallel

reporting time slot, andTr is the fixed allocation reporting

time slot (see Figure 3). We also assume that each cluster

utilizes a separate reporting channel to transmit the sens-

ing result from local nodes to the cluster header in the

case of a conventional cluster-based CSS scheme, and the

guard interval between time slots is ignored. As a result,

the reporting energy consumption and the total reporting

time of the direct reporting (DIR), the conventional clus-

ter (CON), and the proposed (PROP) CSS schemes can be

calculated by:

⎧

⎨

⎩

EDIR = N0E0 = ncn0E0
ECON = ncE0 + (n0 − 1) ncE1
EPROP = ncE0

(26)

and

⎧

⎨

⎩

TDIR = N0Tr = ncn0Tr

TCON = ncTr + n0Tr = (nc + n0)Tr

TPROP = Tp = lTr

, (27)

respectively. The energy consumption efficiency (EE) and

the reporting time-saving efficiency (TE) of the conven-

tional cluster and the proposed CSS schemes compared

with the direct CSS scheme can be easily obtained by

EE∗ = 1 − E∗/EDIR and TE∗ = 1 − T∗/TDIR, respectively,

where the asterisk (*) can be replaced by CON or PROP.

When the number of cluster is constant at nc = 5

as assumed in Figure 5, we can obtain the energy con-

sumption efficiency and the reporting time saving as

shown in Figure 6. Obviously, both cluster schemes enable

an increase in the energy efficiency and time savings

along with the increase in cluster size. As illustrated in

Equation 26 and in the simulation result of Figure 6, it

can be concluded that the energy efficiency of the pro-

posed scheme is the upper bound of the conventional

cluster scheme for all cases of k. Therefore, the proposed

scheme achieves the highest energy efficiency among

cluster schemes.

Similarly, from Figure 7, we can see that the proposed

CSS scheme provides higher reporting time savings than

the conventional cluster scheme. In fact, for an acceptable

value of l, i.e., l = 4, the proposed scheme produces time

savings greater than 80% compared with the conventional

direct reporting CSS scheme, while the conventional clus-

ter scheme only remains at 75% of the highest saving

percentage.

6 Conclusions
In this paper, we have proposed a cluster-based CSS

scheme which includes the selective method in the clus-

ter and the optimal fusion rule in the FC. The proposed

selective combination method can dramatically reduce

the reporting time and energy consumption while achiev-

ing a certain high level of sensing performance espe-

Figure 6 Energy consumption efficiency of the proposed and

conventional cluster-based CSS schemes. This efficiency is

compared with the conventional direct reporting-based CSS scheme

for different cluster sizes and different values of k when the network

includes nc = 5 clusters.
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Figure 7 Reporting time saving of the proposed and the

conventional cluster-based CSS schemes. This time saving is

compared with the conventional direct reporting-based CSS scheme

for different cluster sizes and different value of l when the network

includes nc = 5 clusters.

cially when it is combined with the proposed frequency

division-based parallel reporting mechanism.

Appendix
Derivation of Equation 22

Let Y denote a continuous random variable with PDF

fY (y) and CDF FY (y) and let (Y1,Y2, . . . ,Yn0) be a

random sample of size n0 drawn from Y. The corre-

sponding ordered sample derived from the parent Y

is (Y(1),Y(2), . . . ,Y(n0)), which is arranged in increasing

order of absolute value such that
∣

∣Y(1)

∣

∣ <
∣

∣Y(2)

∣

∣ < . . . <
∣

∣Y(k)

∣

∣ < . . . <
∣

∣Y(n0)

∣

∣. In order to determine the PDF of

Y(k), we define the event Dk,y =
{

y ≤ Y(k) ≤ y + 
y
}

=
{

y ≤ ±
∣

∣Y(k)

∣

∣ ≤ y + 
y
}

. Thus, the probability of event

Dk,y can be calculated by

Pr
[

Dk,y

]

≈ Ck(1 − FY (y + 
y) + F (−y − 
y))n0−k

× fY (y)
y(FY (y) − FY (−y))k−1

(28)

if y ≥ 0 or

Pr
[

Dk,y

]

≈ Ck(1 − FY (−y) + FY (y))n0−k fY (y)
y

× (FY (−y − 
y) − FY (y + 
y))k−1

(29)

if y < 0, where Ck =
(

n0
k − 1 1 n0 − k

)

. Consequently,

the PDF of Y(k) is calculated using

fY(k)
(y)= lim


y→0

Pr
[

Dk,y

]


y
=Ck

(

1−
∣

∣FY (y)−FY (−y)
∣

∣

)n0−k

×
(
∣

∣FY (y) − FY (−y)
∣

∣

)k−1
fY (y)

(30)

By replacing Y with Y cj and substituting k = n0 into

(30), Equation 22 can be obtained.
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