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Abstract
Nowadays, healthcare waste management has become one of the significant environmental, health, and social problems. Due to
population and urbanization growth and an increase in healthcare waste disposals according to the growing number of diseases
and pandemics like COVID-19, disposal of healthcare waste has become a critical issue. Authorities in big cities require reliable
decision support systems to empower them to make strategic decisions to provide safe disposal methods with a prospective
vision. Since inappropriate healthcare waste management systems would definitely bring up dangerous environmental, social,
health, and economic issues for every city. Therefore, this paper attempts to address the landfill location selection problem for
healthcare waste using a novel decision support system. Novel decision support model integrates K-means algorithms with
Stratified Best-Worst Method (SBWM) and a novel hybrid MARCOS-CoCoSo under grey interval numbers. The proposed
decision support system considers waste generate rate in medical centers, future unforeseen but potential events, and uncertainty
in experts’ opinion to optimally locate required landfills for safe and economical disposal of dangerous healthcare waste. To
investigate the feasibility and applicability of the proposed methodology, a real case study is performed for Mazandaran province
in Iran. Our proposed methodology could efficiently deal with 79 medical centers within 4 clusters addressing 9 criteria to
prioritize candidate locations. Moreover, the sensitivity analysis of weight coefficients is carried out to evaluate the results.
Finally, the efficiency of the methodology is compared with several well-known methods and its high efficiency is demonstrated.
Results recommend adherence to local rules and regulations, and future expansion potential as the top two criteria with impor-
tance values of 0.173 and 0.164, respectively. Later, best location alternatives are determined for each cluster of medical centers.

Keywords HealthcareWasteManagement . K-meanAlgorithm . Stratified BWM .MARCOS . GreyNumbers . CoCoSo

1 Introduction

Healthcare landfills mainly consist of hazardous waste and
serve to prevent contamination between the waste and the
surrounding environment, particularly groundwater. That is

why it should be carefully designed, established and moni-
tored in order to efficiently isolate the waste from the sur-
rounding environment. The location of healthcare facilities
or Healthcare Landfill Selection (HLS) is regarded as an un-
exceptional ill-structured decision-making problem since it
contains issues related to various fields of study and there
are different and occasionally contradictory stakeholders to
take into account. In other words, it is critical to provide a
multidisciplinary technique that is able to take into account
all these factors and meet the expectations of actors affected
by the location [47, 80].

Landfilling has been known as the most efficient way of
disposing in various countries compared to other waste dis-
posal ways, which is still being utilized even in developed
countries [49]. Since Healthcare Waste Management
(HWM) involves harmful elements; thus, it has been catego-
rized under infectious and hazardous activities by a large num-
ber of environmental associations and scholars worldwide.
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With the onset of the recent COVID-19 pandemic, its impor-
tance has become increasingly clear [63, 64]. There are several
modern engineered landfills, i.e., sanitary landfills, to reduce
the risk evaluation of landfill hazards to conserve the public
health and environment [7]. Usually, the landfills are located
at a distance away from the healthcare facilities. The most
significant idea of the landfill is containment and storage of
the waste transferred and disposed in it [54]. On the other
hand, sustainable development is another non-ignorable con-
cept in which the triple bottom line perspectives of economic,
environmental and societal sustainability are addressed.
Therefore, it is necessary to find a sustainable location to
locate a landfill facility for daily and recurring processes of
storage, treatment, and disposal [64].

Based on the above-mentioned factors, it is obvious the
complexity of the decision-making problem examined and
the requirement to organize it with an efficient Decision
Support System (DSS) according tomulti-dimensional criteria
should be considered. Accordingly, the major goal of the cur-
rent study is to design a DSS in order to support decision-
makers in the sustainable HLS problem with the application
of big data in the decision-making process.

Finally, this research tries to find appropriate answers for
the following questions:

1) Why HLS problem is important?
2) How location alternatives should be selected for medical

centers? In terms of the correct and optimal selection of
location alternatives, how medical centers should be
assigned to the right, closest and most efficient landfill?

3) What are the effective and important decision criteria for
the HLS problem?

4) Are there any future events that may affect the HLS prob-
lem? If yes, what are these future events? How can a
decision-making problem consider their impacts?

5) How can location alternatives for the HLS problem be
prioritized based on experts’ opinions? How should we
consider uncertainty in real-life experts’ opinions?

To answer these questions, this study proposes a cluster-
based stratified hybrid DSS considering uncertainty. The first
contribution of this study is related to using the K-means al-
gorithm for HLS along with uncertain Multi-Criteria
Decision-Making (MCDM). The K-means algorithm is one
of the popular clustering algorithms among data mining algo-
rithms. Due to its high reliability and straightforward struc-
ture, K-means algorithm is used to analyze big data of medical
centers to group them with medical centers which have high
similar characteristics. The reason to use K-means algorithm
to group medical centers relies on the fact that managers
would be able to understand how medical centers with similar
characteristics are located in the province. Therefore, the prop-
er location of a landfill can be determined accurately based on

proximity to them and their waste generation rate. Next, envi-
ronmental decision-making problems such as HLS problems
are very sensitive to changes, scenarios and future events that
may impact the importance of decision criteria. Such events and
scenarios can make the decision-making result obsolete under
different circumstances only after a few months. Thus, to ad-
dress the HLS problem in the best way, we consider possible
impacts of future events within the decision-making environ-
ment. For this purpose, this study develops a hybrid DSS that
takes the impacts of future events into account to address the
HLS problem. In the weight determination part of the DSS,
Stratified Best-Worst Method (SBWM) is utilized to identify
optimal weight values of criteria considering most potential
future events and their impacts. This is the first study to develop
a DSS including stratification theory for the HLS problem
through the SBWM. This study introduces a hybrid MCDM
framework in the proposed DSS where two well-known
Combined Compromise Solut ion (CoCoSo) and
Measurement Alternatives and Ranking according to the
Compromise Solution (MARCOS) are integrated to develop
the MARCOS-CoCoSo method. Furthermore, this study is
the first in its kind to develop a hybrid MCDM method using
MARCOS and CoCoSo as the MARCOS-CoCoSo under grey
interval numbers (MARCOS-CoCoSo-G). The biggest motiva-
tion behind developing the hybrid MARCOS-CoCoSo method
is to minimize the biasedness and subjectivity of any of these
methods in the prioritization of candidate locations. To be more
specific, CoCoSo and MARCOS are two novel MCDM rank-
ing methods that are developed recently. Both methods have
shown high efficiency in addressing highly complex decision-
making, evaluation, and assessment problems in the previous
studies. On the other hand, both methods consist of a combined
structure of different compromise solutions and utility functions
which enhance the reliability of the results. Finally, this is the
first study to develop a DSS using the K-means algorithm,
SBWM, and MARCOS-CoCoSo-G to tackle a big data HLS
problem considering the impacts of uncertain future events and
uncertain opinions of experts.

This study is broken down into 4 sections. Section 2 con-
textualizes the research within the existing literature about the
application of MCDM approaches in HLS. Section 3 repre-
sents the proposed hybrid MCDM method. The case study
problem is illustrated in Section 4, and finally, Section 5 con-
cludes the research with a discussion on the main findings,
limitations, and future research opportunities.

2 Background and related work

In this section, the most relevant studies performed on the
application of MCDM techniques for HLS and in conjunction
with the use of Big Data Analytics (BDA) in healthcare waste
systems.

A Cluster-based Stratified Hybrid Decision Support Model under Uncertainty: Sustainable Healthcare Landfill... 13615



MCDM methods have been considered as one of the po-
tential comprehensive tools to deal with complex environmen-
tal and healthcare problems such as healthcare landfill location
selection ([14, 80]). During the recent decade, landfill location
selection problem has attracted noticeable attention from re-
searchers. Dehe and Bamford [11] proposed two MCDM
methods for a healthcare infrastructure location problem in
the National Health Service (NHS) organization, United
Kingdom. Evidential Reasoning (ER) was first employed to
solve the model and then Analytical Hierarchy Process (AHP)
was implemented to evaluate the results obtained by ER.
Finally, the same solutions were achieved for the case study
problem. According to Eiselt andMarianov [19], AHP has the
highest application to treat Municipal Solid Waste (MSW)
facility location problems. A comprehensive structured survey
was conducted by Thakur and Ramesh [62] in order to review
the main research works performed on HWM between 2005
and 2014. They discussed the trends, main topics, challenges,
and future research directions in the field of study, such as
landfill location analysis. A hybrid MCDM method, accord-
ing to Interpretive Structural Modelling (ISM), fuzzy AHP
and fuzzy Techniques for Order Preference and Similarity to
Ideal Solution (TOPSIS), was developed by Chauhan and
Singh [8] to tackle the sustainable healthcare waste disposal
facility location problem in a region of Uttarakhand, India.
They considered 8 different criteria based on sustainable de-
velopment, which were extracted from the literature. Lee
et al. [30] applied AHP to evaluate HWM treatment tech-
nologies in the NHS organization, United Kingdom. To
find the optimal disposal technology, they considered 4
criteria of “Legal & Compliance” , “Guidelines” ,
“Carbon & Environmental” and “Economics” and 3 alter-
natives. A Multi-Criteria-Spatial Decision Support System
(MC-SDSS) was developed by Dell’Ovo et al. [12] to find
the best locations for healthcare facilities in Milan, Italy.
They took into account 3 criteria from the literature and
assessed them by Multi-Criteria Decision Analysis
(MCDA) and then employed Geographic Information
System (GIS) to add spatial components. There are some
other hybridized solutions based on GIS and MCDM
methods which have been suggested to examine the
HLS problem. For example, Vucijak et al. [69] claimed
that the application of MCDM approaches with GIS tools
in environmental topics has risen significantly over the
last years.

Mardani et al. [36] surveyed three decades of research on
healthcare and medical problems addressing recent develop-
ments of MCDM methods. They evaluated 202 research
studies and concluded that AHP and fuzzy AHP are the
most frequently employed techniques by scholars. A case
study was investigated by Badi and Kridish [4] in Libya
in order to treat the landfill site selection problem. They
proposed a hybrid MCDM method, based on Full

Consistency Method (FUCOM) and Combined Distance-
based Assessment (CODAS) method, to classify 5 sug-
gested landfill sites with respect to the criteria of environ-
mental protection and public health. Another hybrid
MCDM approach was designed by Rahimi et al. [49] to
tackle the sustainable landfill site selection for MSW.
They utilized GIS techniques, group fuzzy Best-Worst
Method (BWM) and group fuzzy Multi-Objective
Optimization by Ratio Analysis (MULTIMOORA)
method in order to generate suitability maps, obtain
criteria weights and evaluate the alternative sites, respec-
tively. Yazdani et al. [71] suggested a rough-based BWM
method for HWM disposal location in Madrid, Spain. The
interval rough numbers were used to process imprecise data
for a private hospital.

Recently, Manupati et al. [35] applied the fuzzy VIKOR
method for selecting the best HWM disposal procedures
during and after the COVID-19 pandemic in Tamil Nadu,
India. They considered 10 criteria and 9 alternatives and
compared the output with the results obtained with fuzzy
TOPSIS. Finally, incineration was demonstrated as the
best disposal technique. Torkayesh et al. [65] introduced
the SBWM for sustainable waste disposal technology se-
lection. They incorporated uncertainty and doubts into
decision-making processes for two major cities in Iran.
In another research, Torkayesh et al. [66] proposed a
hybrid BWM-grey MARCOS model based on GIS to
cope with the landfill location section for HWM during
the COVID-19 pandemic. They addressed the sustainabil-
ity criteria and could implement their method in
Hamedan, Iran. Eventually, a set of sensitivity analyses
were carried out to test the reliability and robustness of
the results.

Table 1 summarizes recent studies conducted on landfill
location selection which developed their methodologies based
on the MCDM methods.

Since the last decade, BDA has been recently become an
important topic in healthcare systems due to its high and effi-
cient applications [24, 29, 41, 42, 50]. There are some useful
review studies addressing the significance, adoption, chal-
lenges, and implications of BDA in healthcare, such as
Mehta and Pandit [37], Chen et al. [10] and Shafqat et al.
[60]. Sahni et al. [52] underlined the use of BDA to address
the application of HWM in the agriculture and disaster man-
agement sector. Their proposed model based on predictions
demonstrated that waste can be utilized either in the same
industry or even in some other industry.

Although BDAs are very well-known in different fields
[53], such algorithms have not been frequently used in the
field of waste management. In one of the recent studies which
have used BDA, Eghtesadifard et al., (2020) developed a nov-
el DSS using GIS, K-means algorithm and integrated MCDM
model to address municipal landfill location selection problem
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in Iran. The MCDM model was constructed based on
Decision-Making Trial and Evaluation Laboratory
(DEMATEL), Analytical Network Process (ANP), multi-
objective optimization method by ratio analysis (MOORA),
Weighted Aggregated Sum Product Assessment (WASPAS),
and Complex Proportional Assessment (CORAS) methods. In
the most recent example, Qureshi et al., [48] developed a
novel method based on fuzzy AHP, Support Vector
Machine (SVM) algorithm, andMarkov Chain to address mu-
nicipal landfill location selection based on the prediction of
urban physical growth in Iran.

To the best of our knowledge, there are a limited number of
research works in the literature that have been exclusively
addressing the application of BDA, specifically clustering
algorithms in HLS. The present work is among the first
studies which provides a useful framework based on the
application of BDA to treat the sustainable HLS problem.
Therefore, the main contributions of the research are ex-
plained as follows:

i. Proposing a novel DSS based on a complex integration of
data mining and MCDM methods.

ii. Proposing K-means clustering algorithm along with
Stratified interval-valued MCDM to address HLS
problem.

iii. Addressing the HLS problem considering stratification
theory to consider the impact of future events using
SBWM.

iv. Proposing a novel hybrid decision model using
MARCOS and CoCoSo which ended up to the
MARCOS-CoCoSo method.

v. Implementing the developed MARCOS-CoCoSo under
grey interval numbers (MARCOS-CoCoSo-G).

3 Methodology

This section presents definitions, requirements, and important
preliminaries of the proposed decision support model for lo-
cating landfills to address healthcare waste management.

3.1 K-means algorithm

K-means algorithm has been among the most well-known and
frequently developed algorithms in data mining and machine
learning fields [1, 6]. K-means clustering is an unsupervised
algorithm that enables clustering a big dataset into k number of
clusters based on the closest distance. In other words, the K-
means algorithm is developed based on the principle of mini-
mization of intra-cluster variance and maximization of the
distance between each pair of clusters [18, 33, 34]. Using
the K-means algorithm, the number of clusters is selected first.
Then, for each datum in the dataset, represented as a point, the
distance between these points and the central cluster point is
determined. To calculate the distance of these points and clus-
ter points, Euclidean distances are used. In each iteration, the
average distance of data points in each cluster is computed and
the central gravity of each cluster is computed. The K-means
algorithm can be mathematically represented as follows.

For a given set of data points (x1, x2, …, xn), the K-means
algorithm attempt to cluster n data points (observations) intoK
clusters S = {S1, S2, …, Sn} with an aim to minimize the
cluster sum of squares or variance.

arg min
S

∑
K

i¼1
∑
x∈Si

x−μij jj j2 ¼ arg min
S

∑
K

i¼1
jSij Var Sið Þ; ð1Þ

Table 1 Summary of recent MCDM-based studies

Reference Methodology Combined methods Uncertainty type Case study

Kharat et al. [28] AHP-TOPSIS – Type-1 fuzzy set India

Güler and Yomralıoğlu [23] AHP GIS – Turkey

Yildirim et al. [76] TOPSIS GIS – Turkey

Alkaradaghi et al. [2] AHP GIS – Iraq

Chabuk et al. [9] AHP GIS – Iraq

Karasan et al. [25] AHP – Pythagorean fuzzy set Turkey

Kamdar et al. [27] AHP GIS – Thailand

Moghaddam et al. [40] MCDM concept GIS – Iran

Rahimi et al. [49] BWM-MULTIMOORA GIS Type-1 fuzzy set Iran

Tercan et al. [61] AHP GIS – Turkey

Zarin et al. [77] AHP GIS Type-1 fuzzy set Pakistan

Ali et al. [3] AHP-TOPSIS GIS Type-1 fuzzy set India

Mahmood et al. [32] AHP GIS – Iraq

Torkayesh et al. [66] BWM-MARCOS GIS Grey interval-numbers Iran
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where μi denotes the mean of data points in Si. Eq. (1) can
be rewritten to formulate an equivalent model to minimize the
pairwise squared deviations of data points as Eq. (2).

arg min
S

∑
K

i¼1

1

2jSij ∑
x;y∈Si

x−yj jj j2: ð2Þ

3.2 Stratified BWM

Weight determination in MCDM methods is of high signifi-
cance as weight vector and its values have a critical role in
generating results of a decision model. In the middle of 2010s,
Rezaei et al., [51] offered a weight determination model for
MCDM problems which was based on mathematical optimi-
zation formulation. BWM has attracted the attention of
scholars in various fields due to its reliable procedure through
optimization models [5, 66]. Considering the high integration
of uncertain sets into the MCDM model, several versions of
BWM have been developed in recent years [38]. Fuzzy BWM
[22], and Bayesian BWM [39] are two important extensions
of BWM which allow decision-makers to express their opin-
ions through uncertain and possibilistic scales. Recently,
Torkayesh et al., [65] proposed a novel version of BWM
under the concept of stratification to include possible impacts
of future unforeseen events on the weight determination pro-
cess. The SBWM model is defined based on the following
algorithm.

Step 1- Required decision criteria {c1, c2, …, cn} are
identified and defined according to the literature review
and experts’ opinions.
Step 2- Potential and possible future events with a high
impact on the weight of decision criteria are identified
and defined. The likelihood of occurrence of the defined
events is assigned by experts.
Step 3- Probabilities for transitioning between the states
are calculated based on the likelihood of occurrence of
events.
Step 4- Under each defined state, the best criterion (the
most preferred) and the worst criterion (the least pre-
ferred) are chosen based on experts’ opinions.
Step 5- Best-to-other (B-t-O) and others-to-worst (O-t-
W) vectors are obtained through a pairwise comparison
using a scale of 1–9. In this scale, 9 stands for the highest
preference and 1 shows the lowest preference for a crite-
rion. B-t-O vector is represented by AB = (aB1, aB2, …,
aBn) where aBj displays the preference of the best criterion
over criterion j. Similarly, O-t-W vector is shown as
AW = (a1W, a2W, …, anB)

T where ajw represents
the preference of criterion j over the worst criterion
W and aWW = 1.

Step 6- Optimal weight of criteria in each state is calcu-

lated as W*
1;W

*
2;…;W*

n

� �
. For each pair of WB W j and

W j

WW , the optimal weight must meet the requirement of WB

W j ¼ aBj and
W j WW ¼ ajW . To ensure these constraints,

the maximum absolute differences of WB
�� W j−aBjj and

W j

��� WW−ajW j are minimized for criteria. Therefore,

BWM can be formulated by taking into account the
non-negativity characteristic and the sum condition of
the weights.

minimizemax
j

WB

W j
−aBj

����
����; W j

WW
−ajW

����
����

� �

subject to

∑
j
W j ¼ 1; ð3Þ

W j≥0 for all j:

This model can be reformulated below:

minimizeξ

subject to

WB

W j
−aBj

����
����≤ξ for all j;

W j

WW
−ajW

����
���� for all j;

∑
j
W j ¼ 1 for all j;

W j≥0 for all j;

ð4Þ

whereWj shows the weight of criterion j,WW represents the
weight of the worst criterion, WB denotes the weight of the
best criterion, aBj represents the pairwise value of comparing
the best criterion to criterion j, and ajW indicates the pairwise
value of comparing each criterion to the worst criterion.

Step 7- Consistency ratio of the obtained optimal weight
of criteria in each state is calculated based on Eq. (5).

Consistency Ratio ¼ ξ*

Consistency index
ð5Þ

Step 8- Final optimal weight of each criterion considering
impacts of all states is obtained through the multiplication
of transition probability and weight coefficients in each
state.
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3.3 Preliminaries of grey numbers

A grey number is an unknown and uncertain number whose
exact value is shown within a range (interval). Preliminaries,
definitions, requirements, and functions for grey numbers are
completely described below.

Definition 1- Let D be a grey value. If ∀ed∈D anded ¼ a; b½ �, then ed is represented as an interval grey num-

ber. a and b are the upper and lower values of ed such that
a, b ∈ R.

Definition 2-[31,79]. Suppose that ed1 ¼ a; b½ � and ed2 ¼
c; d½ � are two grey numbers, and μ > 0, μ ∈ R. The
arithmetic operations are denoted as follows:

ed1 þ ed2 ¼ aþ c; bþ d½ �
−ed1 ¼ −b;−a½ �;ed1−ed2 ¼ a−d; b−c½ �;
μed1 ¼ μa;μb½ �:

Generally, grey numbers are continuous in an interval,
while those values from a finite number or a set of numbers
are known as discrete grey numbers. An integrated method for
both continuous and discrete grey numbers has led to a novel
description of grey numbers [75, 79].

Definition 3- Assume that D is a grey number. If D ¼ ⋃
n

i¼1

ai½ ; bi�, then we call D as an Extended Grey Number (EGN).
Now, we suppose that D is a union of a set of closed or open
intervals, while n is an integer and 0 < n < ∞, while ai, bi ∈
R, and bi − 1 < ai ≤ bi < ai + 1 [75].

Theorem 1- If D is an EGN, then, the following conditions
come true: 1) D = [a1, bn]is a continues EGN if and only if

ai ≤ bi − 1 (∀i > 1) or n = 1.
2) D = {a1, a2, …, an} is a discrete EGN if and only if ai =

bi;
3) D represents a mixed EGN if only part of its intervals

integrates to crisp numbers and the others keep as
intervals.

Definition 4- For two EGNs D1 ¼ ⋃
n

i¼1
ai½ ; bi� and D2 ¼

⋃
m

j¼1
c j
�

; d j�, let ai ≤ bi(i = 1, 2, …, n), ci ≤ di(j = 1, 2,

…, m), μ ≥ 0 and μ ∈ R. Therefore, the arithmetic operations
are [79]:

(1) D1 þ D2 ¼ ⋃
n

i¼1
⋃
m

j¼1
ai þ c j; bi þ d j
� �

;

(2) −D1 ¼ ⋃
n

i¼1
−bi;−ai;½ �;

(3) D1−D2 ¼ ⋃
n

i¼1
⋃
m

j¼1
ai−d j; bi−c j
� �

;

(4) D1 D2 ¼ ⋃
n

i¼1
⋃
m

j¼1
min ai

	�
c j; ai d j;

bi c j; bi d jg;max ai
c j
; ai

n
d j;

bi c j; bi d jg�, while cj ≠ 0, dj ≠ 0 and (j = 1,2,…,m),
( 5 ) D1*D2 ¼ ⋃

n

i¼1
⋃
m

j¼1
min aic j;

	�
aid j; bic j; bid jg;max

aic j; aid j; bic j; bid j
	 
�;

(6) μD1 ¼ ⋃
n

i¼1
μai;μbi½ �;

(7) D1
μ ¼ ⋃

n

i¼1
min aiμ; biμð Þ;max aiμ; biμð Þ½ �:

Definition 5- The length of a grey value like D = [a, b] is
calculated as: L(D) = [b − a].

Definition 6- For two grey numbersD1 = [a, b] andD2 =
[c, d] while a < b and c < d, the possibility degree P

G1≤G2f g ¼ Max 0;L*−Max 0;b−cð Þð Þ
L* , where L∗ = L(G1) + L(G2).

For the position relation between two grey values,

(1) if P{D1 ≥ D2} < 0, 5 then D1 < D2, expressing that D1

is smaller than D2,
(2) if P{D1 ≥ D2} = 0, 5 then D1 = D2, expressing that D1

is equal to D2,
(3) if P{D1 ≥ D2} > 0, 5 then D1 > D2, expressing that D1

is more significant than D2.

3.4 Grey MARCOS (G-MARCOS)

MARCOS is one of the recently developed ranking MCDM
techniques [59]. Stević et al. [59] tested theMARCOSmethod
on a sustainable supplier selection problem in the healthcare
sector. Since its initial days of development, MARCOS has
been used in various fields. Stević and Brković [58] integrated
the full consistency method (FUCOM) andMARCOS to eval-
uate the human resource department in the transportation in-
dustry. Stanković et al. [56] suggested a new version of
MARCOS under fuzzy logic to examine road traffic risk
analysis with uncertain information. Simić et al. [55] in-
troduced the MARCOS method under picture fuzzy logic
to assess risks related to railway infrastructures. Grey
numbers constitute another well-known uncertain set that
are frequently integrated with MCDM models. Torkayesh
et al. [66] proposed an integrated decision model using
geographic information system, BWM, and MARCOS
method under grey interval numbers to select a suitable
location for the construction of a landfill. In the same
year, Pamucar et al. [44] suggested a combined MCDM
framework based on SWARA and MARCOS methods
under grey interval numbers for the evaluation of service
quality in Spanish airports. Ecer and Pamucar [16] pro-
posed a new version of MARCOS under an intuitionistic
fuzzy environment to evaluate the performance of insur-
ance companies on healthcare services during the
COVID-19 pandemic. Ecer [15] suggested a combined
decision model consisting of six MCDM models includ-
ing MARCOS, ARAS, COPRAS, CoCoSo, MAIRCA,

A Cluster-based Stratified Hybrid Decision Support Model under Uncertainty: Sustainable Healthcare Landfill... 13619



and SECA to evaluate 10 batteries of electric vehicles
based on different socio-economic factors.

MARCOS-G performs based on the following steps.

1. Step 1- According to the performance of alternatives
against several criteria, the initial decision matrix is con-
structed accordingly.

2. Step 2- Ideal (AI) and anti-ideal (AAI) solutions are de-
termined based on the initial decision matrix.

X ¼
⋃ a11; b11½ � ⋃ a12; b12½ � ⋯ ⋃ a1m; b1m½ �
⋃ a21; b21½ � ⋃ a22; b22½ � ⋯ ⋃ a2m; b2m½ �

⋮ ⋮ ⋯ ⋮
⋃ an1; bn1½ � ⋃ an2; bn2½ � ⋯ ⋃ anm; bnm½ �

2
664

3
775; ð6Þ

where aij represents the lower bound value, and bij the
upper bound value for alternative i and criterion j, for i = 1,
2, …, m, j = 1, 2, …, n.

With regard to the nature of criteria, AAI and AI can be
determined according to Eqs. (7)–(8):

AAI ¼ min
i

xij if j∈B; max
i

xij if j∈C; ð7Þ

AI ¼ max
i

xij if j∈B; min
i

xij if j∈C; ð8Þ

where B stands for benefit criteria, and C shows cost
criteria.

Step 3- The components of the normalized matrix N =
[nij]m ∗ n are computed using Eqs. (9)–(10):

eij ¼ ⋃ cij; dij
� � ¼ ⋃ aia; bia½ �

⋃ aij; bij
� � if j∈C; ð9Þ

eij ¼ ⋃ cij; dij
� � ¼ ⋃ aij; bij

� �
⋃ aia; bia½ � if j∈B; ð10Þ

where eij represents normalized grey value of alternative i
against criterion j.

Step 4- The weighted matrix V = [vij]m ∗ n is determined
by multiplying the normalized matrix with the weight
coefficients of criteria according to Eq. (11):

Vij ¼ ⋃ V1ij;V2ij
� � ¼ wijeij; ð11Þ

where Vij represents weighted normalized grey value of
alternative i against criterion j.

Step 5- Sum of the elements of the weighted normalized
matrix is determined as follows.

Si ¼ S1ij; S2ij
� � ¼ ∑

n

i¼1
⋃ V1ij;V2ij
� �� �

; ð12Þ

where Si denotes the sum of the weighted normalized grey
values of each alternative i.

Step 6- Utility degrees of each alternative i in relation to
the anti-ideal and ideal solution are computed based on
Eqs. (13)–(14):

Hi− ¼ H1ij− ;H2ij−
� � ¼ Si

Saai
; ð13Þ

Hiþ ¼ H1ijþ ;H2ijþ
� � ¼ Si

Sai
: ð14Þ

Step 7- The utility function of each alternative i concern-
ing the anti-ideal and ideal solutions is determined based
on Eqs. (15)–(16):

f Hi−ð Þ ¼ f H1ij−
� �

; f H2ij−
� �� � ¼ Hiþ

Hiþ þ Hi−
; ð15Þ

f Hiþð Þ ¼ f H1ijþ
� �

; f H2ijþ
� �� � ¼ Hi−

Hiþ þ Hi−
; ð16Þ

where f Hi−ð Þ denotes the utility function with respect to
the anti-ideal solution, while f Hiþð Þ shows the utility function
with respect to the ideal solution.

Step 8- Total utility function of alternatives is obtained
by Eq. (17).

f Hið Þ ¼ f H1ij
� �

; f H2i jð Þ� �
¼ Hiþ þ Hi−

1þ 1− f Hiþð Þ
f Hiþð Þ þ 1− f Hi−ð Þ

f Hi−ð Þ
: ð17Þ

Step 9- Grey length values of utility functions are em-
ployed to find the final ranking order of alternatives.
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3.5 Grey CoCoSo (CoCoSo-G)

Yazdani et al. [72] introduced a novel ranking MCDM tech-
nique based on combined compromise functions. Due to the
utilization of three compromise score functions to compute the
final compromise score of alternatives in CoCoSo, it has
shown high reliability in generating results for complex
decision-making problems. This characteristic of CoCoSo
made it a very popular tool to address complex problems in
various fields. Right after its development, Yazdani et al. [73]
extended the traditional CoCoSo method under grey interval
numbers to address a supplier selection problem in construc-
tion management. Ecer and Pamucar [17] integrated BWM
and improved CoCoSo with Bonferroni functions to address
a sustainable supplier selection problem. Peng and Huang [45]
combined CRITIC and CoCoSo under fuzzy logic to evaluate
financial risks. Torkayesh et al. [67] offered an integrated
MCDMmodel using BWM, LBWA, and CoCoSo techniques
to analyze healthcare sectors in Eastern Europe with respect to
healthcare fundamentals and infrastructures. Deveci et al. [13]
developed an improved version of CoCoSo using the fuzzy
power heronian function to rank autonomous vehicles in traf-
fic management. Recently, Yazdani et al. [74] suggested a
new decision support model to address a sustainable supplier
selection problem using the integrated CRITIC-CoCoSo tool
under interval-valued Neutrosophic set.

The CoCoSo-G method and its execution steps are given
below:

Step 1- Using Eq. (6), the initial decision matrix is also
considered in CoCoSo-G.
Step 2- Initial decision matrix is normalized using Eqs.
(18)–(19) based on the nature of criteria.
For benefit criteria:

lij ¼ ⋃ cij; dij
� � ¼ ⋃ aij; bij

� �
−min

i
⋃ aij; bij
� �

max
i

⋃ aij; bij
� �

−min
i

⋃ aij; bij
� � ; ð15Þ

and for cost criteria:

lij ¼ ⋃ cij; dij
� � ¼ max

i
⋃ aij; bij
� �

−⋃ aij; bij
� �

max
i

⋃ aij; bij
� �

−min
i

⋃ aij; bij
� � : ð16Þ

where lij represents the normalized grey value of alternative
i over criterion j.

Step 3- Sum of the weighted grey decision matrix is
calculated according to Eq. (17):

δi ¼ ∑
n

j¼1
wjlij; ð17Þ

where δi indicates the sum of the weighted normalized grey
values of each alternative i.

Step 4- Power weight of comparability sequences of al-
ternatives is calculated as Eq. (18):

Pi ¼ ∑
n

j¼1
⋃ cij; dij
� �w j

� �
; ð18Þ

where Pi denotes the sum of the power of weighted nor-
malized grey values of each alternative i.

Step 5- Three aggregation scores are determined based
on Eqs. (19)–(21):

Qi1 ¼ t1ij; t2ij
� � ¼ Pi þ δi

∑
m

i¼1
Pi þ δið Þ

; ð19Þ

Qi2 ¼ n1ij; n2ij
� � ¼ δi

min
i

δi
þ Pi

min
i

Pi
; ð20Þ

Qi3 ¼ m1ij;m2ij
� � ¼ λδi þ 1−λð Þ Pið Þ

λmax
i

δi þ 1−λð Þ max
i

Pi

� � ; ð21Þ

where 0 ≤ λ ≤ 1 which is normally as λ = 0.5 or can be
chosen by experts.

Step 6- Final compromise score of each alternative is
calculated using three aggregation scores according to
Eq. (22):

Qi ¼ Qi1 � Qi2 � Qi3ð Þ13 þ 1

3
Qi1 þ Qi2 þ Qi3ð Þ: ð22Þ

Step 7- To prioritize the alternatives, the length of the
grey values of Qi is obtained.
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3.6 Cluster-based SBWM-MARCOS-CoCoSo-G

This section presents a novel decision-making model, called
cluster-based SBWM-MARCOS-CoCoSo-G which is used to
address a landfill location selection for healthcare waste with a
sustainability perspective. The main contribution of this meth-
od relies on integrating the SBWM model with an uncertain
ranking hybrid MCDM model. To solve a complex decision-
making problem with big data structure, the K-means algo-
rithm is used to enhance the capability of the decision-making
by clustering hospitals and medical centers with respect to
their characteristics. Integration of the K-means algorithm
with a stratified hybrid decision model under grey numbers
is conducted for the first time in this study. Moreover, this
research is the first to develop a hybrid rankingMCDMmodel
by combining CoCoSo and MARCOS methods under grey
interval numbers. Although there exist other well-known un-
certainty sets such as fuzzy logic and Neutrosophic sets, the
current study aims to apply grey interval numbers according to
the following reasons. Interval grey numbers can express the
diversified and usable information based on decision-makers’
thoughts and logic. On the other hand, interval grey numbers
can easily consider uncertainty, impreciseness, vagueness,
and inconsistency of the information in better-diversified
environment. Although fuzzy logic and Neutrosophic sets
also empower us to express uncertain information but are
not as well as interval grey numbers in terms of express-
ing diversified uncertain information. Finally, this is the
first study in the literature of waste facility location prob-
lems to select landfill locations using a cluster-based strat-
ified hybrid decision-making model with a prospective
vision.

In this section, the complete procedure of the cluster-based
SBWM-MARCOS-CoCoSo-G is given based on the prelim-
inaries reviewed in previous subsections. A graphical presen-
tation of the proposed methodology is illustrated in Fig. 1.

Step 1. Primary clustering attributes are defined, and
clusters are made using the K-means algorithm.
According to the constructed clusters of hospitals and
medical centers, potential location alternatives are
identified.
Step 2. Required criteria and potential future events are
defined. Under each state, the weight coefficients of the
criteria are computed. Then, transitioning probability is
used along with weight coefficients of the criteria in each
state to calculate the optimal weight coefficient of the
criteria.
Step 3. Initial decision matrix is constructed considering
location alternatives in each cluster.
Step 4. Ranking order of location alternatives in each
cluster is obtained using CoCoSo-G with the integration
of weights of the SBWM.

Step 5. Ranking order of location alternatives in each
cluster is obtained using MARCOS-G with the integra-
tion of the weight in SBWM.
Step 6. To identify the final ranking order of location
alternatives in each cluster, Borda voting method is used
to integrate the ranking order of CoCoSo-G and
MARCOS-G into a unified ranking order.

4 Problem definition

For developing countries, landfilling is still considered as one
of the waste disposal methods for urban and rural waste.
Although landfilling may seem like a semi-sanitary disposal
method with a simple structure, it needs deep investigation to
construct landfills with respect to different factors. On the
other hand, waste separation is another important issue that

Healthcare landfill location selection with 
sustainability perspective.

Definition of scope, criteria, and potential future 
events.

Data collection for clustering medical centers using 
K-means algorithm.

Identification of possible candidate loction 
alternatives in each cluster.

Calculation of probabilities of states based on 
likelihood of occurrence of events.

Applying SBWM for calculation of optimal weight 
coefficients of criteria.

Applying Grey MARCOS-CoCoSo to prioritize 
locations in each cluster.

Applying BORDA method to determine overall 
ranking order.

Sensitivity and comparative analysis. 

Fig. 1 Diagram of the proposed methodology
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should be addressed before landfilling operations. Healthcare
waste is different from other types of waste such as organic
waste; therefore, it takes specific requirements for landfilling
healthcare waste. This happens due to dangerous and infec-
tious materials that may be included within the waste of
healthcare centers such as hospitals. Increasing demand for
healthcare services and the high consumption rate of medical
materials have intensified attention to address healthcare
waste in the most appropriate way. Since inappropriate treat-
ment of healthcare waste could cause too many environmental
and social damages for people living around the landfills.

Considering all these conditions, selecting a location for
landfilling becomes a highly complex and multi-dimensional
decision-making problem. Addressing such problems requires
reliable decision support models to enable real-life authorities
in related organizations to select the most suitable locations
for constructing new landfills. An important step to address
landfill location selection for healthcare waste is to find the
most important and effective criteria that have a significant
role in terms of technical, environmental, social, and econom-
ic aspects. As discussed earlier, several indicators and decision
criteria are defined considering the visions of stakeholders and
associated experts. Identified criteria are categorized into three
sustainability pillars of social, environmental, and economic
criteria. Table 2 presents a detailed overview of the main
criteria, sub-criteria, their type, description, and references.

4.1 Case study

Mazandaran is one of the most densely populated provinces in
Iran which is located on the southern coast of the Caspian Sea.
It is geographically divided into two zones: the coastal plains,
and the mountainous areas. There are 79 major hospitals and
infirmaries in Mazandaran. Accordingly, waste management
is one of the most significant concerns of the managers in this
province. Moreover, the recent pandemic has made unexpect-
ed challenges and waste management has encountered a high-
level of uncertainty. According to the current status of
Mazandaran University of Medical Sciences1 (2021) to cope
with the challenges and burden of the pandemic, managers
believe that they should consider alternative facilities to dis-
pose the COVID-19 related medical waste quickly and timely.
The purpose is to prevent from running out of available ca-
pacity to treat the medical waste. Hence, it is so critical to
utilize MCDM techniques under uncertainty to define and
prioritize some alternatives as candidate locations for waste
disposal. In this study, a set of alternatives is considered for
each cluster and the aim is to rank the best ones.

Figure 2 illustrates Mazandaran province and the number
of medical centers in each city. Each number on the red points

stands for the total number of hospitals and infirmaries in a
city.

4.2 Results of clustering

Due to the high amount of medical waste generated in 79
major hospitals and infirmaries in the province, there are pos-
sible future investments by public and private environmental
sectors to build four landfills in different parts considering
accessibility and expansion ability. For this purpose, the K-
means clustering algorithm is applied to categorize 79medical
centers into four groups based on three main parameters as
medical waste generation rate before COVID-19, medical
waste generation rate after COVID-19, and proximity of hos-
pitals to each other in different districts or cities. All the re-
quired input data were collected from the healthcare depart-
ment of Mazandaran University of Medical Sciences (2021)
for a day. Based on the K-means algorithm defined in the
previous section, 79 medical centers are categorized into four
groups as illustrated in Fig. 3. Cluster 1 (first from left) in-
cludes 16 medical centers, cluster 2 (on the right of cluster 1)
includes 17 medical centers, cluster 3 covers up to 20 medical
centers, and cluster 4 (first from right) includes 26 medical
centers.

In order to determine possible location alternatives accord-
ing to the clustered medical centers, an expert is invited from
the healthcare department of Mazandaran University of
Medical Sciences who is also in contact with environmental
organizations and waste management department of the prov-
ince. According to the experts in healthcare waste manage-
ment, candidate locations are identified and illustrated in
Fig. 4.

Figure 4 presents information about medical centers and
clusters that they are associated with. More importantly,
Fig. 4 demonstrates 12 candidate locations in each cluster.
Each cluster is assigned with three possible and candidate
locations that have potential characteristics to be used as
landfills.

4.3 Results of SBWM

Weight determination of effective and critical decision criteria
to select the best candidate locations in each cluster is of high
significance. However, as discussed earlier, healthcare waste
management and landfill location selection have become com-
plex and period-based decision-making. This indicates that
authorities require more reliable decision-making models that
can consider the impact of changes of future events in the
weight determination process. For this purpose, again the ex-
pert is invited to provide important insights on possible future
events that can have deep effects on locating landfills. The
expert states two important events that may occur in the future
and have a serious influence on solutions. Event 1 is related to1 https://en.mazums.ac.ir/
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the development of special collection technologies for medical
waste. Event 2 is related to the possible enactment of laws on
making restrictions on the structural condition of landfills for
their expansion ability and sustainability. According to the
identified events, two potential future events generate four
different states. These states are defined as below:

1) S1: None of the events happen and the system stays in its
current situation.

2) S2: Event 1 happens.

3) S3: Event 2 happens.
4) S4: Both events happen at the same time.

The next step is to determine the likelihood of occurrence
of states which are required to determine transition probabil-
ities. According to the experts, the likelihood of Event 1 is
55%, and the likelihood of Event 2 is 75%. Also, it is estimat-
ed that with a likelihood of 10% none of the events happen in
the future. In this case, we take into account the probability of
the state occurrence according to the lowest provided

Table 2 Criteria for healthcare landfill location selection

Main criteria Sub-criteria Type Description References

Social Adherence to local rules
and regulations (C1)

Beneficial This criterion measures how each alternative is aligned with local rules as well
as governmental and organizational regulations.

[26, 70, 71]

Satisfaction level (C2) Beneficial This criterion measures the satisfaction level of occupants of residential areas
around the landfill alternative.

[25, 66, 71]

Economic Land price (C3) Cost This criterion represents the average land price. [25, 46]

Transportation and
maintenance cost (C4)

Cost This criterion measures operational costs including transportation and
maintenance.

[25, 70]

Future expansion potential
(C5)

Beneficial This criterion represents the possibility of future expansion in the capacity of a
landfill alternative.

[66, 71]

Environmental Emissions (C6) Cost This criterion represents water, soil, and air emissions. [65, 70]

Distance to residential areas
(C7)

Beneficial This criterion measures the average distance of landfill alternatives from
residential areas.

[49, 66, 77]

Distance to waste sorting
facilities (C8)

Cost This criterion denotes the distance of landfill alternatives from sorting and
segregation facilities.

[27, 49]

Geological characteristics
(C9)

Beneficial Geological characteristics are used to measure environmental and geological
characteristics around landfill alternatives.

[2, 3,
25, 71,
77]

Fig. 2 Distribution of 79 medical centers in Mazandaran province
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likelihood. For example, the probability of State 1 (S1) is
represented by P1 while the probabilities of Event 2 are de-
noted as 5.5 P1, and 7.5P1. Let’s assume that all events are
independent; therefore, the probability of State 4 (S4) can be
determined based on the multiplication of two events that are
involved. Thus, the probability of S4 is 37.5 P1

2. The sum of
these probabilities must be equal to one. Hence. P1 can be
determined as follows:

14P1 þ 37:5P1
2 ¼ 1;

P1 ¼ 0:0613:

The probabilities for transitioning the states are demon-
strated in Fig. 5.

After determining probabilities of transitioning among
states, the weight determination process starts with applying
BWM under stratification theory. For this purpose, the best
criterion (BC) and the worst criterion (WC) are selected in
each state. Later, best-to-others (BTC) and others-to-worst
(OTW) vectors are constructed in each state. Detailed infor-
mation of the SBWMmodel is presented in Table 3 where BC
and WC, as well as weight vectors, are provided under each
state.

Fig. 3 Generated clusters and hospitals

Fig. 4 Candidate locations in each cluster
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To find the optimal weights of criteria, transitioning prob-
abilities are used. In this regard, weight coefficients of the
defined criteria are multiplied to transitioning probabilities in
order to determine the optimal weight coefficients according-
ly. Table 4 presents information on optimal weight coeffi-
cients of the defined criteria. Adherence to local rules and
regulations (C1) is assigned with the highest importance while
the satisfaction level of people around landfills is considered
as the least important criterion. Based on the results, the
criteria are ranked based on their importance as follows: C1
> C5 > C4 > C9 > C3 > C7 > C6 > C8 > C2. According
to this ranking, social satisfaction level (C2) is the least im-
portant criterion.

4.4 Results of MARCOS-CoCoSo-G

This section presents the results of the proposed hybrid rank-
ingMCDMmethodwhich is calledMARCOS-CoCoSo-G for
evaluation of landfill location candidates in Fig. 4. The
MARCOS-CoCoSo-G is applied to prioritize these location
alternatives in each cluster in order to find the most suitable
location candidate for possible future landfill construction in
each cluster. The most important step in applying MARCOS-
CoCoSo-G is to construct an initial decision matrix based on
experience and background of the expert using interval num-
bers which takes a value between 0 and 100. Since there exist
several qualitative criteria in this study, 0–100 scale is used to
express opinions with more convenience.

Table 5 presents the performance score of candidate loca-
tion alternatives in each cluster based on the expert’s opinion.
This multi-cluster matrix is used to generate a normalized
decision matrix and weight normalized decision matrix for
each cluster. Finally, compromise solutions and utility func-
tions are obtained in order to prioritize candidate locations in
each cluster. Table 6 represents information regarding calcu-
lations of the MARCOS-G method for each cluster. In the
same way, Table 7 represents information about the results
of the CoCoSo-G method for each cluster.

Finally, Table 8 illustrates the grey length of solutions of
both MARCOS-G and CoCoSo-G along with the ranking
order of alternatives in each cluster. Now using the Borda
method, we can obtain insights from Table 8. In Cluster #1,
both methods select A1 as the best option to be considered for
healthcare landfills. In Cluster #2, both methods are consistent
in selecting A5 as the best candidate location. In Cluster #3,
methods are inconsistent in selecting the best option for land-
fill location where MARCOS-G selects A8 as the best option

Fig. 5 Transitioning probabilities

Table 3 SBWM results

States S1 S2 S3 S4

Best criterion C3 – C4 – C5 – C1 –

Worst criterion – C2 – C2 – C2 – C2

C1 3 6 3 7 2 8 1 9

C2 8 1 7 1 9 1 8 1

C3 1 8 3 9 6 8 3 6

C4 5 3 1 9 7 9 2 5

C5 4 6 4 4 1 3 2 7

C6 4 5 5 6 3 5 6 5

C7 3 4 5 7 3 5 5 6

C8 5 5 5 7 5 4 5 4

C9 5 6 3 4 3 5 4 7

Table 4 Optimal weight coefficients

States S1 S2 S3 S4 Optimal weight

C1 0.127 0.126 0.188 0.258 0.173

C2 0.027 0.025 0.023 0.023 0.024

C3 0.298 0.126 0.063 0.111 0.105

C4 0.076 0.277 0.054 0.167 0.146

C5 0.096 0.094 0.222 0.167 0.164

C6 0.096 0.075 0.125 0.056 0.097

C7 0.127 0.075 0.125 0.067 0.100

C8 0.076 0.075 0.075 0.067 0.074

C9 0.076 0.126 0.125 0.084 0.117

ξ* 0.084 0.101 0.153 0.076 –
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while CoCoSo-G selects A7 as the best option. In the last
cluster, again both methods are consistent in selecting A11
as the best location for landfill.

With regard to the obtained results, it should be noted that
decision-making under different criteria and uncertainty leads
to a reliable solution that can be implemented. Here, managers
may consider a number of highly-prioritized candidate loca-
tions in each cluster according to the required capacity for
treating waste. Therefore, the next important step is the estab-
lishment of the required facilities.

One of the main advantages of the proposed cluster-based
SBWM-MARCOS-CoCoSo-G along with its reliability and pre-
cise is related to its low time complexity. It is important to point
out that time of complexity of soft computing-based MCDM
methods increases as the number of decision criteria and alterna-
tives. Time complexity of the SBWM is very sensitive to the
number of events and generated states. Moreover, the time

complexity of the K-means algorithm is highly dependent on
the input data size. Therefore, for case studies with bigger data
structures on a national or global level, the solution time of theK-
means can strongly affect the total time complexity of the sug-
gested methodology.

According to the obtained results, one of the most impor-
tant practical implications on locating a landfill in the
Mazandaran Province is related to local rules and regulations.
This means that all strategical and long-term decisions regard-
ing landfills for HWMmust pay high attention to adherence of
new projects to the current local policies and guidelines.
Another important practical point has to do with the possible
laws and regulations on the structural conditions of landfill
and other related infrastructures. Therefore, any efforts to lo-
cate landfills for HWM should take all current regulations,
acts, and incentives in order to install landfills in the most
optimal locations. Results of the ranking part show how well

Table 5 Initial decision matrix with grey interval numbers

Cluster Loc. C1 C2 C3 C4 C5 C6 C7 C8 C9

#1 A1 [70,90] [90,95] [55,60] [30,50] [70,80] [55,60] [20,30] [20,35] [80,90]

A2 [60,75] [80,90] [50,60] [60,70] [65,75] [25,40] [60,80] [70,80] [55,60]

A3 [40,45] [80,90] [60,65] [40,45] [25,45] [35,55] [35,55] [55,65] [50,55]

#2 A4 [80,85] [45,75] [60,70] [65,70] [30,40] [65,70] [25,40] [50,60] [35,55]

A5 [35,55] [55,60] [25,40] [35,50] [15,30] [40,50] [30,50] [45,60] [60,70]

A6 [80,90] [40,60] [20,30] [45,60] [75,85] [55,60] [35,60] [50,55] [35,40]

#3 A7 [30,35] [50,75] [65,80] [35,45] [25,30] [60,80] [40,60] [40,50] [45,50]

A8 [55,65] [50,55] [25,30] [50,70] [60,80] [20,30] [75,85] [30,40] [65,85]

A9 [50,60] [85,90] [45,55] [40,55] [65,85] [35,40] [65,70] [70,80] [40,60]

#4 A10 [55,60] [35,60] [30,50] [40,60] [35,55] [45,55] [15,30] [25,30] [50,55]

A11 [50,75] [75,85] [35,50] [40,60] [55,60] [15,25] [35,45] [40,50] [40,50]

A12 [65,75] [70,80] [35,50] [40,60] [45,60] [35,50] [30,40] [75,90] [70,75]

Table 6 MARCOS-G results

Cluster Alternative Si Hi− Hiþ f Hi−ð Þ f Hiþð Þ f(Hi)

#1 A1 0.978 1.247 0.786 1.001 0.978 1.247 0.435 0.707 0.349 0.568 0.424 1.033

A2 1.169 1.417 0.939 1.138 1.169 1.418 0.457 0.672 0.367 0.540 0.539 1.093

A3 0.918 1.152 0.737 0.925 0.918 1.152 0.442 0.696 0.355 0.559 0.405 0.933

#2 A4 1.153 1.352 1.013 1.188 1.153 1.352 0.454 0.624 0.399 0.548 0.584 1.047

A5 0.713 1.022 0.626 0.898 0.713 1.022 0.371 0.764 0.326 0.671 0.281 1.067

A6 0.937 1.167 0.823 1.025 0.937 1.167 0.427 0.663 0.375 0.583 0.439 0.986

#3 A7 1.059 1.346 0.727 0.923 1.059 1.346 0.467 0.754 0.320 0.517 0.419 1.003

A8 0.938 1.221 0.644 0.838 0.938 1.222 0.455 0.772 0.312 0.530 0.360 0.944

A9 1.111 1.365 0.762 0.936 1.112 1.365 0.483 0.728 0.331 0.500 0.458 0.969

#4 A10 0.959 1.296 0.720 0.973 0.959 1.296 0.423 0.772 0.317 0.579 0.372 1.122

A11 0.911 1.243 0.684 0.933 0.911 1.243 0.419 0.780 0.314 0.585 0.349 1.092

A12 1.185 1.549 0.889 1.162 1.186 1.549 0.437 0.747 0.328 0.560 0.478 1.277
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the proposed methodology tackled decision-making on land-
fills locations based on characteristics of 79 medical centers.
Based on the optimal selection of the location candidates,
medical centers would minimize their external costs related
to the disposal of healthcare waste by selecting right location
for the establishment of landfills.

4.5 Sensitivity analysis: Impact of weight coefficients

The aim of this study by using SBWM within the proposed
DSS is to ensure how considering multiple future events and
their impacts can affect the solutions of the DSS. In other
words, this is to show how only considering a specific event
can lead to misleading solutions. In this regard, this part con-
ducts a sensitivity analysis test to observe the behavior of the
DSS under five different weight vectors as optimal weight

vector, weight vector in State 1, weight vector in State 2, weight
vector in State 3, and weight vector in State 4. The goal of
sensitivity analysis is to show howwell SBWMcan consolidate
all events and their impacts and propose a solution accordingly.

Table 9 presents information about weight vectors and their
corresponding grey length and ranking order usingMARCOS-G
for candidate locations in each cluster. Benchmarking Cluster #1,
we observe that as the focus is only Event 1 is the best option
(A1) is no longer best in other states. State 1 considers A3 as best,
State 2 considers A1, and in the worst-case State 3 selects A1 as
the worst option for landfill. This shows that focusing only on
one specific event and considering its impact cannot provide us a
reliable environment to make decisions. All possible events
should be considered to obtain a consensus solution.

In the same way, Table 10 presents a similar test for
CoCoSo-G under several weight vectors and their

Table 7 CoCoSo-G results

Cluster Alternative δi Pi Qi1 Qi2 Qi3 Qi

#1 A1 0.196 0.512 5.716 8.600 0.216 0.544 2.273 4.522 0.628 0.967 1.715 3.346

A2 0.393 0.773 5.493 8.645 0.215 0.562 3.221 5.859 0.625 1.000 2.110 3.961

A3 0.467 0.757 4.491 8.072 0.181 0.527 3.378 5.651 0.526 0.937 2.047 3.780

#2 A4 0.196 0.512 6.556 8.684 0.246 0.552 2.847 5.054 0.714 0.972 2.062 3.587

A5 0.393 0.773 3.549 8.261 0.143 0.542 2.998 6.261 0.417 0.955 1.750 4.066

A6 0.467 0.757 5.512 8.512 0.217 0.556 3.931 6.253 0.632 0.980 2.408 4.101

#3 A7 0.196 0.512 3.590 7.897 0.140 0.507 2.000 4.807 0.404 0.897 1.332 3.368

A8 0.393 0.773 4.651 8.443 0.187 0.555 3.294 6.285 0.538 0.983 2.031 4.116

A9 0.467 0.757 7.292 8.602 0.288 0.564 4.409 6.250 0.828 0.998 2.858 4.126

#4 A10 0.393 0.773 4.680 8.670 0.180 0.598 3.803 7.277 0.521 0.970 2.211 4.564

A11 0.196 0.512 2.594 8.467 0.099 0.569 2.000 5.872 0.286 0.922 1.180 3.909

A12 0.467 0.757 7.463 8.967 0.282 0.616 5.255 7.311 0.814 0.998 3.181 4.625

Table 8 Final results of
MARCOS-CoCoSo Cluster Alternative MARCOS-G CoCoSo-G Borda

Grey length Rank Grey length Rank Score Rank

#1 A1 0.590 1 0.488 1 4 1

A2 0.506 3 0.467 2 1 2

A3 0.565 2 0.458 3 1 2

#2 A4 0.442 3 0.425 2 1 2

A5 0.736 1 0.570 1 4 1

A6 0.555 2 0.413 3 1 2

#3 A7 0.583 2 0.604 1 3 1

A8 0.619 1 0.506 2 3 1

A9 0.527 3 0.307 3 0 2

#4 A10 0.669 2 0.516 2 2 2

A11 0.680 1 0.698 1 4 1

A12 0.625 3 0.312 3 0 3
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corresponding grey length and ranking order. For
benchmarking the results, Cluster #1 is selected which indi-
cates that as the system does not consider any possible future
events, the worst location candidate in the optimal case be-
comes the best option in State 1. This is a good example of
how stratification theory enables decision-makers to observe
how misleading results they can obtain if they use a
deterministic-based DSS which does not cover up any possi-
bility of events.

4.6 Comparative analysis

One of the main deficiencies of the MCDMmethods relies on
their structures where sometimes structures with specific

characteristics or algorithms can lead to different solutions.
To validate the results of the proposed methodology, this sec-
tion presents a comparative analysis test to analyze the results
of the problem using other MCDM approaches. For this pur-
pose, grey Weighted Aggregated Sum-Product Assessment
(WASPAS) method [78], Additive Ratio Assessment
(ARAS) [68], grey Technique for Order of Preference by
Similarity to Ideal Solution [43], and grey Evaluation based
on Distance from Average Solution [57] are used to tackle the
sustainable landfill location selection problem.

Table 11 reports the results of different MCDM methods
under grey interval numbers for the landfill location problem.
Based on the findings, all MCDM methods were consensus
with the proposed methodology in almost all of the cases in

Table 9 Impact of weight coefficients on results of MARCOS-G

Cluster Alternative Optimal S1 S2 S3 S4

Grey length Rank Grey length Rank Grey length Rank Grey length Rank Grey length Rank

#1 A1 0.590 1 0.522 2 0.653 1 0.531 3 0.618 1

A2 0.506 3 0.519 3 0.479 3 0.533 2 0.487 3

A3 0.565 2 0.524 1 0.496 2 0.635 1 0.523 2

#2 A4 0.442 3 0.447 3 0.411 3 0.479 3 0.414 3

A5 0.736 1 0.764 1 0.728 1 0.730 1 0.754 1

A6 0.555 2 0.628 2 0.590 2 0.510 2 0.550 2

#3 A7 0.583 2 0.568 2 0.576 2 0.594 2 0.567 2

A8 0.619 1 0.576 1 0.636 1 0.612 1 0.609 1

A9 0.527 3 0.493 3 0.554 3 0.504 3 0.540 3

#4 A10 0.669 2 0.720 1 0.692 2 0.640 2 0.674 2

A11 0.680 1 0.694 2 0.703 1 0.658 1 0.685 1

A12 0.625 3 0.646 3 0.645 3 0.609 3 0.618 3

Table 10 Impact of weight coefficients on results of CoCoSo-G

Cluster Alternative Optimal S1 S2 S3 S4

Grey length Rank Grey length Rank Grey length Rank Grey length Rank Grey length Rank

#1 A1 0.488 1 0.434 3 0.493 1 0.494 1 0.489 1

A2 0.467 2 0.488 1 0.471 3 0.465 2 0.452 2

A3 0.458 3 0.472 2 0.482 2 0.449 3 0.427 3

#2 A4 0.425 2 0.362 3 0.433 2 0.432 2 0.425 2

A5 0.570 1 0.636 1 0.569 1 0.567 1 0.543 1

A6 0.413 3 0.397 2 0.431 3 0.409 3 0.391 3

#3 A7 0.604 1 0.567 1 0.615 1 0.608 1 0.595 1

A8 0.506 2 0.520 2 0.511 2 0.504 2 0.491 2

A9 0.307 3 0.287 3 0.332 3 0.296 3 0.293 3

#4 A10 0.516 2 0.564 2 0.517 2 0.511 2 0.502 2

A11 0.698 1 0.661 1 0.700 1 0.703 1 0.701 1

A12 0.312 3 0.309 3 0.325 3 0.309 3 0.297 3
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selecting the best location alternative. However, there are
slight differences in some of the clusters, specifically for al-
ternatives that were selected as second and third options.
According to the results of Table 11, the proposed methodol-
ogy shows high reliability to tackle waste management prob-
lems with big data where there exists a decision-making prob-
lem under uncertain information and conditions.

To statistically analyze the results of the comparative analysis,
the Pearson’s correlation coefficient is used as a statistical test
whichmeasures the relationship between two variables. Here, the
Pearson’s correlation coefficient is applied to understand the re-
lationship between the ranking of the suggested methodology
and other MCDM approaches. Table 12 represents the results
of the correlation test between the proposed methodology and
other MCDM methods. It is demonstrated that our proposed
methodology has a complete correlation with the results of other
MCDM methods. Although in some cases the correlation value
drops to 0.5, our proposed methodology still chooses the best
alternatives as same as other methods.

Finally, it is obvious that the proposed cluster-based SBWM-
MARCOS-CoCoSo-G can be easily implemented on other
cases with different scales in order to proceed with decision-
making under uncertainty in similar MCDM problems due to
its high efficiency in terms of considering impacts of future
uncertain and unforeseen events on weight coefficients of de-
cision criteria, clustering alternatives or demand points based
on various characteristics to facilitate evaluation process, and
efficient and precise evaluation of alternatives using hybrid
ranking MCDM model under uncertain environment.

5 Conclusions

This study proposes a novel big data DSS using K-means
clustering algorithm, SBWM, and a hybrid MARCOS-

CoCoSo-G method to address the sustainable landfill location
selection problem. The developed DSS provides several con-
tributions to the literature of decision-making methods as well
as the HWM field. The DSS empowers real-life practices to
consider large information and data about the characteristics
of medical centers in order to cluster them into the most suit-
able groups for the location selection process. On the other
hand, the DSS enables decision-makers to include impacts of
possible future events into the decision-making environment.
For HWM which is a field full of dynamicity and uncer-
tainties, this feature can contribute a lot to real-life practices.
Finally, grey interval numbers are utilized to be implemented
for a novel hybrid decision model, MARCOS-CoCoSo, to
empower real-life decision-makers to express their uncertain
information and judgments through an interval range. All in
all, the proposed DSS is novel in its kind which is used to
address the sustainable HLS problem.

Although this work proposes a novel DSS to address the
sustainable HLS problem, there exist some limitations that can
be tackled in future studies. Due to some disadvantages of the
K-means algorithm, one may consider using clustering algo-
rithms such as Mean-Shift Clustering, Density-Based Spatial
Clustering of Applications with Noise (DBSCAN), and
Expectation–Maximization (EM), clustering using Gaussian
Mixture Models (GMM). Another direction for future studies
is to consider a systematic way to determine the likelihood of
occurrence of events; thus, there will be no biasedness and
subjectivity of experts in expressing the likelihood of occur-
rence of events. MCDM methods are very sensitive to their
parameters, inputs, and the way they calculate score functions.
One study may develop a holistic MCDM approach by con-
solidating more than two methods to provide a DSS with
higher validation. Although grey interval numbers provide a
reliable uncertainty model for decision-making models, other
uncertainty models such as fuzzy logic and its extensions, or

Table 11 Comparative analysis
results Clus. Alt. MARCOS-

G
CoCoSo-
G

WASPAS-
G

ARAS-
G

TOPSI-
G

EDAS-
G

#1 A1 1 1 1 1 1 1

A2 3 2 2 2 3 3

A3 2 3 3 3 2 2

#2 A4 3 2 2 2 2 3

A5 1 1 1 1 1 1

A6 2 3 3 3 3 2

#3 A7 2 1 1 1 1 1

A8 1 2 2 2 2 2

A9 3 3 3 3 3 3

#4 A10 2 2 3 2 2 2

A11 1 1 1 1 1 1

A12 3 3 2 3 3 3
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Neutrosophic numbers can be good options to use for newer
decision models based on the scope and targets of problems.
Moreover, sometimes uncertainty sets such as fuzzy logic or
grey numbers cannot express real-life events into the mathe-
matical equations as some problems have stochastic nature or
interval-based uncertainty [20, 21]. Therefore, one study may
focus on developing DSS based on stochastic terms to address
the same problem. Finally, HLS problems are more compli-
cated rather than only landfill location problems. One may
develop a DSS by integrating the proposed methodology with
optimization models to address other operational problems in
the network of healthcare waste such as transportation issues,
disposal, and recycling processes.
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