
THE ASTROPHYSICAL JOURNAL, 545 :847È853, 2000 December 20
2000. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

A CLUSTER OF BLACK HOLES AT THE GALACTIC CENTER

JORDI MIRALDA-ESCUDE� 1 AND ANDREW GOULD

Department of Astronomy, Ohio State University, Columbus, OH 43210 ; jordi=astronomy.ohio-state.edu, gould=astronomy.ohio-state.edu
Received 2000 March 17; accepted 2000 August 7

ABSTRACT
If the stellar population of the bulge contains black holes formed in the Ðnal core collapse of ordinary

stars with then about 25,000 stellar mass black holes should have migrated by dynamicalM Z 30 M
_

,
friction into the central parsec of the Milky Way, forming a black hole cluster around the central super-
massive black hole. These black holes can be captured by the central black hole when they randomly
reach a highly eccentric orbit due to relaxation, either by direct capture (when their Newtonian peribo-
thron is less than 4 Schwarzschild radii) or after losing orbital energy through gravitational waves. The
overall depletion timescale is D30 Gyr, so most of the 25,000 black holes remain in the central cluster
today. The presence of this black hole cluster would have several observable consequences. First, the
low-mass, old stellar population should have been expelled from the region occupied by the black hole
cluster as a result of relaxation, implying a core in the proÐle of solar-mass red giants with a radius of
D2 pc (i.e., 1@). The observed central density cusp (which has a core radius of only a few arcseconds)
should be composed primarily of young Gyr) stars. Second, Ñares from stars being captured by([1
supermassive black holes in other galaxies should be rarer than usually expected because the older stars
will have been expelled from the central regions by the black hole clusters of those galaxies. Third, the
young Gyr) stars found at distances D3È10 pc from the Galactic center should be preferentially on([2
highly eccentric orbits. Fourth, if future high-resolution K-band images reveal sources microlensed by
the Milky WayÏs central black hole, then the cluster black holes could give rise to secondary (““ planet-
like ÏÏ) perturbations on the main event.
Subject headings : black hole physics È Galaxy : center È Galaxy : kinematics and dynamics

1. INTRODUCTION

The measurement of proper motions and radial velocities
of stars within the central parsec of the Galaxy has led to
the conclusion that a black hole of mass (3.0 ^ 0.3)] 106

is present in the center (Eckart & Genzel 1997 ; Ghez etM
_al. 1998 ; Genzel et al. 2000). There is also increasing evi-

dence that massive black holes are found in the centers of
other galaxies (Richstone et al. 1998).

The central region of the Galaxy is also peculiar because
the relaxation time among stars can be shorter than the age
of the Galaxy, owing to the high density. The process of
relaxation leads to a stellar cusp, which has a density proÐle
o P r~7@4 when all the stars have the same mass (Bahcall &
Wolf 1976). Several interesting physical processes take place
among the stars in this cusp : stars can come close enough to
physically collide with each other, and they can also come
sufficiently close to the black hole to be tidally disrupted or
swallowed (e.g., Frank & Rees 1976 ; Lightman & Shapiro
1977 ; Quinlan, Hernquist, & Sigurdsson 1995 ; Sigurdsson
& Rees 1997).

One of the consequences of the relaxation is that the most
massive objects will sink to the center of the stellar cusp.
Among an old stellar population, the most massive objects
should be black holes formed in the Ðnal core collapse of
massive stars. We assume in this paper that most massive
stars with produce black holes, most with aM Z 30 M

_mass of 7 (Bailyn et al. 1998). The high mass of theseM
_black holes implies that their dynamical friction time to

move to the center of the Galaxy is shorter than a Hubble
time over a much larger volume than the one where ordi-
nary stars have a short relaxation time (Morris 1993). We

1 Alfred P. Sloan Fellow.

will Ðnd in ° 2 that this should lead to the formation of a
cluster of stellar black holes around the central super-
massive black hole (hereafter ““ Sgr A* ÏÏ), and that other
stars are ejected from the region occupied by this cluster. In
° 3 we discuss the rate at which the black holes in this
cluster are captured by Sgr A*, and we Ðnd that most of the
black holes should still be present in the cluster. Several
observable consequences of the presence of this black hole
cluster are discussed in ° 4.

2. CLUSTER FORMATION

The deprojected light proÐle in the inner kiloparsec of the
Galaxy scales as r~1.8 (Becklin & Neugebauer 1968 ;
Mezger, Duschl, & Zylka 1996), while the predicted proÐle
around a massive black hole pc) scales as r~7@4(r [ 1
(Bahcall & Wolf 1976). For simplicity, we therefore adopt a
density proÐle o(r),

o(r) P r~7@4 . (1)

From the model Ðt of Genzel et al. (2000) to the velocity
dispersion data, we Ðnd that the total mass within r0\ 1.8
pc is 2 (see their Fig. 17), whereMcbh

Mcbh\ 3 ] 106 M
_

(2)

is the mass of Sgr A*. Hence, the total distributed mass
inside 1.8 pc is and the density proÐle isMcbh,

o
*
(r) \ 5

16n
Mcbh
r03

A r
r0

B~7@4
, r04 1.8 pc . (3)

We assume that this density proÐle is entirely composed
of stars, brown dwarfs, and stellar remnants. To calculate
the mass fraction of black holes, we use the followinggbh,initial mass function. For the range M [ 1 we adopt aM

_
,

Salpeter law dN/dmP m~a with a \ 2.35. For 0.7 M
_

\
847
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m\ 1 we adopt a \ 2 from Zoccali et al. (2000). ForM
_

,
0.05 we adopt a \ 1.65 by correctingM

_
\ m\ 0.7 M

_
,

the result of Zoccali et al. (2000) for binaries according to
the adjustment of Gould, Bahcall, & Flynn (1997) and by
extending the power law beyond the last observed point at
0.15 We cut o† the mass function at mD 0.05 inM

_
. M

_accordance with the preliminary indications from micro-
lensing (Han & Gould 1996). We assume that the vast
majority of stars in the central region are old, so that essen-
tially all progenitors with masses 1È8 have become 0.6M

_white dwarfs, those with masses 8È30 have becomeM
_

M
_1.4 neutron stars, and those with masses 30È100M

_
M

_have become 7 black holes (although young stars areM
_present in the Galactic center, their contribution to the total

stellar mass is not signiÐcant enough to alter the mass frac-
tion in stellar remnants). We then Ðnd

gbh\ 1.6%, SmT \ 0.23 M
_

, (4)

where SmT is the mean mass of the population.
Once this population is formed, the black holes will sink

toward the center on the dynamical friction timescale
(Binney & Tremaine 1987)

tdf~1\ (ln")
4nGoGmbh

v3
P
0

v
du 4nu2f (u) , (5)

where is the mass of the black hole, v is itsmbh \ 7 M
_velocity, f (u) is the velocity distribution of the ambient stars,

and the integral gives the fraction of ambient stars with
speeds below v. For a Gaussian velocity distribution with
dispersion p, and a typical black hole speed v2\ 3p2, the
value of the integral is 0.54. For the Keplerian part of the
potential For ln(r \ r0), ln"\ ln (Mcbh/mbh)\ 13. r [ r0," rises slightly, but we ignore this in the interest of simpli-
city. We evaluate the Ðducial dynamical friction timetdf,0,at asr0,

tdf,0\ 1.4 Gyr (6)

and note its scaling in the two regimes :

tdf \ tdf,0
A r
r0

B1@4
(r \ r0),

tdf \ tdf,0
A r
r0

B17@8
(r [ r0) . (7)

Hence, after a time t, all the black holes that were originally
within a radius r will collect in a cluster near the center,
where r is given by integrating equations (7),

r
r0

\
A t
4tdf,0

B4
(t \ 4tdf,0),

r
r0

\
C17

7
A t
tdf,0

[ 4
B

] 1
D8@17

(t [ 4tdf,0) . (8)

This implies an infall rate of black holes

dNbh
dt

\ 5gbh Mcbh
4tdf,0mbh

A t
4tdf,0

B4
(t \ 4tdf,0) ,

dNbh
dt

\ 10gbh Mcbh
7tdf,0mbh

C17
7
A t
t,0

[ 4
B

] 1
D~7@17

(t [ 4tdf,0) .

(9)

If we assume that the bulge formed at a time tbulgeD 10
Gyr, then from equation (8), all the black holes within a
radius pc will have migrated to the center by now, inrdf\ 5
agreement with the estimate by Morris (1993). The cumula-
tive total and current rate of precipitation are therefore

NbhD 2.4] 104, dNbh
dt

D 2.9 Myr~1 . (10)

In other words, provided that our assumption of the frac-
tion of massive stars that form black holes in their Ðnal core
collapse is correct, we must conclude that a large number of
stellar black holes, with a total mass of D5% of the Sgr A*
mass, have migrated to the center, and, unless they have subse-
quently been captured by Sgr A*, they should have formed a
cluster of black holes in the center of the stellar cusp.

As the black holes precipitate, they start dominating the
total density in some central region at some point, and then
the low-mass stars are expelled from this region over a
relaxation time. Assuming that most of the energy is lost
from the cluster by direct capture of black holes near the
center, the black holes should also relax to a density proÐle
proportional to r~7@4, for which the outward energy Ñow is
constant. As this energy Ñow is transmitted to the low-mass
stars outside the black hole cluster, the cluster will need to
expand and push out the low-mass stars. To derive the
relative density of the black hole proÐle compared to the
empirically normalized stellar proÐle, we invoke the steady
state energy Ñow condition between two species of stars A
and B, of mass and which dominate the total densitym

A
m

B
,

and at radii and respectively. The total energyo
A

o
B

r
A

r
B
,

at radius r is proportional to op2r3, and the relaxation time
is proportional to p3/(om). Therefore, the constant energy
Ñow condition yields

o
A

p
A
2 r

A
3

p
A
3/(o

A
m

A
)
\ o

B
p
B
2 r

B
3

p
B
3/(o

B
m

B
)
. (11)

Making use of the Kepler potential relation p2P r~1, this
implies

o
A

o
B
\
Ar

A
r
B

B~7@4Am
A

m
B

B~1@2
. (12)

Thus, the mass density of black holes in the central region is
below that implied by extrapolating equation (3), by a factor

that is, Hence, if all of the(SmT/mbh)1@2, obh(r) \ 0.18o
*
(r).

black holes precipitated over the lifetime of the Galaxy from
a radius of 5 pc remain in the cluster at present, the cluster
should extend over a radius rbh,

rbh\
Agbh2 mbh

SmT
B2@5

5 pc \ 0.7 pc . (13)

The timescale to achieve this expansion is the relaxation
time in the expanded (lower density) cluster, which is D3
times longer than the dynamical friction timescale because
of the lower density.

In comparison, the core radius of the K-band surface
brightness proÐle around the Galactic center is about 0.15
pc (Mezger et al. 1996), although the faint, presently unre-
solved stars (with appear to have a larger coreK Z 17)
radius of D1 pc (Philipp et al. 1999). We will discuss the
expected relation between and these core radii in ° 4.rbh
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3. RATE OF CAPTURE OF THE BLACK HOLES

In the previous section we found that about 24,000 stellar
black holes should have migrated to the center of the stellar
cusp around Sgr A*. We now address the question of the
rate at which these black holes will be removed from the
cluster by coalescing with Sgr A*. If this rate is low, most of
the black holes should be in the cluster at present. If the rate
is high enough, then many fewer black holes will be present,
and a balance between the rate at which black holes are
precipitating in the cluster by dynamical friction and the
rate at which they are being captured should be established.

The dominant process by which black holes will be elimi-
nated is by a random walk into a highly eccentric orbit as
their orbits change over the relaxation timescale, from
which they can be captured by Sgr A*. This process was
Ðrst studied by Frank & Rees (1976) and Lightman &
Shapiro (1977). In the case of stars, tidal disruption can
eliminate them from the cluster once they come close
enough to Sgr A* ; obviously, orbiting black holes will be
eliminated only when they are swallowed by Sgr A*, possi-
bly after having lost orbital energy by emitting gravitational
waves.

Before describing in more detail the mechanism by which
black holes are captured, we need to discuss the process of
orbital di†usion by which black holes will migrate into the
eccentric orbits from which they can be captured.

3.1. Orbital Di†usion
A black hole can be captured by Sgr A* from an orbit of

any semimajor axis, provided that its peribothron
q \ a(1[ e) (where a is the semimajor axis and e is the
eccentricity of the orbit) is sufficiently small. This will lead
to a distribution of black holes in phase space that is strong-
ly depleted at eccentricities very close to unity, and di†usion
of black holes will take place toward orbits of decreasing
peribothron. In order to investigate quantitatively this
black hole migration, we Ðrst evaluate the di†usion tensor
in velocity space. We sketch the derivation here and leave
the details and the justiÐcations for the various approx-
imations to the Appendix.

The di†usion equation is given by

$
v

Æ j ] Lf
Lt

\ 0, j
k
4 [;

l
i
kl

Lf (¿, r, t)
Lv

l
, (14)

where f is the phase-space density, j is the ““ velocity current
density,ÏÏ and is the di†usion tensor. By symmetry,i

kl
i
kl

\
diag where and are the components of i(i

M
, i

M
, i

r
), i

M
i
rperpendicular and parallel to the radial direction. In

general, the di†usion tensor depends on the spatial position
and the velocity. A useful physical interpretation of the dif-
fusion tensor components is that, over a small interval of
time dt, the rms change in the velocity of a black hole in a
direction perpendicular to its initial velocity is equal to

The total rms change in any direction is there-(2i
M

dt)1@2.
fore [2 Tr(i)dt]1@2 (where ““ Tr ÏÏ means the trace), and the
relaxation time is of order vesc2 /[2 Tr (i)].

We assume that the unperturbed (by black hole capture)
phase-space density, is a function only of the energy,f0,and hence Ðnd, for a o P r~a density proÐle in a Kepler
potential,

f0(u, r)\ g
A u2
vesc2
B
h(r), g(x)4 (1[ x)a~3@2#(1[ x) , (15)

h(r) 4
(3[ a)a !

8n2(a [ 3/2) !(1/2) !
Nbh

(2GMcbh rbh)3@2
A r
rbh

B3@2~a
,

(16)

where is the local escape velocity, is the totalvesc(r) Nbhnumber of black holes within a radius is therbh, Mcbhcentral mass, and # is a step function. Thus, for a \ 7/4,
In the Appendix, we show that forf0P r~1@4(1[ v2/vesc2 )1@4.

a \ 3/2, the velocity dependences of the parallel and per-
pendicular components of the di†usion tensor are

i
M
(v, r) \

A
1 [ 1

5
v2
vesc2
B
i0(r), i

r
(v, r) \

A
1 [ 3

5
v2
vesc2
B
i0(r) ,

(17)

where is the (isotropic) di†usion coefficient at v\ 0. Wei0also justify in the Appendix using this velocity dependence
as an adequate approximation for the case a \ 7/4, for
which we Ðnd,

i0(r) \
7

6Jn
(3/4) !
(1/4) !

Nbh(Gmbh)2vesc2
(2GMcbh rbh)3@2

A r
rbh

B~1@4
ln "1 ,

(18)

The quantity can be slightly smaller thanln "1 ln "\
as discussed in the Appendix, depending onln (Mcbh/mbh),the scale over which the di†usion takes place, because scat-

terings with large velocity changes do not contribute to the
di†usion rate over a small range of velocities.

3.2. T hree Regimes of Capture
Before identifying the condition for capture from highly

eccentric orbits, it will be useful to compute the core radius,
where the energy-loss time to gravitational radiation onr

c
,

a circular orbit is equal to the relaxation time. We deÐne the
relaxation time for circular orbits as t

r,0 \ v
c
2/[2 Tr(i)],

where is the circular velocity. The energyv
c
\ (GMcbh/r)1@2loss by gravitational radiation for circular orbits is (Shapiro

& Teukolsky 1983)

d ln E
dt

\ 64
5

G3mbhMcbh2
c5r

c
4 . (19)

Equating this to we Ðndt
r,0~1,

r
c
\ 1.57

AGMcbh
c2

B2@3
rbh1@3
A Mcbh
Nbh mbh ln "

B4@15

\ 8.6 AU
A Mcbh
3 ] 106 M

_

B2@3A rbh
0.7 pc

B1@3

]
A Mcbh
1.38Nbh mbh ln "

B4@15
. (20)

This radius is extremely small compared to the cluster
radius If black holes were captured by di†using torbh.orbits with and then losing energy by gravitationala D r

c
,

waves at low eccentricity, the capture rate would therefore
also be extremely small. In reality, as we shall see now,
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black holes will be captured from a large range of radii,
mostly from highly eccentric orbits. We must therefore
deÐne a relaxation timescale for these high-eccentricity
orbits.

To do this, we Ðrst calculate the orbit-averaged rate of
change of the peribothron q 4 a(1[ e) in a highly eccentric
orbit. From angular momentum conservation, we have

Hence,v
M
2 \ (1 ] e)qGMbh/r2] qvesc2 /r.

P
dSqT
dt

\
P
0

P
dt

2i
M

r
v
e
2

\ 25@4 ln "1
53
33
A mbh
Mcbh

B2
Nbh
A a
rbh

B9@4
rbh . (21)

We then deÐne the eccentric relaxation time t
r,1(a) \

(dS ln qT/dt)~1. We now use to demonstrate that theret
r,1are three regimes of capture : (1) for capture isa \ atrans,dominated by gravitational radiation, (2) for atrans\ a \

it is dominated by direct capture, and (3) foracrit, a [ acrit,capture falls o† very rapidly and can be ignored.
A particle orbiting around a Schwarzschild black hole

with semimajor axis a much greater than the Schwarzschild
radius will be directly captured by the black hole if its peri-
bothron q, computed by extrapolating the Newtonian orbit,
is less than 4 Schwarzschild radii (e.g., Misner, Thorne, &
Wheeler 1973). When the particle isq \ 8GMcbh/c2,actually brought to 2 Schwarzschild radii by relativistic
e†ects, where the maximum of the e†ective radial potential
is located ; the particle has then overcome the angular
momentum barrier and can directly fall into the black hole.
Therefore, the phase-space density should drop to zero
below the minimum peribothron

qmin\ 8GMcbh
c2 ^ 0.24 AU . (22)

The black hole can also be captured at larger peribothron
if the timescale to change the eccentricity by di†usion is
longer than the timescale for losing its orbital energy by
gravitational waves. For 1 [ e> 1, the gravitational radi-
ation decay rate is

d ln E
dt

\ 170
3

(2q)~7@2 G3mbh Mcbh2
c5a1@2 . (23)

We determine the minimum peribothron that avoidsqmin,capture, by setting d ln E/dt \ t
r,1~1,

qmin(a)\ 0.35
A8GMcbh

c2
BA Mcbh

1.73Nbhmbh ln "1

B2@5Arbh
a
B1@2

,

(24)

where the factor 1.73 is the ratio for theMcbh/(Nbhmbh ln "1)values we use in this paper, and for (seeln "1\ 9.7
Appendix). Hence, the transition from capture by gravita-
tional radiation to direct capture occurs at atrans\AU.0.352rbh\ 17,000

Above some critical semimajor axis the di†usion of qacrit,over a single period exceeds as given by equation (22)qminfor direct capture. Hence, during each period, PD a3@2, the
black holes are captured with a probability that decreases
with the semimajor axis as so that the(qmin/a)D a~1,
capture rate falls o† as a~5@2. Since the mass within radius r

increases as r3~a, captures from orbits with a ? acritproduce a negligible loss of black holes. We evaluate byacritsetting and Ðndt
r,1\ P,

acrit\ 0.41 pc
A Nbh
2.4] 104

B~4@9A Mcbh
3 ] 106 M

_

B4@3

]
A mbh
7 M

_

B~8@9A rbh
0.7 pc

B5@9
. (25)

3.3. Capture Rate from the L oss Cylinder
While i is a function of both and r, we will solve the¿

di†usion equation at Ðxed r, and temporarily assume that i
is independent of We will introduce variation in i only¿.
when we evaluate the loss rate. This is a very good approx-
imation, as we discuss in the Appendix. We focus Ðrst on the
case of for which capture is typically directatrans\ a \ acrit,as described by equation (22). Since is independent of a,qminthe captured orbits at Ðxed r are characterized by a cylinder
in velocity space,

v
M

vesc
¹
Sqmin

r
\ 2

vesc
c

,
o v

r
o

vesc
¹ 1 , (26)

where and are the radial and perpendicular com-v
r

¿
Mponents of the velocity. Note that this structure in velocity

space is deÐnitely a ““ loss cylinder ÏÏ and not a ““ loss cone ÏÏ
as it is often described in the literature. Making use of yet
another good approximation described in the Appendix, we
solve the steady state di†usion equation (14), at Ðxed v

r
:

f (¿
M
; v

r
) \ f0(vr)

G
1 [ ln [v

M
2/(vesc2 [ v

r
2)]

ln (q min /r)
H

. (27)

Hence, the capture rate per unit volume, dC/dV , is given by

dC
dV

\ [
P
cylvbnd

j Æ dA \ 8n
P
0

vesc
dv

r
i
M
(v

r
) f0(vr)

ln (r/qmin)
, (28)

where dA is the area element on the boundary of the
capture cylinder (““ cyl-bnd ÏÏ). We evaluate this using equa-
tions (15) and (17),

dC
dV

\ 35
16n3@2

(3/4) !
(1/4) !

ln "1
ln (r/qmin)

Nbh2 (Gmbh)2
(2GMcbh rbh)3@2

A r
rbh

B~2
rbh~3

\ 6i0
vesc2

n(r)
ln (r/qmin)

, (29)

where is the number densityn(r) \ 5Nbh/(16nrbh3 )(r/rbh)~7@4
of black holes at radius r, and is of the order of the6i0/vesc2
relaxation time. Integrating over volume, the total capture
rate within some maximum radius (determined below)rmaxis

C\ k
ln "1

ln (rmax/qmin)
Nbh2
A mbh
Mcbh

B2 rmax
rbh

2n
Pbh

, (30)

where k \ (2n)~1@2(35/8)(3/4) !/(1/4) ! D 1.76, is thePbhorbital period at and where we have made thea \ rbh,evaluation treating and asln (r/qmin) ] ln (rmax/qmin) ln"1constants. Notice that for the capture ratermax\ rbh,increases as as black holes are added to the cluster,Nbh4@5because PbhP rbh3@2 P Nbh6@5.
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As described already by Frank & Rees (1976), the result
we have reached in equations (29) and (30) shows that the
capture rate of the black holes is essentially proportional to
the relaxation time, and the fact that increases theqmin/r > 1
time required for the black hole to Ðnd a capture orbit only
logarithmically. The reason is that, over a relaxation time,
an orbiting black hole will totally change its eccentricity not
only as a result of some large deÑection in a close encounter,
but also because of many small deÑections that will change
the eccentricity by very small amounts, allowing the black
hole to e†ectively sweep over all possible eccentricities and
Ðnd the very narrow range of eccentricity where it can be
captured. However, this is no longer true for whena [ acrit :q is brought below by the random deÑections, the blackqminhole will most likely miss being captured unless it happens
to be at peribothron.

The maximum radius of integration of the capturermaxrate in equation (30) must therefore be of order For aacrit.highly eccentric orbit, the time-averaged radius is SrT \ (3/
2)a. We therefore adopt Since capture isrmax\ (3/2)acrit.dominated by black holes near we evaluatermax, ln (r/qmin)there and Ðnd

ln (rmax/qmin)\ ln
3c2acrit

16GMcbh
^ 13.2 . (31)

At the same time, the term can be approximated asln "1(see Appendix)

ln "1 ^ ln "[ 1
4

ln
c2rmax

8GMcbh
^ 9.7 . (32)

Hence, the ratio of logarithms in equation (30) is
We are Ðnally able to evaluateln "1/ ln (rmax/qmin)D 0.73.

the capture rate explicitly,

C^
Nbh

30 Gyr
. (33)

Since this timescale is much longer than a Hubble time,
most of the 24,000 black holes that have entered the cluster
are still in it and have not been captured. Hence, the actual
radius of the black hole cluster is close to our initial esti-
mate given by equation (13).

Note that we have everywhere used the direct capture
formula (22) to calculate rather than the gravitationalqmin,radiation formula (24), which applies at r \ atransD 17,000
AU. Recall, however, that only enters into theqminlogarithm term. The capture rate from the inner part of the
cluster is therefore higher than we have assumed, but not
dramatically. Notice that since is a function of a inqminequation (24), the loss structure in velocity space is not a
cylinder as in the case of direct capture (see eq. [26]).
Rather, this structure is fatter near and narrowerv

r
D 0

near v
r
D ^vesc.

4. OBSERVABLE CONSEQUENCES

The large number of black holes that move to the center
by dynamical friction have several observable e†ects, which
we now discuss.

The most important e†ect is that the stars that formerly
resided in the region that is now occupied by the cluster of
black holes are ejected into orbits at larger radius. There-
fore, any old stellar population of mass m should have a
very large core radius, given by rcs\ rbh(mbh/m)2@7 D 1È2

pc. This core radius (D40@@) is much larger than the value
expected from stellar collisions alone, which would only
produce a core at the radius D 0.03 pc where the orbital
velocities are comparable to the escape velocities from the
stellar surfaces. The most straightforward test of our model
is therefore to measure the distribution of low-mass stars
and Ðnd out whether this very large core is indeed present.

In fact, the bright (K \ 15) stars in the inner Galaxy
exhibit a power-law proÐle (a D 7/4) all the way to r D 0.1
pc, where a core sets in (see Mezger et al. 1996 ; Genzel et al.
2000 ; Schmitt 1995). However, most of the observed stars in
this small core may be young and of relatively high mass

since the relaxation time at radius is D109(M Z 2 M
_

) ; rbhyr (see ° 2), stars younger than this would not have had
enough time to be ejected by the black holes from the
central region. Given the abundant observational evidence
of recent star formation in the nuclear bulge (Lindqvist,
Habing, & Winnberg 1992), and speciÐcally within the
central cluster dynamically dominated by Sgr A* (Krabbe
et al. 1991 ; Blum, Sellgren, & Depoy 1996a, 1996b ;
Tamblyn et al. 1996 ; Genzel et al. 2000), the presence of
young stars with a small core should be expected. Therefore,
our model predicts that only the old stars should have a
core radius as large as 1 or 2 pc.

This prediction of our model is strongly supported by the
recent evidence that the K-band surface brightness proÐle
around the Galactic center arising from faint stars, with
K [ 17, has a much larger core than the proÐle of the more
luminous stars (Philipp et al. 1999). Low-luminosity stars
have a greater contribution from low-mass, old stars than
more luminous stars. In addition, it has long been known
that the strength of the 2.3 km CO index decreases in the
inner 10@@ around Sgr A* (Sellgren et al. 1990 ; Haller et al.
1996), indicating a remarkable change in the stellar popu-
lation. However, it is not clear at present whether this
change of the CO index is a result of a change in the dis-
tribution of masses or ages of the stars or is due to the
di†erent environment in the Galactic center (for example,
the envelopes of supergiants may be destroyed by the
ambient radiation Ðeld).

The intermediate-age (D2 Gyr) and older stars ejected
from the central cluster could be expected to be found up to
a few from Sgr A* on ““Oort cloud ÏÏÈlike orbits. That is, ar0star from this population would keep getting jolted by the
black holes to a more and more eccentric orbit until di†u-
sive encounters near apocenter drove it into an orbit with a
pericenter just beyond Narayanan, Gould, & Depoyrbh.(1996) list 16 presumably intermediate-age stars at(K0\ 5)
projected radii of 8È20 pc. If these come primarily from the
central parsec, they should be preferentially on radial orbits.
Of course, there has been recent star formation outside the
central parsec as well. For example, Blum et al. (1996b)
estimate the ages IRS 24 and IRS 23 at D100 and D200
Myr, respectively, and these both lie at a projected distance
of 1.7 pc. Hence, not all the Narayanan et al. (1996) stars are
necessarily ejected.

Another interesting consequence of the ejection of low-
mass stars from the center is that the capture of ordinary
stars by supermassive black holes could be much rarer than
commonly believed. These captures should lead to bright
optical Ñares (e.g., Rees 1988 ; Ulmer 1999), which could be
found in supernova searches. A cluster of black holes should
have formed around all the supermassive black holes in
galactic centers by the dynamical friction process described
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here, and these clusters would reduce by a large factor the
rate at which stars can come close enough to the black hole
to be tidally disrupted. Of course, since there is a central
density cusp containing at least young stars around Sgr A*,
there will be some tidal captures, but the absence of old
stars should reduce the number of expected Ñares. In addi-
tion, for galaxies such as ellipticals that are poor in neutral
gas, one would not expect continuous star formation near
the central black holes. Consequently, after the black hole
cluster had ejected all the old stars, no young stars would
form to replace them. For these galaxies, Ñares from stellar
captures could be extremely rare.

We mention also microlensing of a background bulge
star as another potentially observable e†ect, although
requiring a large improvement in sensitivity and resolution
of infrared imaging over our current capabilities. If a bulge
star at a distance 2 kpc behind the center could be observed,
the angular Einstein radius of Sgr A* would be b \ 0A.8,
corresponding to a linear size of pc. The tworE\ 0.03
images of the star could therefore be comfortably resolved.
The star would typically take several hundred years to
complete the ““ microlensing event ÏÏ by Sgr A*. These two
images would then have a microlensing optical depth to

be lensed by one of the cluster black holes, qD
where A is the magniÐ-(Nbhmbh/Mcbh)(rE/rbh)5@4AD 10~3A,

cation of the image. Imaging down to K \ 21, one should
on average Ðnd about one background star at 2 kpc within
an Einstein radius of Sgr A*, and about 100 similar stars
within the same angular separation, which would be mostly
located inside a core radius of D1 pc (for which the Einstein
radius of Sgr A* would be only Of course, theD0A.02).
identiÐcation of the two images of a star lensed by Sgr A*
would be of enormous interest by itself ; despite the large
number of orbiting black holes in the cluster, the expected
rate of the ““ planet-like ÏÏ events is still low, and several
lensed stars would need to be identiÐed to have a good
chance of detecting the short events over a period of
D10 yr.
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APPENDIX

DIFFUSION TENSOR IN A KEPLER POTENTIAL

Here we calculate the di†usion tensor i for the general case of a o P r~a density proÐle in a Kepler potential, assuming that
the velocity distribution is isotropic. Recall that the phase-space distribution is given by equations (15) and (16). We begin our
evaluation at where the di†usion tensor, is isotropic. A single encounter with another black hole at speed u changes¿\ 0, i0,the velocity by Hence the time-averaged growth of Sv2T is*v\ 2Gmbh/(bu).

dSv2T
dt

\
P

2nb db
P

d3u
A2Gmbh

bu
B2

uf0(u, r)

\ c(a)vesc2
A r
rbh

B3@2~a
, (A1)

where

c(a)4
2(3 [ a)a !

(a [ 1/2) !(1/2) !
Nbh(Gmbh)2

(2GMcbh rbh)3@2
ln "1 , (A2)

and where is the ratio of maximum to minimum impact parameters, which we evaluate below."1If the di†usion equation is written (for isotropic as theni0) i0+
v
2 f \ Lf/Lt,

i0\ 1
6

dSv2T
dt

, (A3)

which, combined with equation (A2), gives i0.Next, we evaluate and for the special case of a \ 3/2 for which the phase-space density (eqs. [15] and [16]) isi
M
(v) i

r
(v)

independent of both radius and velocity and consequently the problem is tractable analytically. The transverse velocity
di†usion is given by

dSv
M
2T

dt
\ c(3/2)

2
P
~vesc

vesc
du

r

P
h/0

hmax(ur) A1 ] cos2 h
2

B (u
r
] v)2dtan2 h

o u
r
] v o sec h

, (A4)

where and c(3/2) is deÐned by equation (A2). For the total velocity di†usioncos hmax(ur
)4 o u

r
] v o /(vesc2 ] v2] 2u

r
v)1@2,

we Ðnd a similar expression, but with (1 ] cos2 h)/2 ] 1. We evaluate these expressions and ÐnddSv
M
2T/dt,

dSv2T
dt

\ c(3/2)vesc2
A
1 [ 1

3
v2
vesc2
B

,
dSv

M
2T

dt
\ 2

3
c(3/2)vesc2

A
1 [ 1

5
v2
vesc2
B

. (A5)
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We therefore conclude that and These results apply to a \ 3/2, but wei
M
(v)/i0\ 1 [ 0.2(v/vesc)2 i

r
(v)/i0\ 1 [ 0.6(v/vesc)2.adopt them for a \ 7/4 as well. If the true coefficient for a \ 7/4 is 0.2(1 ] v) rather than 0.2, then this introduces an error into

the capture formula (30) of only (1/6)v. Since v is likely to be small, this correction is negligible.
We now justify two other approximations made in the capture calculation in ° 3. First, in equation (27), we e†ectively

considered the di†usion coefficient as Ðxed on slices of the velocity sphere perpendicular to the cylinder and passing through
In fact, it is Ðxed on spherical shells of constant speed. This ““ plane-parallel ÏÏ approximation is justiÐed by two relatedv

r
.

considerations. First, i varies very slowly, only by a factor 1.25 over the entire velocity sphere. Second, most of the depleted
region of velocity space is relatively near the cylinder, so that the error in i made by the plane-parallel approximation is
extremely small.

Next, the boundary condition for the solution to the di†usion equation (27) sets the phase-space density f at the edge of the
velocity sphere equal to the unperturbed density at Strictly speaking, if the boundary condition is set at(u \ vesc) f0 u \ v

r
.

then one should use However, for the a \ 7/4 proÐle, this is zero. (Our approximation would be exact for(u \ vesc), f0(vesc).a \ 3/2.) The basis for our approximation is that the density returns essentially to long before the edge of the velocityf0sphere, at which point is not much di†erent fromf0 f0(vr).Finally, we evaluate the ratio of the maximum to minimum impact parameters. This can also be written as"1\ bmax/bmin,where is the range of impulses relevant to the problem at hand. For general relaxation"1\ vmax/vmin, (vmin vesc, vmax vesc)and However, while the harder scatters all contribute to the overall relaxation, theyvmax\ 1 vminD 2Gmbh/(rvesc2 )\mbh/Mcbh.do not contribute to di†usion into the loss cone because the black hole simply ““ jumps over ÏÏ the capture cylinder. Unfor-
tunately, it is not trivial to identify exactly what the largest allowed jumps should be : while jumps larger than do(qmin/r)1@2vescnot directly lead to capture, they do help maintain the overall velocity proÐle given by equation (27). Note that the proÐle
di†ers signiÐcantly from the background for many e-foldings. If the jumps larger than did not contribute at all, then(qmin/r)1@2In view of the distributionÏs slow approach to the background level near the capture cylinder, we adopt"1\ (qmin/r)1@2".
"1\ "(qmin/r)1@4\ 9.7.
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