
A Clustered Manycore Processor Architecture for
Embedded and Accelerated Applications

Benoı̂t Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps, Patrice Couvert,
Benoı̂t Ganne, Pierre Guironnet de Massas, François Jacquet, Samuel Jones,

Nicolas Morey Chaisemartin, Frédéric Riss, Thierry Strudel

Kalray SA, 445 rue Lavoisier, F-38330 Montbonnot, France

Abstract—The Kalray MPPA-256 processor integrates 256
user cores and 32 system cores on a chip with 28nm CMOS
technology. Each core implements a 32-bit 5-issue VLIW archi-
tecture. These cores are distributed across 16 compute clusters
of 16+1 cores, and 4 quad-core I/O subsystems. Each compute
cluster and I/O subsystem owns a private address space, while
communication and synchronization between them is ensured
by data and control Networks-On-Chip (NoC). The MPPA-256
processor is also fitted with a variety of I/O controllers, in
particular DDR, PCI, Ethernet, Interlaken and GPIO.

We demonstrate that the MPPA-256 processor clustered
manycore architecture is effective on two different classes of
applications: embedded computing, with the implementation of
a professional H.264 video encoder that runs in real-time at low
power; and high-performance computing, with the acceleration
of a financial option pricing application. In the first case, a
cyclostatic dataflow programming environment is utilized, that
automates application distribution over the execution resources.
In the second case, an explicit parallel programming model based
on POSIX processes, threads, and NoC-specific IPC is used.

INTRODUCTION

The Kalray MPPA-256 is a single-chip manycore processor
manufactured in 28nm CMOS technology that targets low
to medium volume professional applications, where low en-
ergy per operation and time predictability are the primary
requirements. Its 256 user cores and 32 system cores are
distributed across 16 compute clusters of 16+1 cores, and
4 quad-core I/O subsystems. Each compute cluster and I/O
subsystem owns a private address space, while communication
and synchronization between them is ensured by data and
control Networks-on-Chip (NoC).

The software development kit provides standard GNU
C/C++ & GDB development tools for compilation & debug-
ging at the cluster level, SMP Linux running on the I/O subsys-
tems, and a lightweight POSIX kernel running on the compute
clusters. Based on these foundations, two programming models
are currently supported:

• A cyclostatic dataflow language based on C syntax,
whose compiler automatically sizes the communi-
cation buffers and distributes the tasks across the
memory spaces and the cores.

• POSIX-Level, where POSIX processes are spawned
to execute on the compute clusters. Inside processes,
standard POSIX threads and OpenMP are available for

Fig. 1. MPPA manycore architecture.

multi-threading across the cores. Specific IPC takes
advantage of the NoC architecture.

These two programming models are available whether the
MPPA-256 runs in a stand-alone configuration, or as an
accelerator connected via a PCIe link to a host CPU. In case
of the accelerator configuration, the two programming mod-
els manage the distribution of application code and abstract
communications between the host CPU and the MPPA-256.

I. THE MPPA-256 PROCESSOR

A. Manycore Architecture

The MPPA-256 chip integrates 16 compute clusters and 4
I/O subsystems located at the periphery of the processing array
(Figure 1) to control all the I/O devices. Each I/O subsystem
contains a SMP quad-core with a shared D-cache, on-chip
memory, and a DDR controller for access to up to 64GB of
external DDR3-1600. They run either a rich OS such as Linux
or a RTOS that supports the MPPA I/O device drivers. The
I/O subsystems integrate controllers for a 8-lane Gen3 PCI
Express for a total peak throughput of 16 GB/s full duplex,
Ethernet links ranging from 10Mb/s to 40Gb/s for a total
aggregate throughput of 80Gb/s, Interlaken link providing a
way to extend the NoC across MPPA-256 chips, and other I/O
devices in various configurations like UARTs, I2C, SPI, Pulse
Width Modulator (PWM) or General Purpose IOs (GPIOs).

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

Fig. 2. MPPA compute cluster.

The 16 compute clusters and the 4 I/O subsystems are
connected by two explicitly addressed NoC with bi-directional
links, one for data (D-NoC), and the other for control (C-NoC).
The two NoC are identical with respect to the nodes, the 2D
torus topology, and the wormhole route encoding. They differ
at their device interfaces, by the amount of packet buffering
in routers, and by the flow regulation at the source available
on the D-NoC. NoC traffic through a router does not interfere
with the memory buses of the underlying I/O subsystem or
compute cluster, unless the NoC node is a destination.

B. Compute Clusters

The compute cluster (Figure 2) is the basic processing unit
of the MPPA architecture. Each cluster contains 16 processing
engine (PE) cores, one resource management (RM) core,
a shared memory, a direct memory access (DMA) engine
responsible for transferring data between the shared memory
and the NoC or within the shared memory. The DMA engine
supports multi-dimensional data transfers and sustains a total
throughput of 3.2GB/s in full duplex.

The compute cluster shared memory architecture optimizes
a trade-off between area, power, bandwidth, and latency. The
shared memory totals 2MB, organized in 16 parallel banks
of 128KB each, with Error Code Correction (ECC) on 64-bit
words. The shared memory delivers an aggregate bandwidth of
38.4 GB/s. Each bank arbitrates between twelve master ports
and guarantees simultaneous accesses to each client in steady
state. These master ports comprise: 8 ports for the 16 PE cores
after pre-arbitration at core pairs, one port for the RM core,
two ports for the data NoC, and one port the DSU.

The Debug & System Unit (DSU) supports the compute
cluster debug and diagnostics capabilities. Each DSU is con-
nected to the outside world by a JTAG (IEEE 1149.1) chain.
The DSU also contains a system trace IP that is used by
lightly instrumented code to push up to 1.6Gb/s of trace data
to an external acquisition device. This trace data gives live and
almost non-intrusive insight on the behavior of the application.

ITC
16 lines

EVC
192 lines

RTC
2 timers
1 watchdog

OCE

PF ID RR E1 E2 E3 E4

PFB

128 bits
3 entries

RF

32 bits
64 reg
11 RD
 4WR

Fetch

Align

Decode

Dispatch

+

H
W
L

BCU

ALU0

ALU1

ALUtiny MAU

MUL

FPU

ACC

MMU

LSUALUtiny 4 entries streaming FIFO

D$ 8KB
2 way set associative
32B lines

I$ 8kB
2 way set associative
64B lines

WB 64B
8 way fully associative
8B entries

Fig. 3. VLIW core pipeline.

C. VLIW Core

Each PE or RM core (Figure 3) implements a 5-way VLIW
architecture with two arithmetic and logic units, a multiply-
accumulate & floating-point unit, a load/store unit, and a
branch & control unit, enabling up to 2 GOPS or 800 MFLOPS
on 32-bit data at 400MHz. These five execution units are
primarily connected through a shared register file of 64 32-bit
general-purpose registers (GPRs), which allows for 11 reads
and 4 writes per cycle.

Each core sees the memory through a level-1 cache.
Separate 2-way associative instruction and data caches of
8KB each are provided. Cache coherence is enforced by
software, although this is not visible from applications that
rely on the proper use of OpenMP directives or POSIX threads
synchronizations. Each core also features a MMU for process
isolation and virtual memory support.

II. DATAFLOW LANGUAGE AND TOOLCHAIN

A. Why Another Language?

The cyclostatic dataflow (CSDF) model of computation [1]
is a specialization of Kahn process networks (KPN) [2], which
presents ideal properties for efficiently scheduling and mapping
applications on manycore architectures:

- Programmers do not need to care about the synchro-
nization between computations. Only data dependen-
cies are expressed and computing agents are activated
only after all their dependencies are satisfied.

- Computing agents are only connected through well
identified channels. No mutable shared variables,
global mutable variables or side effects between
agents are possible in this model.

In CSDF, the effects of computing on channels is modeled by
an independent cyclic finite state machine triggered by each
agent activation. This means that the application behavior is
predictable and independent from data processing.

Kalray provides a C based CSDF programming language
named ΣC [3]. ΣC has been designed to allow programmers
to reuse existing C code, while benefiting from the advantages
of the dataflow model [3]. Furthermore, the ΣC compilation
toolchain adapts as far as possible the generated code to the

target (number of cores, memory available, NoC topology, ...).
The use of genericity, by the means of instance parameters,
allows parametric dataflow graph description. A simple change
of the parameters followed by a recompilation adapts the level
of parallelism to different performance or resource constraints.

Listing 1 presents code that reads a character stream,
reverses the characters for a given length, and then outputs the
result as another character stream. An agent (’reverser’ in this
example) can be seen as an autonomous executable component
which reads data, processes it and writes it.

agent reverser(int size) {
interface {

in<char> input_port;
out<char> output_port;
spec {input_port[size];
output_port[size]};

}
void start (void) exchange

(input_port input[size],
output_port output[size]){
for (int i = 0; i < size; ++i)

output[i] = input[size-i];
}

}

Listing 1. A simple agent that reverse its input.

B. Compilation Overview

The ΣC compilation is decomposed into 3 distinct phases:

- Instantiation: ΣC code is converted to C code, com-
piled and executed to generate a representation of the
dataflow graph, its elements, channels and automata.

- Mapping: Using the generated description, the appli-
cation is scheduled, placed and routed on the target
platform according to both hardware restrictions and
user performance constraints. A run-time is generated
for each binary.

- Compilation: Using the converted source files and the
generated run-time, the application is compiled with
our lightweight system software.

The key feature of the ΣC toolchain is that although the
language is completely platform agnostic, the compilation pro-
cess can and will automatically distribute a parallel application
across a large number of processors, using both different
architectures and communication links. This essentially means
that the same parallel ΣC application can be executed on a
native x86 processor, as well as on both a x86 and a MPPA
using PCI and NoC interfaces, but also be scaled to multiple
hosts and multiple MPPA chips.

The ΣC compiler also provides a memory-saving feature
called ‘agent inlining’. In almost every dataflow application,
it is required to either duplicate, scatter or gather the data to
efficiently parallelize the application. While supporting such
patterns, the ΣC compiler goes a step further and provides an
interface for describing agents with complex data movement
patterns. Through analysis of the surrounding automata and
with symbolic execution, the ΣC compiler is able to ‘inline’
such an agent into a shared buffer, that can be safely accessed
by both inputs and outputs, or into a micro-coded task to be
executed by a dedicated DMA engine.

C. Mapping an Application

The ΣC mapping tool, sc-map, is the core of the
toolchain. Using a customizable platform description, the
dataflow graph, and user constraints, the mapping tool solves
three problems:

a) Scheduling: During the scheduling, sc-map solves
three issues. It analyzes all agents to determine which agents
could be inlined, thus reducing the memory footprint, it sizes
all communication channels to ensure the liveness of the
application, and computes the minimum pipelining required to
achieve the required performance [4]. Altogether, it guarantees
the proper execution of the application whatever platform it
may be executed on.

b) Mapping: Using heuristics, sc-map maps the
dataflow graph on the targeted platform which can be any-
thing from a single x86 CPU to a multi MPPA board. The
algorithm’s goal is to find a mapping that respects hardware
restrictions (memory space, network bandwidth, CPU time)
while minimizing the impact of network communications. The
ΣC toolchain also provides a GUI to interact with the placer,
by either by helping it or by providing a custom mapping.

c) Routing: As the MPPA D-NoC offers QoS, sc-map
computes and allocates routes in order to limit network laten-
cies and guarantee the required bandwidth.

D. System Software

Finally, the ΣC toolchain provides a lightweight System
Software to provide run-time support for ΣC application. For
under 25KB of memory footprint, the ΣC System Software
provides a run-time support for ΣC applications to run on
POSIX platforms or custom operating systems (as in compute
clusters), with communication support. With context switches
under 1µs in compute clusters, its low overhead permits both
high performance and small task granularity.

III. APPLICATION TO H.264 ENCODER

A. H.264 Encoder Overview

H.264/MPEG-4 Part 10 or AVC (Advanced Video Coding)
is a standard for video compression, and is currently one of the
most commonly used formats for the recording, compression,
and distribution of high definition video.

High quality H.264 video encoding requires high compute
power and flexibility to handle the different decoding plat-
forms, the numerous image formats, and the various applica-
tion evolutions. On the other hand, video encoding algorithms
exhibit large parallelism suitable for efficient execution on
manycore processors. This kind of application can then be
developed using the ΣC environment in order to describe task
parallelism when addressing manycore architectures, such as
the MPPA processor.

B. H.264 Encoder Description Using ΣC

The H.264 encoding process consists in separately en-
coding many macro-blocks from different rows. This is the
first level of parallelization, allowing a scalable encoding
application, where a various number of macro-blocks can

be encoded in parallel. In this graph, each “Encode MB
Process” sub-graph exploits this data parallelism. Fine grained
task parallelism is also described: motion estimation on each
macro-block partition (up to 4x4), spatial prediction of intra-
coded macro-blocks, RDO analysis and trellis quantization are
performed concurrently in separate agents.

The ΣC compiler analyzes the dataflow graph and gives
to the user an overview of the scheduling of the application,
using profiling data. It is also able to map the application
onto the targeted MPPA architecture, and implements all
communication tasks between ΣC agents.

C. Challenges of Cyclostatic Dataflow Descriptions

The ΣC environment supports cyclostatic dataflow appli-
cation, with execution based on a steady state. The application
then exchanges defined amounts of data, independent of run-
time states or incoming data: in the H.264 algorithm, the
amount of data differs according to image type (intra or inter),
but the ΣC application always works with data for both cases.

Describing and managing search windows for motion
estimation is another challenge when using a dataflow en-
vironment: difficulties describing delay and shared memory
between different function blocks. Fortunately, the ΣC environ-
ment implements different kinds of features (including virtual
buffers and delays) allowing an efficient implementation (no
unnecessary copies, automatic management of data, etc.)

D. Results and Performance

From the current implementation of the H.264 encoder us-
ing ΣC, performance analysis has been performed to determine
the encoder global quality. These performance results have
been compared to the initial x264 library, applied on different
video sequences frequently used for such analysis.

This analysis leads to several conclusions listed below:

- From quality analysis based on bit-stream size and
decoded video quality (using SSIM and PSNR cri-
teria), the parallelized H.264 application using ΣC
dataflow language offers better results than the initial
x264 library. Using the MPPA manycore architecture
leads to a freer implementation (fewer thresholds, less
bypass, etc.). For example, many motion vectors can
be tested in parallel, as well as many intra predictors,
without impacting encoder speed. Finally, much more
information is available, enabling a better solution,
impacting the resulting encoder quality.

- Implementation of the x264 library on MPPA proces-
sor offers a real-time encoder for embedded solutions,
and low-power needs. Results on a 720p video are:

- Intra I-frame: about 110 frames per second
- Inter P-frame: about 40 frames per second
- Inter B-frame: about 55 frames per second

- Using a configuration equivalent to the implementa-
tion on MPPA, the x264 encoder has been executed
on an Intel Core i7-3820 (4 hyper-threaded cores). All
CPU capabilities have been used, including MMX2,
SSE2Fast, SSE3, fastShuffle and SSE4.2. Resulting

average performance is about 50 fps for both pro-
cessors (Intel Core i7 and MPPA-256). Below are
performance comparisons:

Processor Performance Power efficiency
Intel Core i7-3820 49 fps 2,60 W/fps
Kalray MPPA-256 52 fps 0,14 W/fps

For same H.264 encoding performance, the Kalray MPPA-
256 processor is more power efficient by a factor of about 20,
with a measured power consumption slightly above 5W.

IV. POSIX-LEVEL PROGRAMMING

A. Design Principles

The principle of MPPA POSIX-level programming is that
processes on the I/O subsystems spawn sub-processes on the
compute clusters and pass arguments through the traditional
argc, argv, and environ variables. Inside compute clus-
ters, classic shared memory programming models such as
POSIX threads or the OpenMP language extensions supported
by GCC must be used to exploit more than one core. The main
difference between the MPPA POSIX-level programming and
classic POSIX programming appears on inter-process commu-
nication (IPC). Precisely, IPC is only achieved by operating
on special files, whose pathname is structured by a naming
convention that fully identifies the NoC resources used when
opening either in read or write mode (Table I).

This design leverages the canonical ‘pipe-and-filters’ soft-
ware component model [5], where POSIX processes are the
atomic components, and communication objects accessible
through file descriptors are the connectors [6]. Like POSIX
pipes, those connectors have distinguished transmit (Tx) and
receive (Rx) ports that must be opened in modes O_WRONLY
and O_RDONLY respectively. Unlike pipes however, they
may have multiple Tx or Rx endpoints, and support POSIX
asynchronous I/O operations with call-back. Following the
components and connectors design philosophy, the NoC node
or node sets at the endpoints are completely specified by the
connector pathnames.

B. NoC Connectors Summary

Sync A 64-bit word in the Rx process that can be OR-ed
by N Tx processes. When the result of the OR equals -1, the
Rx process is notified so a read() returns non-zero.

Signal A 64-bit message is sent by a Tx process to M Rx
processes. Each Rx process is notified of the message arrival
which is typically handled by an aio_read() call-back.

Portal A memory area of the Rx process where N Tx
processes can write at arbitrary offsets. The Rx process is not
aware of the communication except for a notification count
that unlocks the Rx process when the trigger supplied to
aio_read() is reached.

Stream Message broadcast from one Tx process to several
Rx processes. A Rx process is not aware of the communication
but is ensured to find a valid and stable pointer to the latest
message sent. This connector is provided to implement the
communication by sampling (CbS) mechanism [7].

Type Pathname Tx:Rx aio_sigevent.sigev_notify
Sync /mppa/sync/rx nodes:cnoc tag N : M
Signal /mppa/signal/rx nodes:cnoc tag 1 : M SIGEV_NONE, SIGEV_CALLBACK
Portal /mppa/portal/rx nodes:dnoc tag N : M SIGEV_NONE, SIGEV_CALLBACK
Stream /mppa/stream/rx nodes:dnoc tag 1 : M SIGEV_NONE, SIGEV_CALLBACK
RQueue /mppa/rqueue/rx node:dnoc tag/tx nodes:cnoc tag/msize N : 1 SIGEV_NONE, SIGEV_CALLBACK
Channel /mppa/channel/rx node:dnoc tag/tx node:cnoc tag 1 : 1 SIGEV_NONE, SIGEV_CALLBACK

TABLE I. NOC CONNECTOR PATHNAMES, SIGNATURE, AND ASYNCHRONOUS I/O SIGEVENT NOTIFY ACTIONS.

RQueue Atomic enqueue of msize-byte messages from
several Tx processes, and dequeue from a single Rx process.
The RQueue connector implements the remote queue [8], with
the addition of flow control. This is an effective N : 1
synchronization primitive [9], by the atomicity of the enqueue
operation [10].

Channel A communication and synchronization object
with two endpoints. Default behavior is to effectuate a rendez-
vous between the Tx process and the Rx process, which
transfers the minimum of the sizes requested by the read and
the write without intermediate copies.

C. Support of Distributed Computing

Split Phase Barrier The arrival phase of a master-slave
barrier [11] is directly supported by the Sync connector, by
mapping each process to a bit position. The departure phase
of a master-slave barrier [11] is realized by another Sync
connector in 1 : M multi-casting mode.

Active Message Server Active messages integrate com-
munication and computation by executing user-level handlers
which consume the message as arguments [12]. Active mes-
sage servers are efficiently built on top of remote queues
[8]. In case of the RQueue connector, the registration of an
asynchronous read user call-back enables to operate it as an
active message server.

Remote Memory Accesses One-sided remote memory
access operations (RMA) are traditionally named PUT and
GET [12], where the former writes to remote memory, and the
latter reads from remote memory. The Portal connector directly
supports the PUT operation on a Tx process by writing to a
remote D-NoC Rx buffer in offset mode. The GET operation is
implemented by active messages that write to a Portal whose
Rx process is the sender of the active message.

V. APPLICATION TO OPTION PRICING

A. Monte Carlo Option Pricing with MPPA

A common use case of compute farms in the financial
market is option pricing evaluation. Monte Carlo are widely
used methods for option pricing option. They require the
evaluation of tens of thousands of paths, each one divided
in hundreds of computational steps. A simple pricing option
evaluation requires a data set of hundreds of megabytes. Each
path can be computed independently, thus the application
exhibits a high level of parallelism and is a good candidate
for offloading to an accelerator.

We implemented on the MPPA a typical option pricing
application using a Monte Carlo method. This implementation

had to meet two requirements: firstly, provide a simple accel-
eration interface that can be targeted from a customer native
environment; secondly, distribute data and computation kernels
efficiently across the MPPA compute clusters.

B. Acceleration interface

In order to ease the access to a MPPA accelerator on a
classical customer framework, a Parallel-For Parallel-Reduce
programming pattern has been used. The option pricing eval-
uation is performed by computation kernels. A kernel is a
Plain Old Data (POD) structure that defines an operator.
Therefore, they can be easily manipulated and copied from/to
the accelerator. These kernels are iterated over each path and
thus process the whole data set.

The Parallel-For interface allows to explicitly parallelize
the computation over the provided data set. In this case, the
parallel dimension is the tens of thousands of Monte Carlo
paths. In the end, the result reduction is also performed in
parallel by the Parallel-Reduce invocation.

In order to execute the above programming model effi-
ciently on the MPPA, a run-time has been developed making
use of the POSIX-level programming interface with the Portal,
Sync and RQueue connectors. The connector semantics per-
fectly matches the pipelined computation model and allows the
programmers to concentrate their effort on the use-case.

C. Kernels and data set distribution

Due to the nature of algorithm, the data set pattern access
exhibits poor temporal locality. Most of the input data set is
used once and never accessed again. Consequently, caching
data would not provide any benefits.

For implementing this use-case on the MPPA we opted for
a pipelined computation structure. The data set is organized
into independent slices. Then, a computation pipeline is built
between the IO subsystems and the compute clusters. The IO
subsystems fill-in the compute clusters with batches of data set
slices. The data transfers are overlapped with the computation
of the previous slices on the clusters.

There is little resident data in the cluster’s memory: the
compute kernel code and associated structures, temporary
variables and constant data. The resident data set is replicated
on all the clusters. In particular, kernels and constant data.

Each data slice exhibits strong spatial locality. Detailed
execution profiling shows that processing on the compute clus-
ters does not suffer from data access latencies. The execution
efficiency is nearly optimal on each core.

D. MPPA key features

This use-case takes advantage of unique features provided
by the MPPA architecture. Some of them are:

• NoC broadcast capability: heavily used to download
the compute kernels and constant data on all the
compute clusters in parallel.

• DMA engine programmable threads: used to build on-
the-fly dense data set slices from the main data set
stored in DDR memory.

• NoC bidirectional links: allow to upload and down-
load data in parallel with compute cluster processing
without compromising the performance.

• VLIW architecture and instruction bundle structure:
kernel codes fully exploit these features to speedup
the computation.

E. Execution results

The accelerated part of the application is executed on the
MPPA-256 400MHz processor, which is rated at 58 GFLOPS
DP peak for 15W. This accelerated part is also executed on
the two customer production platforms: the Intel i7-3820 quad-
core 3.60GHz CPU rated at 115.2 GFLOPS DP peak for 130W
when the 8 logical cores are exploited; and the NVIDIA Tesla
C2075 GPU rated at 515 GFLOPS DP peak for 225W.

Accelerator Time (s) Performance Energy (J)
i7-3820 13.86 0.17 1802.2
Tesla C2075 2.37 1.00 531.7
MPPA-256 5.75 0.41 86.3

Although the MPPA-256 has a significantly lower peak
performance than the CPU and the GPU for double precision
floating-point arithmetic, on this application its outperforms
the CPU by a factor of 2.4× and delivers almost half the per-
formance of the GPU. When comparing the energy consumed,
the MPPA-256 is over 20 times more efficient than the CPU
and over 6 times more efficient than the GPU.

CONCLUSIONS

The Kalray MPPA-256 manycore processor embeds 256
user cores and 32 system cores on a single 28nm CMOS chip
running at 400MHz. These cores implement a modern 32-bit
5-issue VLIW architecture, with a floating-point unit and a
memory management unit. This manycore processor is the first
commercial product that integrates on a single chip a clustered
architecture similar to high-end supercomputers. Unlike the
shared memory architecture implemented by other manycore
processors, a distributed memory architecture has no scalability
limits, and enables highly energy efficient implementations.

Our results demonstrate that the MPPA clustered architec-
ture can be successfully exploited on different applications.
Specifically, we take advantage of a cyclostatic model of
computation to fully automate the distribution of an embedded
application across the memory, processing, and communication
resources of the MPPA-256 manycore processor. We also
show that programming with explicit management of these
resources under familiar POSIX abstractions is effective for
an accelerated computing application. In all cases, we observe

high performances and over 20 times better energy efficiency
compared to a high-end CPU.

On-going work focuses on the support of the OpenCL task
parallel programming model, whose main advantage over the
two programming models discussed is to enable direct access
from any core to the external DDR memory. Our OpenCL
support leverages the MMU available on each core to map the
memory pages to the compute cluster memory, that is, it im-
plements a software distributed shared memory. The key issue
is to reconcile changes to pages at the same virtual addresses
by different clusters. This will be addressed by adapting the
TreadMarks [13] false sharing resolution technique.

REFERENCES

[1] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cycle-
static dataflow,” IEEE Transactions on Signal Processing, vol. 44, no. 2,
pp. 397–408, 1996.

[2] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proceedings of the IFIP Congress 74, 1974, pp. 471–475.

[3] T. Goubier, R. Sirdey, S. Louise, and V. David, “ΣC: a programming
model and langage for embedded many-cores,” LNCS, no. 7016, pp.
385–394, 2011.

[4] B. Bodin, A. M. Kordon, and B. D. de Dinechin, “K-periodic schedules
for evaluating the maximum throughput of a synchronous dataflow
graph,” in International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation, SAMOS XII, 2012.

[5] K.-K. Lau and Z. Wang, “Software component models,” IEEE Trans.
Softw. Eng., vol. 33, no. 10, pp. 709–724, Oct. 2007.

[6] S. Kell, “Rethinking software connectors,” in International workshop on
Synthesis and analysis of component connectors: in conjunction with
the 6th ESEC/FSE joint meeting, ser. SYANCO ’07, 2007, pp. 1–12.

[7] A. Benveniste, A. Bouillard, and P. Caspi, “A unifying view of loosely
time-triggered architectures,” in Proceedings of the tenth ACM interna-
tional conference on Embedded Software, ser. EMSOFT ’10, 2010, pp.
189–198.

[8] E. A. Brewer, F. T. Chong, L. T. Liu, S. D. Sharma, and J. D. Kubia-
towicz, “Remote queues: exposing message queues for optimization and
atomicity,” in Proceedings of the seventh annual ACM symposium on
Parallel algorithms and architectures, ser. SPAA ’95, 1995, pp. 42–53.

[9] V. Papaefstathiou, D. N. Pnevmatikatos, M. Marazakis, G. Kalokairinos,
A. Ioannou, M. Papamichael, S. G. Kavadias, G. Mihelogiannakis,
and M. Katevenis, “Prototyping efficient interprocessor communication
mechanisms,” in Proceedings of the 2007 International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation
(IC-SAMOS 2007), 2007, pp. 26–33.

[10] M. G. Katevenis, E. P. Markatos, P. Vatsolaki, and C. Xanthaki, “The
remote enqueue operation on networks of workstations,” International
Journal of Computing and Informatics, vol. 23, no. 1, pp. 29–39, 1999.

[11] O. Villa, G. Palermo, and C. Silvano, “Efficiency and scalability
of barrier synchronization on noc based many-core architectures,”
in Proceedings of the 2008 international conference on Compilers,
Architectures and Synthesis for Embedded Systems, ser. CASES ’08,
2008, pp. 81–90.

[12] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active
Messages: a Mechanism for Integrated Communication and Computa-
tion,” in Proceedings of the 19th annual International Symposium on
Computer architecture, ser. ISCA ’92, 1992, pp. 256–266.

[13] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel, “Treadmarks:
distributed shared memory on standard workstations and operating
systems,” in Proceedings of the USENIX Winter 1994 Technical Con-
ference on USENIX Winter 1994 Technical Conference, ser. WTEC’94.
Berkeley, CA, USA: USENIX Association, 1994, pp. 10–10.

