
ARTICLE IN PRESS
INTEGRATION, the VLSI journal 38 (2004) 245–265
0167-9260/$ -

doi:10.1016/j.

�Correspon
E-mail add

cc.ee.ntu.edu.
www.elsevier.com/locate/vlsi
A clustering- and probability-based approach for
time-multiplexed FPGA partitioning

Guang-Ming Wua,�, Mango Chia-Tso Chaob, Yao-Wen Changc

aDepartment of Information Management, Nan-Hua University, 32 Chung Keng, Dalin, Chiayi, Taiwan
bComputer and Information Science, National Chiao Tung University, Hsinchu 30010, Taiwan

cDepartment of Electrical Engineering, National Taiwan University, Taipei, Taiwan

Received 14 February 2003; received in revised form 25 May 2004; accepted 3 June 2004
Abstract

Improving logic density by time-sharing, time-multiplexed FPGAs (TMFPGAs) have become an
important research topic for reconfigurable computing. Due to the precedence and capacity constraints in
TMFPGAs, the clustering and partitioning problems for TMFPGAs are different from the traditional
ones. In this paper, we propose a two-phase hierarchical approach to solve the partitioning problem for
TMFPGAs. With the precedence and capacity considerations for both phases, the first phase clusters nodes
to reduce the problem size, and the second phase applies a probability-based iterative-improvement
approach to minimize cut cost. Experimental results based on the Xilinx TMFPGA architecture show that
our algorithm significantly outperforms previous works.
r 2004 Elsevier B.V. All rights reserved.

Keywords: Layout; Physical_design; Partitioning
1. Introduction

Improving logic density by time-sharing, time-multiplexed FPGAs (TMFPGAs) have become
an important research topic for reconfigurable computing. In TMFPGAs, a virtual large design is
see front matter r 2004 Elsevier B.V. All rights reserved.

vlsi.2004.06.003

ding author. Tel.: +88652721001x201; fax: +88652427136.

resses: gmwu@mail.nhu.edu.tw (G.-M. Wu), gis87530@cis.nctu.edu.tw (M.C.-T. Chao), ywchang@

tw (Y.-W. Chang).

www.elsevier.com/locate/vlsi

ARTICLE IN PRESS

.......
.......

configurations

1

2

k-1

k+1

k

8

micro-cycles

us
er

 c
yc

le

Fig. 1. The Xilinx time-multiplexed FPGA configuration model.

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265246
partitioned into multiple stages (or partitions) to share the same smaller physical device than that
occupied by traditional FPGAs. Several different architectures have been proposed, such as the
Xilinx model [1], Dharma [2], etc. All these models allow dynamic reuse of logic blocks and wire
segments by using more than one on-chip SRAM bit to control them. The configurations of logic
blocks and wire segments can be changed by reading different SRAM bits.
Fig. 1 shows the Xilinx TMFPGA configuration model [1]. The TMFPGA emulates a single

circuit design in the sequencing of multiple configurations. In each micro-cycle, the TMFPGA
reads in the circuit information from a corresponding configuration SRAM, and then the
configurable logic blocks (CLBs) in the TMFPGA are reused to evaluate logic. A user cycle is a
cycle passing through all micro-cycles. Each CLB contains micro registers to hold the CLB result.
Micro registers hold the intermediate values of combinational logic for later micro-cycles in the
same user cycle and reserve the status of flip-flops for the next user cycle. In Xilinx TMFPGAs,
there are eight micro-cycles in a user cycle. A new configuration is loaded into active configuration
memory after all CLB results in the last micro-cycle have been saved.
The objective of the TMFPGA partitioning problem is to minimize the interconnection (the

number of micro registers required) between micro-cycles. Unlike a traditional FPGA, the
execution order of nodes in a TMFPGA must follow their precedence constraints. For example, a
node must be executed no later than all of its outputs in a combinational circuit. It implies that a
cut in a TMFPGA partitioning should be a uni-directional cut. For the TMFPGA partitioning
problem, several heuristics such as list scheduling [3,4] and network-flow-based approach [5–7] on
different architectures were proposed. The network-flow-based approach first finds a min cut. If
the min cut is not at the balanced point, it will randomly move nodes to meet the balance
constraint. Thus the optimality may deviate away after nodes are adjusted. In this paper, we
propose a two-phase approach, the CPAT method (Clustering and Probability-based Algorithm
for TMFPGA), to solve the TMFPGA partitioning problem. The first phase reduces the problem
size using a clustering method; the second phase minimizes the interconnection by a probability-
based iterative-improvement [8,9] method. For the first phase, we extend the method used in [10]

ARTICLE IN PRESS

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265 247
which is effective in clustering traditional circuits, but may generate a cluster of size exceeding the
capacity of a stage in the TMFPGA partitioning. Our solution to the capacity overflow problem is
based on a rooted-tree subset-sum formulation; we prove that the rooted-tree subset-sum problem
is NP-complete and present an exact exponential-time and a fully polynomial-time approximation
algorithms [11] for the problem. For the second phase, the probability-based method incorporates
the precedence constraints into the 2nd-order probability estimation [12]. Thus, the probability-
based method finds the potentially maximum gain among movable nodes. Our method, thus, can
globally monitor the changes and can avoid the drawback of the network-flow-based approach.
Experimental results, based on the Xilinx TMFPGA architecture [1] with eight micro-cycles
(stages), show that our algorithm reduces the maximum numbers of micro registers required than
previous works.
2. Problem formulation

We follow the formulation and notation used in [5]. A circuit in a TMFPGA can be represented
by a directed hypergraph GðV ;NÞ, where V is the set of nodes and N is the set of nets in the circuit.
There are two types of nodes in V: combinational nodes (C-nodes) and flip-flop nodes (FF-nodes).
Each node v 2 V has a weight wðvÞ. The weight of a set U (U � V), W ðUÞ, is given by

P
v2U wðvÞ.

For a net n ¼ fv1; v2; . . . ; vpg with p nodes, let v1 be the fan-out node whose output signal is the
input signal to vj 2 n (2pjpp), and let vj 2 n (2pjpp) be the fan-in node whose input signal is the
output signal from v1.
To fit into a TMFPGA, a circuit is partitioned into k stages, such that the logic blocks and wire

segments in different stages can share the same physical TMFPGA device. These k stages form
one user cycle, and one user cycle should produce the same results on the outputs as would be seen
by a non-time-multiplexed device. In order to ensure the correct results produced in a user cycle,
every nodes must be evaluated in a proper order. According to the Xilinx architecture [1], the
following three precedence constraints must be satisfied:
1.
 Each combinational node (C-node) must be scheduled in a stage no later than all its output nodes.

2.
 Each FF-node must be scheduled in a stage no earlier than all its output nodes. This rule

guarantees that all the nodes that use the value of the flip-flop use the same value: the value of
flip-flop from the previous user cycle.

The above constraints define a partial temporal ordering on the nodes in the circuit. Let PreðvÞ

be the precedence of a node v. For two nodes u and v, let PreðuÞPreðvÞ denote that node u must be
scheduled no later than node v. In other words, for a net n = {v1, v2,. . ., vp}, where v1 is the fan-
out node and vj, 2pjpp, is the fan-in node.
�
 if v1 is a C-node, then Preðv1ÞPreðvjÞ for 2pjpp;

�
 if v1 is an FF-node, then PreðvjÞPreðv1Þ for 2pjpp.
By the two constraints, we can decide the directions of nets in the graph and classify nets into
two types: a net is C-type if its v1 is a C-node, and a net is FF-type if its v1 is an FF-node, as shown
in Fig. 2.

ARTICLE IN PRESS

1 4

4

2 3stage#

1 2

(a)

Cut(4,1)Cut(1,2) Cut(2,3) Cut(3,4)

1 2 3stage#

23

Cut(4,1)Cut(1,2) Cut(2,3) Cut(3,4)

1

v1

v2
v3 v1

v2
v3

(b)

Fig. 3. (a) Two micro registers, indicated by&, used in a C-type net fv1; v2; v3g, (b) Three micro registers used in an FF-

type net fv1; v2; v3g.

FF-type net

v1

v2

v3

vp

v2

v3

vp

v1

C-type net

...
...

...
...

a

C-type
 node FF-type

 node

Fig. 2. Precedence constraints. Shaded nodes and white nodes represent the fan-out nodes and fan-in nodes,

respectively.

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265248
In TMFPGAs, micro registers are required between stages to store the data of nodes for use in
later micro-cycles. Let Cutða; bÞ be the set of micro registers between stage a and stage b. A k-stage
TMFPGA contains k cuts, Cutð1; 2Þ, Cutð2; 3Þ; . . . ;Cutðk 	 1; kÞ, and Cutðk; 1Þ. For a C-type net,
the data of its fan-out node must be held until the last stage containing a fan-in node of the net.
For an FF-type net, the data of its fan-out node must be held not only in the rest stages of the
current user cycle but also from the first stage to the last stage of all its fan-in nodes in the next
user cycle. For a net n ¼ fv1; v2; . . . ; vpg, let sðvÞ ¼ j if v belongs to the stage j, aðnÞ denote the
number of micro registers used in net n, and k denote the number of stages. aðnÞ is given as
follows:
�
 aðnÞ ¼ maxfsðvjÞj2pjppg 	 sðv1Þ, if net n is C-type.

�
 aðnÞ ¼ k 	 sðv1Þ þmaxfsðvjÞj2pjppg, if net n is FF-type.
Fig. 3 shows the registers needed in a net for a 4-stage TMFPGA. In Fig. 3(a), the data of a C-
type fan-out node is held from stage 1, the stage of the fan-out node, to stage 3, the last stage of
the fan-in nodes. It uses two micro registers, one for Cutð1; 2Þ and Cutð2; 3Þ each. In Fig. 3(b), the
data of an FF-type fan-out node is held from stage 3, the stage of fan-out node, to stage 4, then
back to stage 1 of next user cycle and finally to stage 2, the last stage of fan-in nodes. It uses three
registers, one for Cutð3; 4Þ, Cutð4; 1Þ, and Cutð1; 2Þ each.

ARTICLE IN PRESS

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265 249
The k-stage TMFPGA partitioning problem is to partition a circuit GðV ;NÞ into k non-
overlapping subsets V1;V2; . . . ;Vk, such that the maximum interconnection (the number of micro
registers) between each two adjacent stages is minimized, and the following properties are
satisfied:
(1)

Sk

i¼1Vi ¼ V .

(2)
 Precedence constraint: Let sðvÞ = j if v 2 Vj. For each two nodes u and v, if PreðuÞPreðvÞ, then

sðuÞpsðvÞ.

(3)
 Balance constraint: For each subset Vi, W ðViÞ is bounded by a factor r as follows:

W ðVÞ

k
ð1	 rÞpW ðViÞp

W ðV Þ

k
ð1þ rÞ; 0prp1:
(4)
 Timing constraint: Let D be the length of the longest path in a circuit. The length of the longest
path in each stage is upper bounded by dD=ke.
3. The two-phase CPAT algorithm

The k-stage TMFPGA partitioning problem can be handled by repeatedly solving k 	 1
TMFPGA bipartitioning problems. We shall focus our discussions on the approach for solving
the TMFPGA bipartitioning problem. Our solution to this problem is based on a two-phase
hierarchical approach: clustering followed by a probability-based iterative-improvement
formulation.

3.1. Phase I: the clustering algorithm

An effective clustering algorithm can greatly improve the quality of the precedence-constrained
partitioning results and speed up the later partitioning algorithm by reducing the problem size.
The maximum fanout free subgraph (MFFS) algorithm is effective in clustering traditional
circuits [10]. MFFS is a signal flow-based clustering algorithm that considers simultaneous
movement of logically dependent nodes during the node moves. However, MFFS may generate a
cluster of size larger than the capacity of a stage in the TMFPGA partitioning. To consider the
capacity constraint, we propose a clustering method based on the MFFS, which can control the
size of a cluster. The definitions of FFS and MFFS are described as follows. For a given node v in
a circuit,
�
 FFSv ¼ fujevery path from u to some primary output passes through v in the circuitg.

�
 MFFSv ¼ fuj for all FFSv; u 2 FFSvg.
A circuit can be represented in the TMFPGA by a directed graph. For a given circuit Ci and a
node v, an MFFS cluster rooted at v can be obtained by using the following procedure:
�
 Convert Ci to a directed graph, GðV ;NÞ, where V is a set of nodes which corresponds to Ci, and
N is a set of directed edges. A directed edge ði; jÞ exists if node j is a fan-in of node i.

ARTICLE IN PRESS

Fig. 4. (a) The original circuit, (b) Clustering by MFFS clustering.

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265250
�
 Cut all the fan-out edges of the root node v; search all other nodes in graph GðV ;NÞ starting
from the primary outputs of the Ci. The nodes in GðV ;NÞ that were not traversed belong to the
MFFSv.

The MFFS construction algorithm described above is used to obtain one MFFS cluster. To
cluster the entire circuit, we need to apply the MFFS construction algorithm repeatedly. The
MFFS clustering algorithm works as follows: For a given circuit Ci, let Roots = fall primary
outputs in Cig. Then, extract a node v 2 Roots and use the MFFS construction algorithm to
construct MFFSv. This process is repeated until Roots is empty. Then remove all currently
constructed MFFS clusters from Ci, resulting in a reduced circuit C0

i whose primary outputs are
input nodes to the removed MFFS clusters. Repeat the same procedure for the new circuit C0

i

recursively until all nodes in Ci are grouped into MFFS clusters. For example, the circuit depicted
in Fig. 4(a) can be clustered into three clusters (see Fig. 4(b)).
We present in the following two algorithms to handle a cluster of size exceeding the capacity of

a stage in the TMFPGA partitioning. Our method decomposes a cluster Ci (rooted at v) according
to the two cases: (1) Ci is a rooted tree, and (2) Ci is an acyclic graph. Our target is to partition Ci

into two balanced sets with the minimal cut size.
We first consider the case where a circuit Ci is a rooted tree. Let Tvi

denote the subtree rooted at
vi, where vi 2 Ci. For nodes v1; v2; . . ., and vd in respective Tv1 ;Tv2 ; . . ., and Tvd

, let kðv1; v2; . . . ; vdÞ

denote the total weights of nodes in Tv1 ;Tv2 ; . . ., and Tvd
. We define an element

x ¼ ðkðv1; v2; . . . ; vdÞ, Tv1 ;Tv2 ; . . . ;Tvd
Þ, where v1; v2; . . . ; vd represent the respective roots of

disjoint subtrees Tv1 ;Tv2 ; . . . ;Tvd
. For an element x ¼ ðkðv1; v2; . . . ; vdÞ; Tv1 ;Tv2 ; . . . ;Tvd

Þ, let
jxj ¼ d and pðxÞ ¼ kðv1; v2; . . . ; vdÞ. An element y is called a singleton element if it contains only
one subtree. For an element xi ¼ ðkðvi;1; vi;2; . . . ; vi;dÞ;Tvi;1 ;Tvi;2 ; . . . ;Tvi;d Þand a singleton element
yj ¼ ðkðvjÞ, Tvj

Þ, if TvjgTvi;l
, 1plpd, let xi] yj ¼ ðkðvi;1; vi;2; . . . ; vi;d ; vjÞ, Tvi;1 , Tvi;2 ; . . . ;Tvi;d

, Tvj
Þ; if

Tvj�Tvi;l
, 1plpd, let xi] yj ¼ ðkðV̂ Þ; T̂Þ, where the set V̂ ¼ fvi;1; vi;2; . . . ; vi;d ; vjg 	 fvi;lg and

T̂ ¼ fTvi;1 ;Tvi;2 ; . . . ;Tvi;d
;Tvj

g 	 fTvi;l
g. Let h denote a half of the total weights of nodes in Ci. The

Rooted-Tree Subset-Sum problem is to cut Ci into minimal number of subtrees such that the total
weights of nodes in the sub trees is equal to h. We formulate the Rooted-Tree Subset-Sum
Problem as follows.

The Rooted-Tree Subset-Sum problem. Given a set R of singleton elements associated with a
rooted tree Ci and an integer h, find an element x derived by a sequence of] operations such that
pðxÞ ¼ h and minimize jxj.

Theorem 1. The decision problem of the Rooted-Tree Subset-Sum problem is NP-complete.

ARTICLE IN PRESS

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265 251
Proof. We first show that Rooted-Tree Subset-Sum problem is in NP. Given a set R associated
with a rooted tree and two integers q and h, we let the subset R0 of R be the certificate. Checking
whether h ¼ pð]x2R0xÞ and j]x2R0xj ¼ q can be accomplished by a verification algorithm in
polynomial time.
The SUBSET-SUM problem is an NP-complete problem [11]. We now show that SUBSET-

SUM pP Rooted-Tree Subset-Sum. Given an instance hŜ; ti of the subset-sum problem, the
reduction algorithm constructs a tree (a circuit) C of the Rooted-Tree Subset-Sum problem such
that there exists a subset in Ŝ whose sum is equal to t if and only if there exists an element x

associated with C, where pðxÞ ¼ t.
The heart of the reduction is a tree representation of Ŝ. Let Ŝ ¼ fs1; s2; . . . ; sig be a set consisting

of i integers. We construct the tree CðV ;NÞ with i þ 1 nodes associated with Ŝ as follows:
�
 Add a root v0 with weight 1 to V.

�
 For each integer sj 2 S, add a node vj with weight sj to V and a directed edge ðv0; vjÞ to N.

Every subtree of C except Tv0 has only one node and is disjoint to each other. We have
R ¼ fðkðv0Þ;Tv0Þ; ðkðv1Þ;Tv1Þ; . . . ; ðkðviÞ;Tvi

Þg associated with CðV ;NÞ. Let q equal i, Ŝ0 � Ŝ such
that t ¼ S

sj2Ŝ0sj, and yk ¼ ðkðvkÞ;Tvk
Þ. Then we find the element x ¼]yj, where yj is associated

with sj 2 Ŝ0, such that pðxÞ ¼ t and jxjpq.
Conversely, suppose that there exists an element x ¼ ðkðv1; v2; . . . ; vdÞ; Tv1 ;Tv2 ; . . . ;Tvd

Þ. Let jxj
equal d and pðxÞ equal kðv1; v2; . . . ; vdÞ such that pðxÞ ¼ t. Then, the sum of the subset
fvj1; vj2; . . . ; vjkg is equal to t. &

We give an exponential-time exact algorithm as well as a fully polynomial-time approximation
scheme [11] for the Rooted-Tree Subset-Sum problem, listed in Figs. 6 and 7, respectively.
For a sequence L ¼ oðkðv1;1; . . . ; v1;i1Þ; Tv1;1 ; . . . ;Tv1;i1

Þ, ðkðv2;1; . . . ; v2;i2Þ; Tv2;1 ; . . . ;Tv2;i2
Þ; . . . ;

ðkðvm;1; . . . ; vm;im
Þ; Tvm;1 ; . . . ;Tvm;im

Þ4 and ðkðvjÞ;Tvj
Þ, let L þ ðkðvjÞ;Tvj

Þ denote the sequence
derived from a series of] operations on each element of L with the singleton element ðkðvjÞ;Tvj

Þ.
For example, if L ¼ oð1;Tv1Þ; ð3;Tv2Þ; ð5;Tv3Þ; ð6;Tv4Þ4, then L þ ð2;Tv5Þ ¼ oð3;Tv1 ;Tv5Þ;
ð5;Tv2 ;Tv5Þ; ð7;Tv3 ;Tv5Þ; ð8;Tv4 ;Tv5Þ4 (if Tv1 ; . . . ;Tv5do not share any node).
We use an auxiliary procedure merge-lists(L;L0) that returns the sorted list by merging its two

sorted input lists L and L0, and remove the duplicate elements. Like the merge procedure which
used in merge sort [11], merge-lists runs in time OðjLj þ jL0jÞ. Since the length of Li can be as
much as 2i, Exact-Rooted-Tree-Subset-Sum is an exponential-time algorithm.
The polynomial-time approximation algorithm Approx-Rooted-Tree-Subset-Sum is per-

formed by trimming each list Li after an] operation. We use a trimming parameter � such
that 0p�p1. To trim a list L by � means to remove as many elements from L as possible, in such
a way that if L0 is the result of trimming L, then for each element y removed from L, there
exists an element z still in L0, where ð1	 �ÞpðyÞppðzÞppðyÞ. Line 3 initializes the list L0 to be
the list containing just the element ð0;;Þ. Lines 4–5 perform the] operation in a topological
order. Lines 6 and 7 remove each element x, pðxÞ4h and jxj4q. Line 8 performs trimming
operations. We can show that Approx-Rooted-Tree-Subset-Sum listed in Fig. 7 runs
in time polynomially in both jRj and 1=�; i.e., it is a fully polynomial-time approximation
scheme [11].

ARTICLE IN PRESS

1

2 3

54 6 7

8

cut

Fig. 5. A rooted-tree with eight vertices. The tree has a minimum cut (cut-size = 1) which partitions the tree into two

balanced parts.

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265252
We give an example of Approx-Rooted-Tree-Subset-Sum in the following. Suppose we have a
list of singleton elements

L ¼ hð8;Tv1Þ; ð3;Tv2Þ; ð4;Tv3Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð2;Tv6Þ; ð1;Tv7Þ; ð1;Tv8Þi

associated with the rooted-tree in Fig. 5, in which the weight of each vertex is equal to 1. The
target is to find an element x, where pðxÞ ¼ h ¼ 4 and jxj ¼ q ¼ 1 with � ¼ 0:2. The trimming
parameter r is �=8 ¼ 0:025. The Approx-Rooted-Tree-Subset-Sum computes the elements as
follows (Figs. 6 & 7):

Line 2: L0 ¼ hð0;;Þi;

Line 4: pick ð8;Tv1Þ;

Line 5: L1 ¼ hð0;;Þ; ð8;Tv1Þi;

Line 6: L1 ¼ hð0;;Þi;

Line 7: L1 ¼ hð0;;Þi;

Line 8: L1 ¼ hð0;;Þi;

Line 4: pick ð3;Tv2Þ;

Line 5: L2 ¼ hð0;;Þ; ð3;Tv2Þi;

Line 6: L2 ¼ hð0;;Þ; ð3;Tv2Þi;

Line 7: L2 ¼ hð0;;Þ; ð3;Tv2Þi;

Line 8: L2 ¼ hð0;;Þ; ð3;Tv2Þi;

ARTICLE IN PRESS

Fig. 6. The exact algorithm for the Rooted-Tree Subset-Sum problem.

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265 253
Line 4: pick ð4;Tv3Þ;

Line 5: L3 ¼ hð0;;Þ; ð3;Tv2Þ; ð4;Tv3Þ; ð7;Tv2 ;Tv3Þi;

Line 6: L3 ¼ hð0;;Þ; ð3;Tv2Þ; ð4;Tv3Þi;

Line 7: L3 ¼ hð0;;Þ; ð3;Tv2Þ; ð4;Tv3Þi;

Line 8: L3 ¼ hð0;;Þ; ð3;Tv2Þ; ð4;Tv3Þi;

Line 4: pick ð1;Tv4Þ;

Line 5: L4 ¼ hð0;;Þ; ð1;Tv4Þ; ð3;Tv2Þ; ð4;Tv3Þ; ð5;Tv3 ;Tv4Þi;

Line 6: L4 ¼ hð0;;Þ; ð1;Tv4Þ; ð3;Tv2Þ; ð4;Tv3Þi;

Line 7: L4 ¼ hð0;;Þ; ð1;Tv4Þ; ð3;Tv2Þ; ð4;Tv3Þi;

Line 8: L4 ¼ hð0;;Þ; ð1;Tv4Þ; ð3;Tv2Þ; ð4;Tv3Þi;

Line 4: pick ð1;Tv5Þ;

Line 5: L5 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð2;Tv4 ;Tv5Þ; ð3;Tv2Þ; ð4;Tv3Þ; ð5;Tv3 ;Tv3Þi;

Line 6: L5 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð2;Tv4 ;Tv5Þ; ð3;Tv2Þ; ð4;Tv3Þi;

Line 7: L5 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð3;Tv2Þ; ð4;Tv3Þi;

Line 8: L5 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð3;Tv2Þ; ð4;Tv3Þi;

ARTICLE IN PRESS

Fig. 7. The fully polynomial-time approximation scheme 0 the Rooted-Tree Subset-Sum problem.

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265254
Line 4: pick ð2;Tv6Þ;

Line 5: L6 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð2;Tv6Þ; ð3;Tv2Þ; ð3;Tv4 ;Tv6Þ; ð3;Tv5 ;Tv6Þ; ð4;Tv3Þ;

ð5;Tv2 ;Tv6Þi;

Line 6: L6 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð2;Tv6Þ; ð3;Tv2Þ; ð3;Tv4 ;Tv6Þ; ð3;Tv5 ;Tv6Þ; ð4;Tv3Þi;

Line 7: L6 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð2;Tv6Þ; ð3;Tv2Þ; ð4;Tv3Þi;

Line 8: L6 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð2;Tv6Þ; ð3;Tv2Þ; ð4;Tv3Þi;

ARTICLE IN PRESS

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265 255
Line 4: pick ð1;Tv7Þ;

Line 5: L7 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð1;Tv7Þ; ð2;Tv6Þ; ð2;Tv4 ;Tv7Þ; ð2;Tv5 ;Tv7Þ; ð3;Tv2Þ;

ð3;Tv6 ;Tv7Þ; ð4;Tv3Þ; ð4;Tv2 ;Tv7Þi;

Line 6: L7 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð1;Tv7Þ; ð2;Tv6Þ; ð2;Tv4 ;Tv7Þ; ð2;Tv5 ;Tv7Þ; ð3;Tv2Þ;

ð3;Tv6 ;Tv7Þ; ð4;Tv3Þ; ð4;Tv2 ;Tv7Þi;

Line 7: L7 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð1;Tv7Þ; ð2;Tv6Þ; ð3;Tv2Þ; ð4;Tv3Þ; ð4;Tv2 ;Tv7Þi;

Line 8: L7 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð1;Tv7Þ; ð2;Tv6Þ; ð3;Tv2Þ; ð4;Tv3Þi;

Line 4: pick ð1;Tv8Þ;

Line 5: L8 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð1;Tv7Þ; ð1;Tv8Þ; ð2;Tv6Þ; ð2;Tv4 ;Tv8Þ; ð2;Tv5 ;Tv8Þ;

ð2;Tv7 ;Tv8Þ; ð3;Tv2Þ; ð4;Tv3Þ; ð4;Tv2 ;Tv8Þi;

Line 6: L8 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð1;Tv7Þ; ð1;Tv8Þ; ð2;Tv6Þ; ð2;Tv4 ;Tv8Þ; ð2;Tv5 ;Tv8Þ;

ð2;Tv7 ;Tv8Þ; ð3;Tv2Þ; ð4;Tv3Þ; ð4;Tv2 ;Tv8Þi;

Line 7: L8 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð1;Tv7Þ; ð1;Tv8Þ; ð2;Tv6Þ; ð3;Tv2Þ; ð4;Tv3Þ;

ð4;Tv2 ;Tv8Þi;

Line 8: L8 ¼ hð0;;Þ; ð1;Tv4Þ; ð1;Tv5Þ; ð1;Tv7Þ; ð1;Tv8Þ; ð2;Tv6Þ; ð3;Tv2Þ; ð4;Tv3Þi:

The algorithm returns ð4;Tv3Þ, where pð4;Tv3Þ ¼ 4, which is bounded in � ¼ 20% of the optimal
answer.

Theorem 2. Approx-Rooted-Tree-Subset-Sum is a fully polynomial-time approximation scheme for

the Rooted-Tree Subset-Sum Problem.

Proof. In lines 6–8, the operation trimming Li and removes each element y where pðyÞ is
greater than h from Li. The rest elements of Li are generated by selecting a subset of R and
applying a sequence of] operations on the selected elements. Therefore, the element x� returned
in line 9 is indeed derived from a subset of R. It remains to show that the pðx�Þ is not smaller than
1	 � times an optimal solution, and we must also show that the algorithm runs in polynomial
time.
To show that the relative error of the returned answer is small, note that when list Li is

trimmed, we introduce a relative error of at most �=l between the representative p values of the
elements remaining and the p values of the elements before trimming. By induction on i, it can be
shown that for each possible element y in Li produced by the Exact-Rooted-Tree-Subset-Sum
algorithm, there exists an element x 2 Li produced by the Approx-Rooted-Tree-Subset-Sum
algorithm such that

ð1	 �=lÞipðyÞppðxÞppðyÞ: ð1Þ

If y� denotes an optimal solution to the Rooted-Tree Subset-Sum problem, then there is a x� 2 Ll

such that

ð1	 �=lÞlpðy�Þppðx�Þppðy�Þ; ð2Þ

ARTICLE IN PRESS

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265256
where pðx�Þ is the p value of the element x� returned by Approx-Rooted-Tree-Subset-Sum. Since
lX14�, it can be shown that

d

dl
1	

�

l

� �l

40: ð3Þ

It implies that the function ð1	 �=lÞl increases with l, so that l41 implies

1	 �oð1	 �=lÞl ð4Þ

and thus,

ð1	 �Þpðy�Þppðx�Þ: ð5Þ

Therefore, the p value of x� returned by Approx-Rooted-Tree-Subset-Sum is not smaller than
1	 � times the p value of the optimal solution y�.
To show that this is a fully polynomial-time approximation scheme, we derive a bound on the

length of Li. After trimming, successive elements x and x0 of Li must have the relationship
pðxÞ=pðx0Þ41=ð1	 �=lÞ. That is, their p values must differ by a factor of at least ð1	 �=lÞ.
Therefore, the number of elements in each Li is at most

log1=ð1	�=lÞh ¼
ln h

	lnð1	 �=lÞ
p

l ln h

�
ð6Þ

since lnð1þ iÞpi for i4	 1. This bound is polynomial in the number l of the given input
elements, in the number of bits ln h needed to represent h, and in 1=�. Since the running time of
Approx-Rooted-Tree-Subset-Sum is polynomial in the length of Li, Approx-Rooted-Tree-Subset-
Sum is a fully polynomial-time approximation scheme. &

Approx-Rooted-Tree-Subset-Sum tells us how to partition a rooted-tree circuit. If its results
contain infeasible trees, we need to apply Approx-Rooted-Tree-Subset-Sum repeatedly.
For the case where Ci (rooted at v) is an acyclic graph. We can perform breadth-first search

from node v and obtain a rooted tree, and then apply Approx-Rooted-Tree-Subset-Sum on the
tree.

3.2. Phase II: the probability-based algorithm

The probability-based iterative-improvement method extends the work [12] to fit the
architecture of Xilinx TMFPGAs.

3.2.1. Iterative-improvement approach

In the TMFPGA bipartitioning problem, the set V of nodes is divided into two subsets V1 and
V2, which represent nodes in two stages. For any two nodes u, v in V, if PreðuÞPreðvÞ, then u, v are
in the same stage, or u is V1 and v is in V2. Further, V1 and V2 must satisfy the balance
constraint. The size of Cutð2; 1Þ equals the number of total registers in the circuit, which cannot be
reduced any more. Therefore, we only need to minimize the size of Cutð1; 2Þ in the TMFPGA

ARTICLE IN PRESS

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265 257
bipartitioning problem. In the second step of CPAT, we present the PAT (Probability-based
Algorithm for TMFPGA), which applies a probability-based, iterative-improvement approach to
minimize the size of Cutð1; 2Þ. (Fig. 10 summarizes PAT.) We first use the topological sort to
obtain an initial partitioning that satisfies the balance and the precedence constraints (line 1 in
Fig. 10). During the iterative improvement, each node is assigned a gain, representing the benefit
of moving the node to the other subset. In each pass (lines 4–18 in Fig. 10), we choose a node with
the largest gain and check if it will violate the balance or the precedence constraint after moving
the node. If it is feasible to move the node, it is temporarily moved and locked. Select the best
sequence of moves and make them permanent. Repeat the above process in a pass until no better
cutsize is found.

3.2.2. The precedence constraint
Because of the precedence constraint, moving a node to the other subset may not be valid. For

C-type nodes, we use the following two rules to judge if a node can be moved:
R1:
Fig. 8
A C-type node v in V1 can be moved if all its successors in V1 have been moved.

R2:
 A C-type node v in V2 can be moved if all its ancestors in V2 have been moved.
For example, in Fig. 8(a), v2 cannot be moved according to Rule R1. In Fig. 8(b), v3 cannot be
moved according to Rule R2.
For FF-type nodes, we use the following rules to judge if a node can be moved:
R3:
 A FF-type node v in V2 can be moved if all its successors and ancestors in V2 have been
moved.
After a node v is moved to the other stage, some of its neighbors may also be blocked in that
stage due to the precedence constraint. We use the following two rules to determine whether such
neighbors should be blocked (see line 14 in Fig. 10):
R4:
 If v is moved from V1 to V2, all its successors should be blocked in V2.

R5:
 If v is moved from V2 to V1, all its ancestors should be blocked in V1.
3.2.3. Gains of nodes
In the PAT, each node is given a probability for moving it to the other set. Based on these

probabilities, an expected gain of moving a node to the other subset can be evaluated. Before
detailing how to compute gains, we shall introduce some notation first.
v1 v2

v3

v4

v5

1V V2

(a)

v1

v2
v3

v4

v5

1V V2

(b)

. The precedence constraints. Shaded nodes cannot be moved to the other stage due to the precedence constraints.

ARTICLE IN PRESS

Fig. 9. Example for the notation.

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265258
�
 Cutset: set of nets which need micro registers in Cutð1; 2Þ. In other words, a C-type net is not in
Cutset if all its nodes are in V1 or V2; an FF-type net is not in Cutset only if its fan-out node is
in V2 and all its fan-in nodes are in V1.
�
 cðnÞ: cost of net n.

�
 pðuÞ: probability of moving node u to the other stage.

�
 n1!2

i : event that net ni is removed from Cutset by moving nodes to V2. For a C-type net ni in
Cutset, n1!2

i means all its nodes in V1 are moved to V2; for an FF-type net ni in Cutset, n1!2
i

means all nodes are originally in V1 and then its fan-out node is moved to V2.

�
 n2!1

i : event that net ni is removed from Cutset by moving nodes to V1. For a C-type
net ni in Cutset, n2!1

i means all its nodes in V2 are moved to V1; for an FF-type net ni in
Cutset, n2!1

i means its fan-out node is originally in V2 and then all its fan-in nodes are moved
to V1.
�
 pðna!b
i Þ: probability of net ni being removed from Cutset by moving all ni’s nodes in Va to Vb.
�
 pðna!b
i juÞ: probability of removing net ni from Cutset by moving nodes to Vb in the condition

that node u is originally in Va and then is moved to Vb.

�
 pðna!b

i jucÞ: probability of removing net ni from Cutset by moving nodes to Vb in the condition
that node u is originally in Vb and then stays in Vb.
�
 f ni
: fan-out node of net ni.
�
 SaðuÞ: set of successors of u in stage Va.

�
 AaðuÞ: set of ancestors of u in stage Va.

�
 Eaðni; njÞ: set of nodes in Va that are both in nets ni and nj. E.g., in Fig. 9, E1ðn5; n6Þ ¼ ; and

E2ðn5; n6Þ ¼ fv5g.

�
 NaðuÞ: set of u’s neighbors in Va.

�
 IðuÞ: set of nets which contain node u.

�
 MaðnÞ: set of nets that have common nodes with net n in Va. E.g., in Fig. 9, M1ðn5Þ ¼ fn4; n7g

and M2ðn5Þ ¼ fn2; n6g.

�
 eðna!b

i Þ: expected gain in the condition that net ni is moved from Va to Vb.

�
 enj

ðna!b
i Þ: expected gain contributed by nj in the condition that net ni is moved from Va to Vb.
�
 gðuÞ: gain of node u.

�
 gnj

ðuÞ: gain of node u contributed by nj.

ARTICLE IN PRESS

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265 259
According to the definitions of n1!2
i and n2!1

i , we have the following equations. For a C-type
net ni with node u, u 2 Va,

pðna!b
i juÞ ¼

Y
v2NaðniÞ	fug

pðvÞ

pðnb!a
i jucÞ ¼

Y
v2NbðniÞ

pðvÞ:

For an FF-type net ni with node u, 8v; v 2 V1 and v 2 ni,

pðn1!2
i juÞ ¼

1 if u ¼ f ni

0 otherwise

(

pðn1!2
i jucÞ ¼

pðf ni
Þ if uaf ni

0 otherwise

(

pðn2!1
i juÞ ¼ 0:

For an FF-type net ni with node u, f ni
2 V2,

pðn2!1
i juÞ ¼

Q
v2N2ðniÞ	ff ni

;ugpðvÞ if u 2 N2ðniÞ 	 ff ni
g

0 otherwise

(

pðn2!1
i jucÞ ¼

Q
v2N2ðniÞ	ff ni

gpðvÞ if u 2 N1ðniÞ

0 otherwise

(

pðn1!2
i juÞ ¼ 0:

Moving a net ni to some stage will affect the move of the other nets that have common nodes
with net ni. It is called the 2nd-order information [12]. Therefore, the expected gain for removing a
net from Cutset should be considered.

eðna!b
i Þ ¼

X
nj2MaðniÞ

enj
ðna!b

i Þ:

For two C-type nets ni and nj, ni \ nja;,

enj
ðna!b

i Þ ¼ cðnjÞpðn
a!b
j Þ

Y
v2Eaðni ;njÞ

pðvÞ

,
: ð7Þ

For a C-type net ni and an FF-type net nj, ni \ nja;,
(1) if f nj

2 V1,

enj
ðn1!2

i Þ ¼
cðnjÞ if E1ðni; njÞ ¼ ff nj

g

0 otherwise

(

enj
ðn2!1

i Þ ¼ 0:

ARTICLE IN PRESS

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265260
(2) if f nj
2 V2,

enj
ðn2!1

i Þ ¼

cðnjÞpðn
2!1
j ÞQ

v2E2ðni ;nj Þ
pðvÞ

if f nj
eE2ðni; njÞ

0 otherwise

8><
>:

enj
ðn1!2

i Þ ¼ 0:

For an FF-type net ni and a C-type net nj, ni \ nja;,

enj
ðn1!2

i Þ ¼
cðnjÞpðn

1!2
j Þ=pðf ni

Þ if f ni
2 nj

0 otherwise

(

enj
ðn2!1

i Þ ¼

cðnjÞpðn
2!1
j ÞQ

v2E2ðni ;nj Þ
pðvÞ

if f ni
enj

0 otherwise.

8><
>:

For two FF-type nets ni and nj, ni \ nja;,
(1) if f nj

2 V1,

enj
ðn1!2

i Þ ¼
cðnjÞ if f ni

¼ f nj

0 otherwise

(

enj
ðn2!1

i Þ ¼ 0:

(2) if f nj
2 V2,

enj
ðn2!1

i Þ ¼

cðnjÞpðn
2!1
j ÞQ

v2E2ðni ;nj Þ	ff ni
g
pðvÞ

if f nj
eni

0 otherwise

8><
>:

enj
ðn1!2

i Þ ¼ 0:

If net nj in the above cases is not in Cutset originally and moved into Cutset in condition of na!b
i ,

the term 	cðnjÞ should be incorporated into enj
ðna!b

i Þ. For example, two C-type nets ni and nj,
nj 2 Va,

enj
ðna!b

i Þ ¼ 	cðnjÞ þ cðnjÞpðn
a!b
j Þ

Y
v2Eaðni ;njÞ

pðvÞ

,
: ð8Þ

Using the above equations, we can compute gni
ðuÞ as follows:

(1) if ni is C-type,

gni
ðuÞ ¼ ðcðniÞ þ eðna!b

i ÞÞpðna!b
i juÞ 	 ðcðniÞ þ eðnb!a

i ÞÞpðnb!a
i jucÞ: ð9Þ

(2) if ni is FF-type,

gni
ðuÞ ¼ ðcðniÞ þ eðna!b

i ÞÞpðna!b
i juÞ 	 ðcðniÞ þ eðna!b

i ÞÞpðna!b
i jucÞ: ð10Þ

ARTICLE IN PRESS

Fig. 10. The 2nd phase of CPAT: PAT.

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265 261
Thus, the gain of a node u is given by

gðuÞ ¼
X

ni2IðuÞ

gni
ðuÞ: ð11Þ

The probability of a node represents the likelihood that the node will be moved. The node with
a greater gain has a higher probability to be moved. Thus, we can get the probability of a node by
a monotonically increasing mapping function of its gain. (In our experiments shown in the next
section, we used an increasing linear function.) It causes an interdependency between probabilities
and gains since we obtain the gains from probabilities of nodes as shown in the above equations.
To break this endless recursive relation, we give each node the probability 0.5 in our experiment.
Repeat computing gains and probabilities from each other until they are stable enough, and then
we have initial probabilities (line 6 in Fig. 10). In practice, three iterations are enough to reach a
stable state. The probability-based algorithm PAT is summarized in Fig. 10.

ARTICLE IN PRESS

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265262
3.3. The timing constraint

The speed of a TMFPGA is determined by the maximum execution time of a micro-cycle.
Therefore, we must reduce the longest path in a micro-cycle. In PAT, the lengths of the longest
paths in both stages are upper bounded by dD=2e, where D is the length of the longest path in the
circuit.
For a node v, let dOðvÞ denote the length of the longest path from v to primary outputs and dI ðvÞ

denote the length of the longest path from primary inputs to v. A node v cannot be put in V1 if
dI ðvÞ is more than dD=2e, because there will exist a path of length more than dD=2e from a
primary input to v in V1. For the same reason, a node v cannot be put in V2 if dOðvÞ is more than
dD=2e. According to the above rules, the nodes that may violate the timing constraint are fixed in
proper stages before the clustering phase.
4. Experimental results

The probability-based algorithm, PAT, and the clustering- and probability-based algorithm,
CPAT, were implemented in the Cþþ language on a PC with a Pentium II 300 microprocessor
and 128 MB RAM and tested on the MCNC Partitioning93 benchmark circuits. The
characteristics of the circuits are shown in Table 1. Columns 2 and 3 in Table 1 list the numbers
of nodes and nets, respectively, in each circuit. In Table 2, we compare PAT and CPAT. Columns
2, 3, and 4 in Table 2 compare the maximum numbers of micro registers. Columns 5–7 compare
the runtimes. The results show that PAT has performance for smaller circuits (e.g. the circuits size
are less than 6000 in the benchmark circuits) while CPAT obtain better results for larger circuits
(e.g. the circuits size are larger than 6000 in the benchmark circuits). It implies that the clustering
algorithm in CPAT leads to a considerable improvement as the size of a circuit increases over a
certain bound. In addition, the clustering algorithm in CPAT substantially reduces the problem
size and thus the runtime. However, the clustering algorithm bound some nodes into a cluster. In
the following probability-based algorithm, all nodes must be considered moving or not together in
a cluster. Therefore, the clustering algorithm in CPAT might break the connectivities of nodes and
nets when the circuit is small, in which the following probability-based algorithm might not be
able to get the sufficient information to find a better result.
Table 1

Benchmark circuit characteristics

Circuit No. of Nodes No. of Nets Circuit No. of Nodes No. of Nets

c3540 1038 1016 s9234 6098 5846

c5315 1778 1655 s13 207 9445 8653

c6288 2856 2824 s15 850 11071 10385

c7552 2247 2140 s35 932 19880 17830

s820 340 314 s38 417 25589 23845

s838 495 459 s38 584 22451 20719

s1423 831 750

ARTICLE IN PRESS

Table 2

Comparison between PAT and CPAT

Circuit Max No. of registers Runtime (s)

PAT CPAT Imprv. (%) PAT CPAT Imprv. (%)

c3540 126 152 	17.1 3 3 0

c5315 157 174 	9.8 11 4 +63.7

s820 43 61 	29.5 4 2 +50.0

s838 72 93 	22.6 1 1 0

s1423 106 120 	11.7 3 2 +33.3

s9234 430 402 +6.5 29 25 +13.8

s13 207 838 838 0 190 136 +28.4

s15 850 808 767 +5.0 163 104 +36.2

s35 932 2138 2018 +5.6 20 131 15 715 +21.9

s38 417 2628 2468 +6.0 1125 926 +17.7

s38 584 3611 1451 +59.8 1766 932 +47.2

Average 	0.7 +28.4

Table 3

Results for the 8-stages TMFPGA partitioning of the smaller circuits

Circuit Max No. of registers PAT Imprv. (%)

List FBP-m Ref. [7] PAT List FBP-m Ref. [7]

c3540 177 166 198 126 +28.8 +24.0 +33.4

c5315 265 165 140 157 +40.7 +5.1 	12.1

c6288 117 114 83 114 +2.6 0 	37.3

c7552 453 392 210 260 +42.6 +33.7 	23.8

s820 91 81 52 43 +52.7 +46.9 +17.3

s838 131 71 70 72 +64.8 	1.4 	2.9

s1423 130 120 101 106 +18.5 +11.7 	5.0

Average +35.8 +15.5 +1.0

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265 263
In Table 3 (Table 4), we compared the performance of the smaller (larger) circuits of PAT
(CPAT) with the approach in [7], the network-flow-based approach FBP-m [5], and the list
scheduling List [3,4] on the Xilinx TMFPGA model, in which a circuit was partitioned into eight
stages. The size of a stage is bounded by the balance factor 5% (the same as in [5]). Columns 2–5
list the maximum numbers of micro registers used by List, FBP-m, [7], and PAT, respectively.
Columns 6–8 list the percentages of improvements of PAT over List, FBP-m, and [7],
respectively. The results show that our PAT and CPAT algorithms outperform List and FBP-m
by respective average reductions of 35.8% (40.0%) and 15.5% (22.3%) in the maximum numbers

ARTICLE IN PRESS

Table 4

Number of registers needed for CPAT and the previous works of the larger circuits

Circuit Max No. of registers PAT Imprv. (%)

List FBP-m Ref. [7] CPAT List FBP-m Ref. [7]

s9234 640 502 381 402 +37.2 +19.9 	5.5

s13 207 1118 901 688 838 +25.0 +7.0 	21.8

s15 850 1070 877 761 767 +28.3 +12.5 	0.8

s35 932 3806 2950 2729 2018 +47.0 +31.6 +26.1

s38 417 3546 2892 2194 2468 +30.4 +14.7 	12.5

s38 584 5131 2796 2280 1451 +71.7 +48.1 +36.4

Average +40.0 +22.3 +3.7

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265264
of micro registers required, and comparable to the algorithm in [7]. It implies that the probability-
based scheme is effective in reducing the interconnection for TMFPGAs.
5. Conclusion

We have presented the probability-based algorithm PAT for the TMFPGA partitioning
problem. Experimental results have shown that our probability-based algorithm outperforms the
previous works, the List scheduling and the network-flow-based method, by significant margins.
Furthermore, we can further improve the results for large circuits and runtimes for all circuits by
incorporating a clustering algorithm into PAT.
Acknowledgements

The authors would like to thank Dr. Huiqun Liu for providing the benchmark circuits and
helpful discussions on [5] and Prof. Ting-Chi Wang for his constructive comments.
References

[1] S. Trimberger, A time-multiplexed FPGA, in: Proceedings of FCCM, 1997, pp. 22–28.

[2] N.B. Bhat, et al., Performance-oriented fully routable dynamic architecture for a field programmable logic device,

Memorandum No. UCB/RELM93/42, UC Berkeley, 1993.

[3] D. Chang, M. Marek-Sadowska, Buffer minimization and Time-multiplexed I/O on dynamically reconfigurable

FPGAs, in: Proceedings of the FPGA Symposium, 1997, pp. 142–148.

[4] D. Chang, M. Marek-Sadowska, Partitioning sequential circuits on dynamically reconfigurable FPGAs, IEEE

Trans. Comput. (1999) 565–578.

[5] H. Liu, D.F. Wong, Network flow based circuit partitioning for time-multiplexed FPGAs, in: Proceedings of

ICCAD, 1998, pp. 497–504.

ARTICLE IN PRESS

G.-M. Wu et al. / INTEGRATION, the VLSI journal 38 (2004) 245–265 265
[6] H. Liu, D.F. Wong, A graph theoretic optimal algorithm for schedule compression in time-multiplexed FPGA

partitioning, in: Proceedings of ICCAD, 1999, pp. 400–405.

[7] W.K. Mak, F.Y. Young, Temporal logic replication for dynamically reconfigurable FPGA partitioning, in:

Proceedings of ISPD, 2002, pp. 190–195.

[8] C.M. Fidducia, R.M. Mattheyses, A linear-time heuristic for improving network partitions, in: Proceedings of

DAC, 1982, pp. 175–181.

[9] B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs, Bell System Technol. J. 49 (1970)

291–307.

[10] J. Cong, et al., Large scale circuit partitioning with loose/stable net removal and signal flow based clustering, in:

Proceedings of ICCAD, 1997, pp. 441–446.

[11] T.H. Cormen, C.E. Leiserson, R.L. Rivest, in: Introduction to Algorithms, The MIT Press, Cambridge, MA, 1990,

pp. 951–983.

[12] S. Dutt, W. Deng, Partitioning using second-order information and stochastic-gain functions, in: Proceedings of

International Symposium Physical Design, 1998, pp. 112–117.

	A clustering- and probability-based approach for �time-multiplexed FPGA partitioning
	Introduction
	Problem formulation
	The two-phase CPAT algorithm
	Phase I: the clustering algorithm
	Phase II: the probability-based algorithm
	Iterative-improvement approach
	The precedence constraint
	Gains of nodes

	The timing constraint

	Experimental results
	Conclusion
	Acknowledgements
	References

