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ABSTRACT
Motivation: Chromatin states are key to gene regulation and
cell identity. Chromatin immunoprecipitation (ChIP) coupled with
high-throughput sequencing (ChIP-Seq) is increasingly being used
to map epigenetic states across genomes of diverse species.
Chromatin modification profiles are frequently noisy and diffuse,
spanning regions ranging from several nucleosomes to large domains
of multiple genes. Much of the early work on the identification
of ChIP-enriched regions for ChIP-Seq data has focused on
identifying localized regions, such as transcription factor binding
sites. Bioinformatic tools to identify diffuse domains of ChIP-enriched
regions have been lacking.
Results: Based on the biological observation that histone
modifications tend to cluster to form domains, we present a method
that identifies spatial clusters of signals unlikely to appear by chance.
This method pools together enrichment information from neighboring
nucleosomes to increase sensitivity and specificity. By using
genomic-scale analysis, as well as examination of loci with validated
epigenetic states, we demonstrate that this method outperforms
existing methods in the identification of ChIP enriched signals for
histone modification profiles. We demonstrate the application of this
unbiased method in important issues in ChIP-Seq data analysis,
such as data normalization for quantitative comparison of levels of
epigenetic modifications across cell types and growth conditions.
Availability: http://home.gwu.edu/∼wpeng/Software.htm
Contact: wpeng@gwu.edu

1 INTRODUCTION
Covalent modifications of chromatin, including DNA methylation
and histone modifications, play critical roles in gene regulation
and cell lineage determination and maintenance (Felsenfeld and
Groudine, 2003; Bernstein et al., 2007). Defects in these epigenetic
controls have been implicated in many pathological conditions in
humans. Genome-scale profiling of these epigenetic marks has been
dramatically facilitated by the recent progress in the ultra high-
throughput massively-parallel sequencing technologies (Barski
et al., 2007; Mikkelsen et al., 2007). ChIP-Seq combines chromatin

∗to whom correspondence should be addressed

immunoprecipitation (ChIP) with high-throughput sequencing to
map genome-wide chromatin modification profiles and transcription
factor binding sites. It is characterized by high resolution, a
quantitative nature, cost effectiveness and no complication due to
probe hybridization as encountered in ChIP-chip assays (Schones
and Zhao, 2008). A large amount of data has recently been generated
using the ChIP-Seq technique, and these data sets call for new
analysis algorithms.

Binding of transcription factors (TFs) is mainly governed by
their sequence specificity and therefore is typically associated with
very localized ChIP-Seq signals in the genome. A number of
algorithms have been developed to find the exact locations of
transcription factor binding sites from ChIP-Seq data (Johnson
et al., 2007; Chen et al., 2008; Jothi et al., 2008; Fejes et al.,
2008; Valouev et al., 2008; Zhang et al., 2008a; Ji et al., 2008;
Kharchenko et al., 2008; Nix et al., 2008; Rozowsky et al., 2009).
In contrast, the signals for histone modifications, histone variants
and histone-modifying enzymes are usually diffuse and lack of well-
defined peaks, spanning from several nucleosomes to large domains
encompassing multiple genes (Barski et al., 2007; Wang et al., 2008;
Pauler et al., 2009; Wen et al., 2009) (see, e.g., Figure S1). The
detection of diffuse signals often suffers from high noise level and
lack of saturation in sequencing coverage. These generally weak
signals render approaches seeking strong local enrichment, such
as those peak-finding algorithms used in finding TF binding sites,
inadequate.

Many modification marks are known to form broad domains (Barski
et al., 2007; Wang et al., 2008). This is believed to be helpful in
stabilizing the chromatin state and propagating such states through
cell division robustly (Bernstein et al., 2007). A well-studied
case is the trimethylation of histone H3 lysine 9 (H3K9me3).
H3K9me3 recruits HP1 via its chromodomain. HP1 in turn
recruits H3K9 methyltransferase Suv39h, which modifies H3K9
on other histones in the vicinity, thereby self-propagating the
heterochromatin state (Aagaard et al., 1999; Bannister et al., 2001;
Lachner et al., 2001). Another example is the trimethylation of
histone H3 lysine 27 (H3K27me3). H3K27me3 is generated by
the activity of the Polycomb complex, PRC2, and is believed
to recruit the PRC1 complex (Schwartz and Pirrotta, 2007). In
Drosophila, it has been suggested that the spreading of H3K27me3
results from looping action of PRC1 and PRC2 that both anchor
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at the polycomb response elements (Schwartz and Pirrotta,
2007) with nucleosomes at a distance. Recent experiments in
human cells indicate direct recruitment of PRC2 by H3K27me3
(Hansen et al., 2008), suggesting a mechanism for the spreading
of H3K27me3. In addition to histone methylation, the more
dynamic histone acetylation marks also cluster, and several histone
acetyltransferases contain bromodomains that specifically bind
acetylated histones (Jacobson et al., 2000; Owen et al., 2000; Dodd
et al., 2007).

Motivated by the mounting evidence of recruitment by modified
histones of their respective enzymes, we develop a spatial clustering
approach for the identification of ChIP-enriched regions (SICER) in
histone modification data. A central feature of our method is pooling
together signals from all the nucleosomes located together in the
same modification state. This feature improves the signal to noise
ratio and is especially helpful in dealing with the difficult case of
diffuse enrichment covering extended genomic regions produced by
histone modifications, for which enrichment at any short distance of
one or several nucleosomes does not appear to be significant enough.

Our method involves scoring each potential ChIP-enriched
domain according to the collective profile of enrichment on
the domain. We developed a mathematical theory for the score
distribution in a genomic background model of random reads,
and employed this theory to identify spatial clusters, large and
small, unlikely to appear by chance. Utilizing a control library,
we identified a set of candidate domains that exhibit ChIP signal
clustering using the random background model, and compare the
strength of the ChIP signal with that of the control signal at each
candidate domain to determine the significance of enrichment.
Using a scaling approach for evaluation of false positives that
is based on the digitized nature of ChIP-Seq data, and two
data sets with experimental validation, we demonstrated that
SICER outperforms other ChIP-Seq methods in dealing with
histone modification data. Furthermore, we demonstrated its use
as an unbiased general noise filter in such important issues in
the statistical analysis of ChIP-Seq data as data normalization,
and scaling analysis of sequencing coverage (see supplementary
material).

2 METHODS

2.1 The island approach
Scoring scheme We partition the genome of effective length L into non-
overlapping windows of size w. We define the score s for a window with
l reads to be s(l) = − log P (l, λ). P (l, λ) is a Poisson distribution
parameterized by the average number of reads in a window λ = wN/L,
where N is the total number of reads in the ChIP-Seq library. Given this
definition, the scores of a window represents the negative logarithm of the
probability of finding l reads in the window if the reads can land anywhere
on the genome with equal probability, i.e., a background model of random
reads. The scores from clusters of windows are additive, representing the
negative logarithm of joint probability of finding the observed configuration
in a random background model. The higher the score, the less likely the
observed profile occurs by chance.

Island definition We assign each window as “eligible” (“ineligible”), if
the read count in this window is equal to or above (below) a read-count
threshold l0. We determine l0 by a p-value requirement based on a Poisson
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Fig. 1. (a) Schematic illustration of definition of islands. Shown is a segment
of a genomic landscape of ChIP-Seq reads. The x-axis denotes the genome
coordinates, where each interval represents a window. The y-axis denotes the
read count. Each black vertical bar represents the read count in the respective
window. The regions underlined by the green horizontal bars are the two
identified islands under g = 1 and l0 = 2. The two windows underlined
by brown boxes are gaps in the first island. (b) Schematic illustration of the
recursion relation Eqn. 6.

distribution. ∞∑

l=l0

P (l, λ) ≤ p0. (1)

Therefore l0 depends on the size of the ChIP-Seq library. The “eligible”
windows are separated by gaps, which are the collection of “ineligible”
windows in between two neighboring “eligible” windows. A gap of size
m contains m “ineligible” windows. We identify islands as clusters of
“eligible” windows separated by gaps of size less than or equal to a
predetermined parameter g. When g = 0 , an island is formed by an
uninterrupted stretch of “eligible” windows. The score of an island is the
aggregate score of all “eligible” windows on this island. An illustration of
the definition of islands is shown in Figure ??.

Recursion relation for the probability of an island with a given score
in a random background To derive the island score statistics in a random
background model we seek the probability M(s) of finding an island of
score s starting at a given position along the genome. Because of the
enormous amount of reads in total and enormous length of the genome,
the read count distributions in different windows are independent. We first
introduce the probability distribution of scores for a single window

ρ (s) =
∑

l≥l0

δ (s− s (l))P (l, λ) , (2)

where δ() is a Dirac delta function. We then consider the gap contribution.
The fundamental unit of a gap is an “ineligible” window, and the probability
t of a window being “ineligible” is

t = P (0, λ) + P (1, λ) + · · ·+ P (l0 − 1, λ). (3)

The number of “ineligible” windows in a gap ranges from zero up to g. The
gap factor G therefore is

G = 1 + t + t2 + · · ·+ tg . (4)
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M(s) depends on λ, l0 and g via ρ (s), t and G. Because an island has
to be bound by gaps of sizes of at least g + 1, M(s) can be separated by
boundary contributions and a kernel M̃ (s),

M (s) = tg+1M̃ (s) tg+1. (5)

The island score can be partitioned between the last “eligible” window and
the rest in a combinatorial manner, as illustrated in Figure ??, therefore a
recursion relation can be constructed for the kernel M̃ (s):

M̃ (s) = G (λ, l0, g)

s∫

s0

ds′M̃
(
s− s′

)
ρ(s′), (6)

with a boundary condition of M̃ (0) = G (λ, l0, g)−1. Here s0 =
− ln P (l0, λ).

We are interested in the islands with high scores generated by large
fluctuations in the random placement of the reads. Because the occurrences
of those islands are rare and hence essentially independent, the number of
islands of score s is simply LM(s).

Asymptotics for the island-score distribution in a random background
Eqns. 5 and 6 provide a recursive method to calculate the probability of high-
scoring islands. Since the high-score tail of the island score distribution is of
fundamental interest, it is useful to obtain an analytical expression in closed
form for its asymptotic behavior. Anticipating the asymptotic behavior to be
that of an exponential decay, we plug the ansatz M̃ (s) = α exp (−βs)
into Eqn. 6. Straight forward algebra leads to an equation that determines
the exponent β,

G (λ, l0, g)
∑

l≥l0

P (l, λ)1−β = 1. (7)

The coefficient α in the ansatz can be found by fitting.
To validate the analytical approaches (Eqns. 5, 6 and 7) for the random

background model, we employed Monte Carlo simulation to synthetically
generate the random reads, identified islands, and counted islands with score
greater than s averaged over multiple simulation runs. We then compared
that with the expected number of islands with score greater than s in
the background,

〈∑
s′≥s N(s′)

〉
B
≈ ∑

s′≥s LM(s′), obtained using

analytical approaches. We found excellent agreement(see Figure S2). It is
worth noting that the background island-score distribution approaches its
asymptotic form quickly.

Significance determination without control library The island-score
distribution in a random background model allows the determination of a
threshold score value sT , which is used in an experimental library to find
islands significant enough to be designated ChIP-enriched domains. sT is
determined by requiring the expected number of islands with scores above
the threshold sT to be less than a E-value threshold e :

∑

s≥sT

LM(s) ≤ e. (8)

The E-value controls the genome-wide error rate of identified islands under
the random background.

Choices of parameters The random background island-score distribution
depends on window size w, effective genome length L, total read count
N , gap size g and a window p-value requirement p0, which determines
the window read-count threshold l0. For histone modifications and histone
variants, a reasonable choice for window size w is 200 bp, a number
approximately the length of a single nucleosome and a linker. The effective
genome length L is different from the actual genome length. When short
reads are mapped into the reference genome, normally only those that map
to unique genomic loci are selected for analysis. Genomic regions with
degenerate sequences or sequences composed of character “N” are non-
mappable as no reads can be unambiguously mapped into these regions.
L therefore should be chosen as the total length of mappable regions in
the genome. The window p-value requirement p0 should be such that
the “eligible” windows exhibit enrichment (i.e., l0 ≥ λ). On the other
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Fig. 2. Aggregate score of all significant islands vs gap size for H2A.Z
(black) and H4K20me1 (red). The gap size is measured in units of windows.
Here l0 = 2, E-value is 0.1.

hand, l0 should not be too high as the “eligible” windows need not exhibit
very strong signals. p0 = 0.2 is a reasonable choice. The gap size g is
an important parameter that can be adjusted to the characteristics of the
chromatin modification. To study the effect of gap size, we examine how
the aggregate score of all significant islands changes as g is tuned, as shown
in Figure 2. H2A.Z is representative of localized signals. The aggregate
score quickly reaches maximum at g = 1, beyond which the potential
increase in the island coverage due to a bigger gap can not overcome the
loss of small islands due to the increase in the island score threshold sT .
For this type of chromatin modification, it is natural to choose the gap size
that maximizes the aggregate score. On the other hand, H4K20me1 shows
the typical behavior of chromatin modifications with a diffuse profile. The
aggregate score increases gradually towards saturation for reasonable gap
sizes. For this type of signal, we suggest to choose the gap size so that the
corresponding aggregate score is sufficiently close to saturation. As shown
in Figure S3, lack of saturation in the aggregate score as a function of the gap
size is in general an indication of poor sequencing coverage. Figure S3 shows
the length distribution of significant islands for H2A.Z and H4K20me1, with
the gap sizes determined as described above.

Significance determination with control library First, we use a lenient
E-value threshold to identify a set of candidate islands that exhibit reads
clustering under the random background model. Then, for each candidate
island, we count the number of ChIP reads ns and control reads nc , and
calculate a p-value as

∑∞
n=ns

P (ns, cnc), where c is the rescaling factor
that is equal to the ratio of the ChIP library size over the control library
size (c = Ns/Nc). Candidate islands with ns ≤ cnc are discarded
because we are only interested in enrichment. The significant islands can be
identified with a p-value threshold using Bonferroni correction for multiple
testing. Alternatively, a false discovery rate (FDR) can be calculated by
following standard procedure (Benjamini and Hochberg, 1995; Benjamini
and Yekutieli, 2001) from the p-values, or by swapping the ChIP and control
libraries (Zhang et al., 2008a). For a flowchart of SICER, see Figure S5.
For a comparison of enrichment regions identified with and without control
library, please see Figure S6.

2.2 Data sets and method parameters
The ChIP-Seq data for histone modifications H4K3me3 and H3K27me3
in human resting CD4+ T-cells were obtained from (Barski et al., 2007;
Wang et al., 2008). The ChIP-Seq data for histone modifications H4K3me3
and H3K27me3 in mouse embryonic stem (ES) cell, the whole-cell-extract
(WCE) control library, and the real-time PCR (QPCR) results for H3K4me3
and H3K27me3 at 60 loci, were obtained from (Mikkelsen et al., 2007).
In the QPCR data, loci with QPCR fold-change value above (below) 4 were
treated as positives (negatives). Based on this criterion, there are 32 positives
and 28 negatives in the data set. The histone modification libraries for the
human CD133+ and CD36+ cells were obtained from (Cui et al., 2009).
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The histone modification data for mouse Th1, Th2, Th17 CD4+ T-cells were
obtained from (Wei et al., 2009). The IgG control library for the human
resting CD4+ T-cells and “input” control libraries for the human CD133+

and CD36+ cells are available at the web site for SICER.
For all ChIP-Seq libraries presented here, only uniquely mapped reads

were used and all libraries were pre-processed to filter out redundant reads
in an effort to minimize potential PCR bias. The window size was chosen to
be 200 bp (see above). Most of the reads in the libraries we used are 25bp,
so we chose the effective human genome size as 74.3% of human genome
size in hg18 and 77% for the mouse genome (Smith, 2008).

For SICER, in all libraries except for those from (Mikkelsen et al., 2007),
the location of a read on positive (negative) strand was shifted by + 75 bp
(−75 bp) from its 5′ start to represent the center of the DNA fragment
associated with the read, because the majority of the data are produced with
ChIP DNA fragment size of mono-nucleosome, i.e., ≈ 150bp. The shift
value for the mouse ES ChIP-Seq libraries (Mikkelsen et al., 2007) was
found to be 150bp. Based on analysis and discussion described above, The
window p-value p0 = 0.2. The gap size is chosen to be g = 1 for H2AZ and
H3K4me3 and g = 3 for other histone modification libraries, unless noticed
otherwise.

We used four methods in comparison: QuEST (Valouev et al., 2008)
version 2.1, F-Seq (Boyle et al., 2008) version 1.8.3, MACS (Zhang et al.,
2008a) version 1.3.5, and FindPeaks (Fejes et al., 2008) version 3.2.2.3. The
details of the parameters used are summarized in the supplementary material.

For ChIP-Seq libraries in human resting CD4+ T-cells, an IgG library was
used as control. For H3K4me3 and H3K27me3 libraries in mouse ES cells,
an WCE library was used as control. For the H3K27me3 libraries in mouse
CD4+ T-cell lineages, no control library was available, the no control option
was used. FindPeaks (3.2.2.3) and F-Seq (1.8.3) do not use a control library.

3 RESULTS
3.1 Overview and evaluation of SICER
We have developed an unbiased method that incorporates the
tendency of histone modifications to cluster to form domains. This
method identifies islands as clusters of enriched windows. Islands,
rather than individual windows of fixed length, are the fundamental
units of interest. Gaps are allowed in the island to account for 1) lack
of reads or read-count fluctuations in ChIP-enriched domains in
under-saturated ChIP-Seq libraries; 2) repetitive genomic regions
non-mappable by uniquely mapped reads; and 3) unmodified
nucleosomes. The gap size can be adjusted to the nature of the
chromatin modification. The score of an island is associated with
the entire enrichment profile on the island, rather than just the peak
value. We develop mathematical formula for the distribution of
island scores in the random background model. In the case that a
control library is not available, we identify significant domains of
enrichment as islands unlikely to appear by chance in the random
background model. We use an E-value, the expected number of
significant islands in the background, to control significance. We
derive mathematical formula for fast and precise determination of
significance. As the sequencing of a control library is quickly
becoming the standard protocol, more and more ChIP-Seq data
come with a control library. We then use the control library to
take into account systematic biases in the background (Zhang et al.,
2008a; Kharchenko et al., 2008; Rozowsky et al., 2009). Motivated
by (Zhang et al., 2008a; Rozowsky et al., 2009), we first identify
a set of candidate islands exhibiting reads clustering using the
approach described above (i.e., using a random background model)
with a lenient E-value threshold. We then compare the ChIP read-
count and control read-count on each candidate island to determine
the significance of enrichment, with the control read-count rescaled

to account for the size difference in the control library and the ChIP
library. For a flowchart of SICER, see Figure S5.

A number of methods that aim towards finding peaks in ChIP-
Seq data have been published. In SISSRs (Jothi et al., 2008),
QuEST (Valouev et al., 2008), MACS (Zhang et al., 2008a),
CisGenome (Ji et al., 2008), USeq (Nix et al., 2008) and others
(Johnson et al., 2007; Zhang et al., 2008b; Albert et al., 2008;
Kharchenko et al., 2008), the genome is scanned with a sliding
window of fixed width, all windows deemed to have significant
enrichment are identified, and neighboring significant windows
can be merged. In PeakSeq (Rozowsky et al., 2009), counts of
overlapping DNA fragments at each nucleotide position are used to
build a score map and positions with significant scores are identified.
An essential feature shared by these methods is the use of local
statistics to estimate significance. The significance of an enriched
window or a position is independent of those of other windows
or positions. It is determined from a random background model
of window read count distribution (Jothi et al., 2008; Fejes et al.,
2008), from a non-random background model (Ji et al., 2008; Zhang
et al., 2008b), or from comparison with a control library (Johnson
et al., 2007; Jothi et al., 2008; Zhang et al., 2008a; Valouev et al.,
2008; Ji et al., 2008; Nix et al., 2008; Rozowsky et al., 2009;
Kharchenko et al., 2008).

Published methods for the analysis of histone modification data
are limited. Mikkelsen et al. (Mikkelsen et al., 2007) employed
local statistics in combination with an empirical background model
obtained by randomizing read locations for the identification of
ChIP-enriched regions for histone modifications with punctate
profiles. They also employed a hidden Markov model approach,
the details of which have not been published as far as we know.
Xu et al. (Xu et al., 2008) developed a hidden Markov model
approach for the identification of differential histone modification
sites across cell-types or conditions. However, it does not provide a
method for the identification of ChIP enrichment in a single library.
For two ChIP libraries under comparison, a window is deemed
to be significantly enriched when the combined normalized read
counts from the two libraries exhibit at least a two-fold enrichment
versus random expectation. Robertson et al. (Robertson et al., 2008)
used FindPeaks (Fejes et al., 2008) to identify domains of histone
modification. FindPeaks defines an island as a region occupied
by continuously overlapping ChIP DNA fragments. For its basic
functionality, it uses the height of an island, defined as the maximum
overlapped fragment count on the island, as the test statistic (Fejes
et al., 2008; Robertson et al., 2008). FindPeaks uses non-local
statistics, as the significance of any part of the island depends on
the peak height of the whole island. Additionally, Boyle et al.
developed F-Seq (Boyle et al., 2008), a kernel-density method for
identification regions of open chromatin from DNase-seq data.

For performance comparison with SICER, we chose MACS,
QuEST, FindPeaks and F-Seq for reasons detailed below. MACS
is a window-based method using local statistics. We chose MACS
because it has been reported to outperform several other methods
in identification of TF binding sites (Zhang et al., 2008a), and
because MACS uses regional averaging to mitigate the sampling
fluctuations in the control library, which is usually severe because
of limited sequencing depth in control libraries. We chose QuEST
for comparison because this method is based on kernel density
estimation. FindPeaks was chosen for comparison because it
employs non-local statistics and has been used in analysis of
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histone modification data. F-Seq was chosen because it was
designed to analyze DNase-seq data and DNase-seq data should
have characteristics in common with histone modification ChIP-Seq
data.

We conducted each comparison in two steps. We first evaluated
the genome-wide false discovery rate of each method using a
scaling approach. Second, we sought sets of genomic loci where
independent experimental validations exist. While available data in
this regard are quite limited, we were able to obtain two data sets:
1) A set of signature cytokine genes in the mouse CD4+ T-cells
whose epigenetic states in the cell differentiation processes had been
subject to functional studies (Wei et al., 2009; Koyanagi et al., 2005;
Schoenborn et al., 2007). 2) A set of 60 QPCR results for histone
modifications in mouse ES cells at a selected group of genomic
loci (Mikkelsen et al., 2007).

Evaluation of prediction robustness via scaling analysis
Unlike transcription factor binding sites, the enriched domains
of histone modifications lack definitive sequence features. Direct
bioinformatic validation of method predictions at the genome-scale
is not feasible. Taking advantage of the digitized characteristics of
ChIP-Seq data, we argue that the true and false positives can be
distinguished by scaling. Namely, if an identified ChIP-enriched
domain deemed significant by a method is a true signal, then
this domain should remain significant when the sequencing depth
is increased. Conversely, if an identified ChIP-enriched domain
deemed significant becomes insignificant when sequencing depth
is increased, then this particular domain is a false positive. To
evaluate the various methods, we took a H3K27me3 library (≈16.3
million reads after preprocessing) in human CD4+ T-cells, and
constructed a subset of half the original size via random sampling.
Because QuEST did not identify any ChIP-enriched regions under
its default parameters for histone modification data, we drop it from
the method comparison from this point on. With each of remaining
three methods, we identify ChIP-enriched domains in both the full
size library and the half-size subset, under the same statistical
criterion (p-value for MACS and SICER, E-value for FindPeaks,
”threshold” for F-Seq). The significant domains identified using the
half-size library that do not overlap with any significant domains
in the full size library are considered false positives. We defined a
scaling FDR as the number of false positives divided by the number
of significant islands in the half-size subset (see Figure 3(a)). Since
the statistical criterions used by different methods are not directly
comparable, we used the island read-count coverage, the fraction
of reads that were within the identified significant domains, as a
common ground for fair comparison. As shown in Figure 3(b), for
a range of island read-count coverage that covers all reasonable
choices of statistical significance levels, the scaling FDR for SICER
is significantly lower than those for MACS, FindPeaks and F-Seq.
We ran multiple random samplings from the full-size library and
found that the result is independent of sampling (data not shown),
as expected from the large sample size.

Receiver operating characteristic (ROC) analysis using loci
of signature cytokines Cell differentiation involves commitment
of featured lineage and extinction of other fates, in which the
epigenetic state plays a key role (Bernstein et al., 2007). Upon
antigen and cytokine stimulation, multipotential naive CD4+ T
cells differentiate into distinct lineages including Th1, Th2 and
Th17, whose signature cytokines are Ifn-γ, Il4, Il17 respectively.
Previous studies have demonstrated that the signature cytokines
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Fig. 3. Comparison of SICER with other methods. (a) Schematic illustration
of the scaling FDR determination. The dark (light) grey circle represent
ChIP-enriched regions identified in the full (half-size) library. The non-
overlapping area of the light-grey circle represents the false positives.
(b) FDR vs the island read count coverage. (c) ROC analysis of using the
epigenetic states at genes encoding signature cytokines in mouse CD4+ cell
Th1, Th2 and Th17 lineages. (d) ROC analysis of H3K4me3 and H3K27me3
in mouse ES cells.

are only associated with active epigenetic marks (H3K4me3) in
featured lineages, and only associated with repressive epigenetic
marks (H3K27me3) in the opposing lineages (Koyanagi et al.,
2005; Schoenborn et al., 2007). For this data set we focused on
the diffuse H3K27me3 signal. The performance of the methods on
identifying localized signal was examined subsequently utilizing the
QPCR data set. The expected H3K27me3 enrichment state at Ifn-
γ locus is (0, 1, 1), where we used 0 (1) to represent the absence
(presence) of H3K27me3 in Th1,Th2,Th17 cells. Similarly, at Il4
locus (1, 0, 1) is expected and at Il17 locus (1, 1, 0) is expected.
For reference, the unfiltered H3K27me3 profiles at the three loci,
along with the H3K4me3 profiles, are shown in Figure S7. Taken
together, these three loci in the three cell-types present 6 positives
and 3 negatives for H3K27me3 signals. We then used each method
to identify the ChIP-enriched regions in the H3K27me3 ChIP-
Seq libraries and used ROC curves to present the findings, as
shown in Figure 3(c). This ROC analysis demonstrated that SICER
outperforms MACS and FindPeaks. Both SICER and F-Seq are able
to correctly identify every state in the pattern. The area under the
ROC curve is ASICER=1, AMACS = 0.917, AFindPeaks = 0.972
and AF−Seq = 1, respectively.

ROC analysis using QPCR data Having evaluated the
performance of the methods on diffuse data, we examined their
performances on data with localized modification signals. In mouse
ES cells, not only H3K4me3 but also H3K27me3 signals have
been observed to be largely punctate (Mikkelsen et al., 2007). We
used the QPCR data set in combination with the H3K4me3 and
H3K27me3 ChIP-Seq data from Mikkelsen et al. (2007) to measure
specificity and sensitivity. The resulting ROC curve is shown in
Figure 3(d). All four methods performed fairly well with this data
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Fig. 4. Composite histone modification profiles across genic regions in
human CD133+ (red) and CD36+ (green) cells. The figures in the left
(right) panel are made with all reads in the library (only reads on islands,
which are identified using “input” library as control).

set, with the area under the ROC curve being ASICER=0.9810,
AMACS = 0.9677, AFindPeaks = 0.9810 and AF−Seq = 0.9978,
respectively.

3.2 ChIP-Seq data normalization
Because of the important role of epigenetics in development
and pathological conditions, application of ChIP-Seq to the
study of changes in chromatin states in different cell types,
developmental stages and pathological conditions are increasingly
wide spread (Mikkelsen et al., 2007; Cui et al., 2009). In
those settings, quantitative comparisons of signal levels provides
important information about the underlying biological principle.
For the signal levels to be compared appropriately, the data needs
to be normalized to account for the differences in experimental
preparations and instrumental conditions. This is similar to the
situation encountered in gene expression measurement using
microarrays (Quackenbush, 2002). SICER can be used to filter
out background noise by removing reads not on the islands.
We applied this idea to quantitative comparison of modification
levels in differentiation from human hematopoietic stem/progenitor
CD133+ cells to the erythrocyte precursor CD36+ cells. Because
the majority of genes exhibit similar expression patterns between
the two cell types (Cui et al., 2009), the overall modification
profiles are expected to be similar between CD133+ and CD36+.
However, the modification profiles obtained using all the mapped
reads, including both tags in the islands and out of islands, show
dramatic differences between these two cell types (Figure 4 left
column). Interestingly, the profiles using tags only in the islands
show similar patterns (Figure 4 right column). We further classified
the genes into four groups according to their expression pattern
during differentiation (Cui et al., 2009): (1) always expressed (9196
genes); (2) always silent (7420 genes); (3) repressed (934 genes);
and (4) induced (306 genes). The unfiltered and filtered composite
profiles were compared side by side for each group. The majority of
genes belong to the groups of always expressed genes and always
silent genes. For these two groups, the modification profiles are not
expected to show significant changes. Indeed, the filtered profiles

of each modification for the two cell types are similar, whereas
many unfiltered counterparts showed dramatic differences (Figures
S8 and S9). In the groups of repressed and induced genes, the
dynamical change in filtered profiles of modifications are more
consistent with their known biological functions (Figures S10 and
S11). In Figure 4, the islands were identified with p-value of 10−10.
To check how normalization depends on the choice of parameters
in island identification, we also experimented with different choices
of p-value (10−3, 10−5 and 10−15), and gap size (2 instead of 3),
the salient features did not change (data not shown). These results
indicate that filtering with islands is a reliable method for data
normalization in quantitative comparison of histone modification
profiles.

4 DISCUSSION AND CONCLUSION
ChIP signals from many histone modifications, histone variants and
histone-modifying enzymes form diffuse, broad domains. Based
on the notion that the establishment of many histone modifications
involves positive feedback resulting in the spreading of modified
nucleosomes, we develop the SICER method that takes into account
of the enrichment context of a local window in determining its
significance. In contrast, in local-statistics based algorithms, the
significance of a local window is independent of other regions (see
Figure S13 for illustration). When a control library is available,
we use the random background model to identify candidate islands.
These candidate domains of variable lengths, rather than windows
of fixed lengths, serve as the units for enrichment detection. We then
use the control library to determine the significance of enrichment
for these domains. The fact that the size of the candidate islands are
in general much larger than the size of a nucleosome (see Figure
S4) helps reduce the sampling fluctuations in the control library
and enables more accurate determination of the position-dependent
background level. An alternative approach would be to determine
the island-score distribution in an inhomogeneous background
model specified by the control library. One can obtain via Monte
Carlo simulation the island-score distribution in this inhomogeneous
background, which provides a global statistics for the significance
of the islands. Despite the advantages, this approach requires an
accurate determination of the inhomogeneous background at the
level of individual windows. It would be interesting to explore how
the sequencing depth of the control library affects the performance
of the different approaches.

Using both genome-scale analysis and data sets of genomic loci
validated experimentally, we demonstrated that SICER compares
favorably with existing methods at identifying ChIP-enriched
domains in histone modification signals, especially those with
diffuse profiles. We also demonstrated the success of this method
in normalization and sequence saturation analysis, which are
useful tools for statistical analysis of ChIP-Seq data. As genomic
landscapes of chromatin modifications are becoming increasingly
available, methods such as SICER will be absolutely essential in
deciphering the functions of chromatin modifications.
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Figure S1:  (a) The profile of H3K27me3 in human CD4+   resting T cells in a genomic region on 
chromosome 11.  (b)  A zoom-in profile of a sub-region in (a).  In (b) the length scale for the profile is 
100Kbp. For H3K27me3 profiles at much finer scale, see Figure S5.   
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Figure S2: Comparison of cumulative score distributions of islands formed by randomly placed 

reads. The x-axis (y-axis) denotes the score of an island (the number of islands with scores above the 

x-value). The black line represents the result obtained using the recursion relation from Eqns. (4) 

and (5). The green line represents the result obtained using asymptotic approximation (Eqn.(6)) and 

α is obtained by fitting. The violet dots represent the average result of Monte Carlo simulation of 

10000 runs. Here N=6 105, L=2 108 bp, w=200 bp, g=2, l0 = 2.  
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Figure S3: The effect of sequencing depth on the choice of gap size.  Shown is the relative aggregate 
score of significant islands versus the gap size for H4K20me1 in human CD133+ cells.  The black 
curve used all 7.25 million reads in the H4K20me1 library for islands identification, whereas the red 
curve used  only 2 million reads randomly sampled from the the H4K20me1 library. In each curve, 
the aggregate score for significant islands at each gap size was normalized by the aggregate score at 
g=0. The black curve reaches saturation much faster than the red curve, indicating the importance of 
sequencing coverage in the choice of gap size. Here E-value is chosen to be 0.1. 
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Figure S4: The distribution of lengths of significant islands for H2A.Z and H4K20me1 in human 
CD133+ cells. The H4K20me1 islands are much more diffuse than the H2A.Z islands. Here E-value is 
chosen to be 0.1. g=1(3) for H2A.Z (H4K20me1).  

 

 



Details of the parameters for the methods used for comparison 
All libraries are already pre-filtered to remove redundant reads. The read length of most 

of reads in the ChIP-Seq date sets used is 25bp.   

 

• MACS: version 1.3.5 was used.  Parameters used: bandwidth =300bp; tsize=25; 

gsize: equivalent to 74.3% for hg18 and 77% for mm8(Smith, 2009);  mfold: default 

when possible, otherwise it is lowered to the value acceptable to the program. Default 

values are used for other parameters.  

• Quest: version 2.1 was downloaded from 

http://www.stanford.edu/~valouev/QuEST/QuEST.html. Parameters used: the default 

parameters under the "parameter configuration" of treating “Histone-type ChIP resulting 

in wide regions of enrichment” (in which bandwidth = 100 bp, region_size = 1000 bp) 

and “permissive peak calling parameters” (in which ChIP_threshold    = 

0.272198860714286; Enrichment fold   = 3; Rescue fold   = 3). 

• FindPeaks: version 3.2.2.3 was used. Parameters: -directional mode is not 

engaged;  -dist_type: default format with triangle distribution and median fragment 

length 150bp; -eff_frac: 74.3% for hg18 and 77% for mm8 (Smith, 2009);  -duplicate 

filter: off; -qualityfilter: off; -hist_size: 50; -subpeaks: off; -trim: off;   Monte Carlo 

simulation was used for the statistics of the island heights based on a background 

distribution of random reads; -iterations:20 

• F-Seq: version 1.8.1: defaults are used for all parameters except for the threshold. 

The threshold value is scanned for different island read-count coverage. 
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Figure S5: (a) Comparison of ChIP-enriched regions identified with and without control library by 
SICER.  With H3K27me3 data from human CD4+ T cells, we applied two different approaches to 
find significant islands:  1) with control, p-value = 10-10, represented by the grey circle;  2) without 
control, E-value=100, represented by the green circle.   We chose these parameters so that the two 
approaches result in similar amount of reads on significant island. As shown, they share a majority 
of islands. On the other hand, there are significant differences in terms of the predications made by 

the two approaches.  (b) an example of an island filtered out be the control.  
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Figure S6: The summary graphs of H3K27me3 (grey) and H3K4me3 (black) at the three signature 
cytokine genes IFNG, IL4 and IL17 in mouse CD4+ lineages Th1 (top panel), Th2 (middle panel) and 
Th17 (bottom panel). The summary graphs were made by binning reads into 200 bp non-overlapping 
windows.   



I. Changes in histone modification profile in genes categorized 

according to gene expression changes 
The genes are separated by their expression pattern into four groups according to the 

“absent” and “present” calls made by Affymetrix analysis tools. Genes that are “present” 

(“absent”) in both CD133+ and CD36+ are denoted as always expressed (silent).  Genes 

that are “present” (“absent”) in CD133+ and “absent” (“present”) in CD36+ are denoted as 

repressed (induced).Only genes with consistent calls in the two replicates of the 

microarray were retained.   On the left (right) panel of each figure are unfiltered (filtered) 

profiles.  
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Figure S7: Composite profiles of genes expressed in both CD133+ and CD36+.  
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Figure S8: Composite profiles of genes silent in both CD133+ and CD36+. The difference of filtered 

H4K20me1 profiles in the promoter region is found to be due to bivalent domain genes(Cui, et al., 

2009).   
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Figure S9: Composite profiles of repressed genes. 
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 Figure S10: Composite profiles of induced genes. 

 

 



 II. Scaling analysis for sequencing coverage 
A typical ChIP-Seq experiment produces millions of reads that map to reference genome. 

Accurate and complete identification of the ChIP-enriched regions requires that these 

regions receive enough reads to overcome the background noise.  Therefore, the 

determination of sequencing coverage is quite important. The island approach can be 

used as an unbiased method to judge the degree of coverage, by sampling the 

experimental data at different sizes, and looking at the scaling of the fraction of reads on 

islands versus the sample size. Figure S11 shows the result of such an analysis applied to 

H3K4me3 and H3K27me3 in CD4+ T-cells, both of which have close to 18 million reads 

before preprocessing. A dramatic difference in the scaling behaviors of the two 

modifications can be seen. While for H3K4me3 the scaling curve clearly exhibited 

leveling indicating saturation, H3K27me3 remained far from saturation all the way 

through. This is consistent with the fact that H3K4me3 presents sharp, localized peaks 

whereas H3K27me3 is much more diffuse. 
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Figure S11: Scaling of island read count coverage versus the number of sampled read count for 
H3K4me3 (black) and H3K27me3 (red) in CD4+ T-cells.  Each data point represents the average of 

10 random samples of a given size from the original library. The islands are identified using random 
background model with E-value of 0.1.  The gap size is g=2. The sudden dips in the H3K27me3 curve 

are the result of the digital jump in window read-count threshold . 0l

 
 
 
 
 



 

(a)

(b)

 

Figure S12:  In SICER, the significance of a local enrichment is context dependent. Shown are 
schematic cases of an enriched window in two different enrichment contexts. In (a), the central 
enriched window is by itself, and not enriched enough to be significant. In (b), because of the 

presence of neighboring enriched windows, the central enriched window (along with the other 
members in the cluster) becomes significant.  In contrast, approaches based on local-statistics would 
find the central enriched window to be equally insignificant in case (a) and case (b). Of course, if the 
central window is already highly enriched by itself,    it will be deemed as significant both by SICER 

and by approaches based on local-statistics . 
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